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Abstract

The construction of Kéahler geometry of WCW (”world of classical worlds”)
is fundamental to TGD program. I ended up with the idea about physics as
WCW geometry around 1985 and made a breakthrough around 1990, when
I realized that Kahler function for WCW could correspond to Kahler action
for its preferred extremals defining the analogs of Bohr orbits so that classi-
cal theory with Bohr rules would become an exact part of quantum theory
and path integral would be replaced with genuine integral over WCW. The
motivating construction was that for loop spaces leading to a unique Kéhler
geometry. The geometry for the space of 3-D objects is even more complex
than that for loops and the vision still is that the geometry of WCW is unique
from the mere existence of Riemann connection.

This chapter represents the updated version of the construction providing
a solution to the problems of the previous construction. The basic formulas
remain as such but the expressions for WCW super-Hamiltonians defining
WCW Hamiltonians (and matrix elements of WCW metric) as their anticom-
mutator are replaced with those following from the dynamics of the modified
Dirac action.

1 Introduction

The construction of Ké&hler geometry of WCW (”world of classical worlds”) is funda-
mental to TGD program. I ended up with the idea about physics as WCW geometry
around 1985 and made a breakthrough around 1990, when I realized that Kahler
function for WCW could correspond to Kahler action for its preferred extremals
defining the analogs of Bohr orbits so that classical theory with Bohr rules would
become an exact part of quantum theory and path integral would be replaced with
genuine integral over WCW. The motivating construction was that for loop spaces
leading to a unique Kéhler geometry [A7]. The geometry for the space of 3-D objects
is even more complex than that for loops and the vision still is that the geometry
of WCW is unique from the mere existence of Riemann connection.

The basic idea is that WCW is union of symmetric spaces G/H labelled by zero
modes which do not contribute to the WCW metric. There have been many open
questions and it seems the details of the ealier approach [?]ust be modified at the
level of detailed identifications and interpretations.

1. A longstanding question has been whether one could assign Equivalence Prin-
ciple (EP) with the coset representation formed by the super-Virasoro rep-
resentation assigned to G and H in such a manner that the four-momenta
associated with the representations and identified as inertial and gravitational
four-momenta would be identical. This does not seem to be the case. The re-
cent view will be that EP reduces to the view that the classical four-momentum
associated with Kahler action is equivalent with that assignable to modified
Dirac action supersymmetrically related to Kahler action: quantum classical
correspondence (QCC) would be in question. Also strong form of general
coordinate invariance implying strong form of holography in turn implying



1. Introduction 4

that the super-symplectic representations assignable to space-like and light-
like 3-surfaces are equivalent could imply EP with gravitational and inertial
four-momenta assigned to these two representations.

At classical level EP follows from the interpretation of GRT space-time as effec-
tive space-time obtained by replacing many-sheeted space-time with Minkowski
space with effective metric determined as a sum of Minkowski metric and
sum over the deviations of the induced metrices of space-time sheets from
Minkowski metric. Poincare invariance suggests strongly classical EP for the
GRT limit in long length scales at least.

2. The detailed identification of groups G and H and corresponding algebras
has been a longstanding problem. Symplectic algebra associated withd M x
CP2 (§M1 is light-cone boundary - or more precisely, with the boundary of
causal diamond (CD) defined as Cartesian product of C'P, with intersection
of future and past direct light cones of M* has Kac-Moody type structure
with light-like radial coordinate replacing complex coordinate z. Virasoro
algebra would correspond to radial diffeomorphisms. I have also introduced
Kac-Moody algebra assigned to the isometries and localized with respect to
internal coordinates of the light-like 3-surfaces at which the signature of the
induced metric changes from Minkowskian to Euclidian and which serve as
natural correlates for elementary particles (in very general sense!). This kind
of localization by force could be however argued to be rather ad hoc as opposed
to the inherent localization of the symplectic algebra containing the symplectic
algebra of isometries as sub-algebra. It turns out that one obtains direct sum
of representations of symplectic algebra and Kac-Moody algebra of isometries
naturally as required by the success of p-adic mass calculations.

3. The dynamics of Kéhler action is not visible in the earlier construction. The
construction also expressed WCW Hamiltonians as 2-D integrals over par-
tonic 2-surfaces. Although strong form of general coordinate invariance (GCI)
implies strong form of holography meaning that partonic 2-surfaces and their
4-D tangent space data should code for quantum physics, this kind of outcome
seems too strong. The progress in the understanding of the solutions of mod-
ified Dirac equation led however to the conclusion that spinor modes other
than right-handed neutrino are localized at string world sheets with strings
connecting different partonic 2-surfaces. This leads to a modification of earlier
construction in which WCW super-Hamiltonians are essentially integrals with
integrand identified as a Noether super current for the deformations in G Each
spinor mode gives rise to super current and the modes of right-handed neu-
trino and other fermions differ in an essential manner. Right-handed neutrino
would correspond to symplectic algebra and other modes to the Kac-Moody
algebra and one obtains the crucial 5 tensor factors of Super Virasoro required
by p-adic mass calculations.

The matrix elements of WCW metric between Killing vectors are expressible as
anti-commutators of super-Hamiltonians identifiable as contractions of WCW
gamma matrices with these vectors and give Poisson brackets of correspond-
ing Hamiltonians. The anti-commutation relates of induced spinor fields are
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dictated by this condition. Everything is 3-dimensional although one expects
that symplectic transformations localized within interior of X3 act as gauge
symmetries so that in this sense effective 2-dimensionality is achieved. The
components of WCW metric are labelled by standard model quantum numbers
so that the connection with physics is extremely intimate.

An open question in the earlier visions was whether finite measurement reso-
lution is realized as discretization at the level of fundamental dynamics. This
would mean that only certain string world sheets from the slicing by string
world sheets and partonic 2-surfaces are possible. The requirement that anti-
commutations are consistent suggests that string world sheets correspond to
surfaces for which Kahler magnetic field is constant along string in well defined
sense (J,,€"g'/? remains constant along string). It however turns that by a
suitable choice of coordinates of 3-surface one can guarantee that this quantity
is constant so that no additional constraint results.

Quantum criticality is one of the basic notions of quantum TGD and its re-
lationship to coset construction has remained unclear. In this chapter the
concrete realization of criticality in terms of symmetry breaking hierarchy of
Super Virasoro algebra acting on symplectic and Kac-Moody algebras. Also
a connection with finite measurement resolution - second key notion of TGD
- emerges naturally.

The appendix of the book gives a summary about basic concepts of TGD with
illustrations. There are concept maps about topics related to the contents of the
chapter prepared using CMAP realized as html files. Links to all CMAP files can
be found at http://www.tgdtheory.fi/cmaphtml.html [?]. Pdf representation of
same files serving as a kind of glossary can be found at http://www.tgdtheory.fi/
tgdglossary.pdf [?]. The topics relevant to this chapter are given by the following

list.

Hierarchy of Planck constants [?]
Hyperfinite factors and TGD [?]
Structure of WCW, [7]

TGD as infinite-dimensional geometry [?]
WCW gamma matrices [?]

WCW spinor fields| [?]

Weak form of electric-magnetic duality [?]
Zero Energy Ontology (ZEO) [?]

4-D spin glass degeneracy [?]

Equivalence Principle [?]


http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/tgdglossary.pdf
http://www.tgdtheory.fi/tgdglossary.pdf
http://www.tgdtheory.fi/webCMAPs/Hierarchy of Planck constants.html
http://www.tgdtheory.fi/webCMAPs/Hyperfinite factors and TGD.html
http://www.tgdtheory.fi/webCMAPs/Structure of WCW.html
http://www.tgdtheory.fi/webCMAPs/TGD as infinite-dimensional geometry.html
http://www.tgdtheory.fi/webCMAPs/WCW gamma matrices.html
http://www.tgdtheory.fi/webCMAPs/WCW spinor fields.html
http://www.tgdtheory.fi/webCMAPs/Weak form of electric-magnetic duality.html
http://www.tgdtheory.fi/webCMAPs/Zero Energy Ontology (ZEO).html
http://www.tgdtheory.fi/webCMAPs/4-D spin glass degeneracy.html
http://www.tgdtheory.fi/webCMAPs/Equivalence Principle.html
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2

Holography| [?]

Quantum Classical Correspondence [?]
Quantum criticality] [?]

Symmetries of WCW  [?]

TGD as ATQFT [?]

Vacuum functional in TGD) [?]

KD equation| [?]

Kaehler-Dirac action [?]

WCW as a union of homogenous or symmetric
spaces

In the following the vision about WCW as union of coset spaces is discussed in more
detail.

2.1

Basic vision

The basic view about coset space construction for WCW has not changed.

1.

The idea about WCW as a union of coset spaces G/H labelled by zero modes
is extremely attractive. The structure of homogenous space [Al] (http:
//en.wikipedia.org/wiki/Homogenous_space) means at Lie algebra level
the decomposition ¢ = h @ t to sub-Lie-algebra h and its complement ¢ such
that [h,t] C t holds true. Homogeneous spaces have G as its isometries. For
symmetric space the additional condition [¢,¢] C h holds true and implies the
existence of involution changing at the Lie algebra level the sign of elements
of t and leaving the elements of h invariant. The assumption about the struc-
ture of symmetric space [A6] (http://en.wikipedia.org/wiki/Symmetric_
space)) implying covariantly constant curvature tensor is attractive in infinite-
dimensional case since it gives hopes about calculability.

An important source of intuition is the analogy with the construction of C'Ps,
which is symmetric space A particular choice of h corresponds to Lie-algebra
elements realized as Killing vector fields which vanish at particular point of
WCW and thus leave 3-surface invariant. A preferred choice for this point is
as maximum or minimum of Kahler function. For this 3-surface the Hamil-
tonians of A should be stationary. If symmetric space property holds true
then commutators of [¢,¢] also vanish at the minimum/maximum. Note that
Euclidian signature for the metric of WCW requires that Kahler function can
have only maximum or minimum for given zero modes.


http://www.tgdtheory.fi/webCMAPs/Holography.html
http://www.tgdtheory.fi/webCMAPs/Quantum Classical Correspondence.html
http://www.tgdtheory.fi/webCMAPs/Quantum criticality.html
http://www.tgdtheory.fi/webCMAPs/Symmetries of WCW.html
http://www.tgdtheory.fi/webCMAPs/TGD as ATQFT.html
http://www.tgdtheory.fi/webCMAPs/Vacuum functional in TGD.html
http://www.tgdtheory.fi/webCMAPs/KD equation.html
http://www.tgdtheory.fi/webCMAPs/Kaehler-Dirac action.html
http://en.wikipedia.org/wiki/Homogenous_space
http://en.wikipedia.org/wiki/Homogenous_space
http://en.wikipedia.org/wiki/Symmetric_space
http://en.wikipedia.org/wiki/Symmetric_space
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2. The basic objection against TGD is that one cannot use the powerful canonical
quantization using the phase space associated with configuration space - now
WCW. The reason is the extreme non-linearity of the Kahler action and its
huge vacuum degeneracy, which do not allow the construction of Hamiltonian
formalism. Symplectic and Ké&hler structure must be realized at the level
of WCW. In particular, Hamiltonians must be represented in completely new
manner. The key idea is to construct WCW Hamiltonians as anti-commutators
of super-Hamiltonians defining the contractions of WCW gamma matrices with
corresponding Killing vector fields and therefore defining the matrix elements
of WCW metric in the tangent vector basis defined by Killing vector fields.
Super-symmetry therefre gives hopes about constructing quantum theory in
which only induced spinor fields are second quantized and imbedding space
coordinates are treated purely classically.

3. It is important to understand the difference between symmetries and isometries
assigned to the Kahler function. Symmetries of Kahler function do not affect it.
The symmetries of Kahler action are also symmetries of Kahler action because
Kéhler function is Kéhler action for a preferred extremal (here there have been
a lot of confusion). Isometries leave invariant only the quadratic form defined
by Kéhler metric ¢,,7 = 00 K but not Kéhler function in general. For G/H
decomposition G represents isometries and H both isometries and symmetries
of Kahler function.

CP, is familiar example: SU(3) represents isometries and U(2) leaves also
Kéhler function invariant since it depends on the U(2) invariant radial coor-
dinate r of C'P,. The origin r = 0 is left invariant by U(2) but for » > 0 U(2)
performs a rotation at r = constant 3-sphere. This simple picture helps to
understand what happens at the level of WCW.

How to then distinguish between symmetries and isometries? A natural guess
is that one obtains also for the isometries Noether charges but the vanish-
ing of boundary terms at spatial infinity crucial in the argument leading to
Noether theorem as AS = AQ = 0 does not hold true anymore and one
obtains charges which are not conserved anymore. The symmetry breaking
contributions would now come from effective boundaries defined by wormhole
throats at which the induce metric changes its signature from Minkowskian
to Euclidian. A more delicate situation is in which first order contribution to
AS vanishes and therefore also AQ and the contribution to AS comes from
second variation allowing also to define Noether charge which is not conserved.

4. The simple picture about C'P, as symmetric space helps to understand the
general vision if one assumes that WCW has the structure of symmetric space.
The decomposition ¢ = h + t corresponds to decomposition of symplectic
deformations to those which vanish at 3-surface (k) and those which do not
(t).

For the symmetric space option, the Poisson brackets for super generators
associated with t give Hamiltonians of h identifiable as the matrix elements of
WCW metric. They would not vanish although they are stationary at 3-surface
meaning that Riemann connection vanishes at 3-surface. The Hamiltonians
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which vanish at 3-surface X3 would correspond to ¢ and the Hamiltonians for
which Killing vectors vanish and which therefore are stationary at X? would
correspond to h. Outside X3 the situation would of course be different. The
metric would be obtained by parallel translating the metric from the preferred
point of WCW to elsewhere and symplectic transformations would make this
parallel translation.

For the homogenous space option the Poisson brackets for super generators of
t would still give Hamiltonians identifiable as matrix elements of WCW metric
but now they would be necessary those of h. In particular, the Hamiltonians
of ¢ do not in general vanish at X?3.

2.2 Equivalence Principle and WCW

2.3 EP at quantum and classical level

Quite recently I returned to an old question concerning the meaning of Equivalence
Principle (EP) in TGD framework.

Heretic would of course ask whether the question about whether EP is true or not
is a pseudo problem due to uncritical assumption there really are two different four-
momenta which must be identified. If even the identification of these two different
momenta is difficult, the pondering of this kind of problem might be waste of time.

At operational level EP means that the scattering amplitudes mediated by gravi-
ton exchange are proportional to the product of four-momenta of particles and that
the proportionality constant does not depend on any other parameters character-
izing particle (except spin). The are excellent reasons to expect that the stringy
picture for interactions predicts this.

1. The old idea is that EP reduces to the coset construction for Super Vira-
soro algebra using the algebras associated with G and H. The four-momenta
assignable to these algebras would be identical from the condition that the dif-
ferences of the generators annihilate physical states and identifiable as inertial
and gravitational momenta. The objection is that for the preferred 3-surface
H by definition acts trivially so that time-like translations leading out from the
boundary of CD cannot be contained by H unlike G. Hence four-momentum
is not associated with the Super-Virasoro representations assignable to H and
the idea about assigning EP to coset representations does not look promising.

2. Another possibility is that EP corresponds to quantum classical correspon-
dence (QCC) stating that the classical momentum assignable to Kéahler action
is identical with gravitational momentum assignable to Super Virasoro rep-
resentations. This forced to reconsider the questions about the precise iden-
tification of the Kac-Moody algebra and about how to obtain the magic five
tensor factors required by p-adic mass calculations [K9].

A more precise formulation for EP as QCC comes from the observation that
one indeed obtains two four-momenta in TGD approach. The classical four-
momentum assignable to the Kahler action and that assignable to the modified
Dirac action. This four-momentum is an operator and QCC would state that
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given eigenvalue of this operator must be equal to the value of classical four-
momentum for the space-time surfaces assignable to the zero energy state in
question. In this form EP would be highly non-trivial. It would be justified by
the Abelian character of four-momentum so that all momentum components
are well-defined also quantum mechanically. One can also consider the splitting
of four-momentum to longitudinal and transversal parts as done in the parton
model for hadrons: this kind of splitting would be very natural at the boundary
of CD. The objection is that this correspondence is nothing more than QCC.

3. A further possibility is that duality of light-like 3-surfaces and space-like 3-
surfaces holds true. This is the case if the action of symplectic algebra can
be defined at light-like 3-surfaces or even for the entire space-time surfaces.
This could be achieved by parallel translation of light-cone boundary providing
slicing of CD. The four-momenta associated with the two representations of
super-symplectic algebra would be naturally identical and the interpretation
would be in terms of EP.

One should also understand how General Relativity and EP emerge at classical
level. The understanding comes from the realization that GRT is only an effective
theory obtained by endowing M* with effective metric.

1. The replacement of superposition of fields with superposition of their effects
means replacing superposition of fields with the set-theoretic union of space-
time surfaces. Particle experiences sum of the effects caused by the classical
fields at the space-time sheets.

2. This is true also for the classical gravitational field defined by the deviation
from flat Minkowski metric instandard M* coordinates for the space-time
sheets. One can define effective metric as sum of M* metric and deviations.
This effective metric would correspond to that of General Relativity. This
resolves long standing issues relating to the interpretation of TGD.

3. Einstein’s equations could hold true for the effective metric. They are mo-
tivated by the underlying Poincare invariance which cannot be realized as
global conservation laws for the effective metric. The conjecture vanishing of
divergence of Khler energy momentum tensor can be seen as the microscopic
justification for the claim that Einstein’s equations hold true for the effective
space-time.

4. The breaking of Poincare invariance could have interpretation as effective
breaking in zero energy ontology (ZEO), in which various conserved charges
are length dependent and defined separately for each causal diamond (CD).

One can of course consider the possibility that Einstein’s equations generalize for
preferred extremals of Kahbler action. This would actually represent at space-time
level the notion of QCC rather than realise QCC interpreted as EP. The condi-
tion that the energy momentum tensor for Kéhler action has vanishing covariant
divergence would be satisfied in GRT if Einstein’s equations with cosmological term
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hold true. This is the case also now but one can consider also more general solu-
tions in which one has two cosmological constants which are not genuine constants
anymore [K16].

An interesting question is whether inertial-gravitational duality generalizes to
the case of color gauge charges so that color gauge fluxes would correspond to
"gravitational” color charges and the charges defined by the conserved currents
associated with color isometries would define ”inertial” color charges. Since the
induced color fields are proportional to color Hamiltonians multiplied by Kéahler
form they vanish identically for vacuum extremals in accordance with ” gravitational”
color confinement.

2.4 Criticism of the earlier construction

The earlier detailed realization of super-Hamiltonians and Hamiltonians can be crit-
icized.

1. Even after these more than twenty years it looks strange that the Hamiltonians
should reduce to flux integrals over partonic 2-surfaces. The interpretation has
been in terms of effective 2-dimensionality suggested strongly by strong form
of general coordinate invariance stating that the descriptions based on light-
like orbits of partonic 2-surfaces and space-like three surfaces at the ends of
causal diamonds are dual so that only partonic 2-surfaces and 4-D tangent
space data at them would matter. Strong form of holography implies effective
2-dimensionality but this should correspond gauge character for the action of
symplectic generators in the interior the space-like 3-surfaces at the ends of
CDs, which is something much milder.

One expects that the strings connecting partonic 2-surfaces could bring some-
thing new to the earlier simplistic picture. The guess is that imbedding space
Hamiltonian assignable to a point of partonic 2-surface should be replaced
with that defined as integral over string attached to the point. Therefore the
earlier picture would suffer no modification at the level of general formulas.

2. The fact that the dynamics of Kahler action and modified Dirac action are
not directly involved with the earlier construction raises suspicions. I have
proposed that Kéahler function could allow identification as Dirac determi-
nant [K6] but one would expect more intimate connection. Here the natural
question is whether super-Hamiltonians for the modified Dirac action could
correspond to Kahler charges constructible using Noether’s theorem for corre-
sponding deformations of the space-time surface and would also be identifiable
as WCW gamma matrices.

2.5 Is WCW homogenous or symmetric space?

A key question is whether WCW can be symmetric space [A6] (http://en.wikipedia.
org/wiki/Riemannian_symmetric_space) or whether only homogenous structure
is needed. The lack of covariant constancy of curvature tensor might produce prob-
lems in infinite-dimensional context.


http://en.wikipedia.org/wiki/Riemannian_symmetric_space
http://en.wikipedia.org/wiki/Riemannian_symmetric_space
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The algebraic conditions for symmetric space are g = h + ¢, [h,t] C t, [t,t] C h.
The latter condition is the difficult one.

1. CD Hamiltonians should induce diffeomorphisms of X? indeed leaving it in-
variant. The symplectic vector fields would be parallel to X3. A stronger con-
dition is that they induce symplectic transformations for which all points of X3
remain invariant. Now symplectic vector fields vanish at preferred 3-surface

(note that the symplectic transformations are r); local symplectic transforma-
tions of S% x CPy).

2. For Kac-Moody algebra inclusion H C G for the finite-dimensional Lie-algebra
induces the structure of symmetric space. If entire algebra is involved this
does not look physically very attractive idea unless one believes on symmetry
breaking for both SU(3), U(2).y, and SO(3) and E, (here complex conjugation
corresponds to the involution). If one assumes only Kac-Moody algebra as
critical symmetries, the number of tensor factors is 4 instead of five, and it is
not clear whether one can obtain consistency with p-adic mass calculations.

Examples of 3-surfaces remaining invariant under U(2) are 3-spheres of C'P;.
They could correspond to intersections of deformations of C'P, type vacuum
extremals with the boundary of CD. Also geodesic spheres S? of C'P, are
invariant under U(2) subgroup and would relate naturally to cosmic strings.
The corresponding 3-surface would be L x S?, where L is a piece of light-like
radial geodesic.

3. In the case of symplectic algebra one can construct the imbedding space Hamil-
tonians inducing WCW Hamiltonians as products of elements of the isometry
algebra of S? x C'P, for with parity under involution is well-defined. This would
give a decomposition of the symplectic algebra satisfying the symmetric space
property at the level imbedding space. This decomposition does not however
look natural at the level of WCW since the only single point of C'P, and light-
like geodesic of M¥ can be fixed by SO(2) x U(2) so that the 3-surfaces would
reduce to pieces of light rays.

4. A more promising involution is the inversion r,;, — 1/r); of the radial co-
ordinate mapping the radial conformal weights to their negatives. This cor-
responds to the inversion in Super Virasoro algebra. t would correspond to
functions which are odd functions of u = log(rys/r9) and h to even function
of u. Stationary 3-surfaces would correspond to u = 1 surfaces for which
log(u) = 0 holds true. This would assign criticality with Virasoro algebra as
one expects on general grounds.

ry = constant surface would most naturally correspond to a maximum of
Kahler function which could indeed be highly symmetric. The elements with
even u-parity should define Hamiltonians, which are stationary at the max-
imum of Kéhler function. For other 3-surfaces obtained by /rj-local) sym-
plectic transformations the situation is different: now H is replaced with its
symplectic conjugate hH g~ of H is acceptable and if the conjecture is true
one would obtained 3-surfaces assignable to perturbation theory around given
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maximum as symplectic conjugates of the maximum. The condition that H
leaves X? invariant in poin-twise manner is certainly too strong and imply
that the 3-surface has single point as C'P, projection.

5. One can also consider the possibility that critical deformations correspond to
h and non-critical ones to t for the preferred 3-surface. Criticality for given h
would hold only for a preferred 3-surface so that this picture would be very
similar that above. Symplectic conjugates of h would define criticality for
other 3-surfaces. WCW would decompose to a union corresponding to dif-
ferent criticalities perhaps assignable to the hierarchy of sub-algebras of con-
formal algebra labelled by integer whose multiples give the allowed conformal
weights. Hierarchy of breakings of conformal symmetries would characterize
this hierarchy of sectors of WCW.

For sub-algebras of the conformal algebras (Kac-Moody and symplectic alge-
bra) the condition [t,t] C h cannot hold true so that one would obtain only
the structure of homogenous space.

2.6 Symplectic and Kac-Moody algebras as basic building
bricks

The basic building bricks are symplectic algebra of 6C'D (this includes C'P, be-
sides light-cone boundary) and Kac-Moody algebra assignable to the isometries of
dCD [K4]. Tt seems however that the longheld view about the role of Kac-Moody
algebra must be modified. Also the earlier realization of super-Hamiltonians and
Hamiltonians seems too naive.

1. T have been accustomed to think that Kac-Moody algebra could be regarded as
a sub-algebra of symplectic algebra. p-Adic mass calculations however requires
five tensor factors for the coset representation of Super Virasoro algebra natu-
rally assigned to the coset structure G/H of a sector of WCW with fixed zero
modes. Therefore Kac-Moody algebra cannot be regarded as a sub-algebra of
symplectic algebra giving only single tensor factor and thus inconsistent with
interpretation of p-adic mass calculations.

2. The localization of Kac-Moody algebra generators with respect to the inter-
nal coordinates of light-like 3-surface taking the role of complex coordinate
z in conformal field theory is also questionable: the most economical option
relies on localization with respect to light-like radial coordinate of light-cone
boundary as in the case of symplectic algebra. Kac-Moody algebra cannot
be however sub-algebra of the symplectic algebra assigned with covariantly
constant right-handed neutrino in the earlier approach.

3. Right-handed covariantly constant neutrino as a generator of super symmetries
plays a key role in the earlier construction of symplectic super-Hamiltonians.
What raises doubts is that other spinor modes - both those of right-handed
neutrino and electro-weakly charged spinor modes - are absent. All spinor
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modes should be present and thus provide direct mapping from WCW geome-
try to WCW spinor fields in accordance with super-symmetry and the general
idea that WCW geometry is coded by WCW spinor fields.

Hence it seems that Kac-Moody algebra must be assigned with the modes of
the induced spinor field which carry electroweak quantum numbers. If would
be natural that the modes of right-handed neutrino having no weak and color
interactions would generate the huge symplectic algebra of symmetries and
that the modes of fermions with electroweak charges generate much smaller
Kac-Moody algebra.

4. The dynamics of Kahler action and modified Dirac action action are invisible
in the earlier construction. This suggests that the definition of WCW Hamil-
tonians is too simplistic. The proposal is that the conserved super charges
derivable as Noether charges and identifiable as super-Hamiltonians define
WCW metric and Hamiltonians as their anti-commutators. Spinor modes
would become labels of Hamiltonians and WCW geometry relates directly to
the dynamics of elementary particles.

5. Note that light-cone boundary Mt = S* x R, allows infinite-dimensional
group of isometries consisting of conformal transformation of the sphere S?
with conformal scaling compensated by an S? local scaling or the light-like
radial coordinate of R,. These isometries contain as a subgroup symplectic
isometries and could act as gauge symmetries of the theory.

3 Preferred extremals of Kahler action, solutions
of the modified Dirac operator, and quantum
criticality

Perhaps due to my natural laziness I have not bothered to go through the basic
construction [K4. [K3] although several new ideas have emerged during last years
[K13].

1. The new view about preferred extremals of Kahler action involves the slicing of
space-time surface to string world sheets labelled by points of any partonic two-
surface or vice versa. I have called this structure Hamilton-Jacobi structure
[K2]. A number theoretic interpretation based on the octonionic representation
of imbedding space gamma matrices. A gauge theoretic interpretation in terms
of two orthogonal 2-D spaces assignable to polarization and momentum of
massless field mode is also possible. The slicing suggests duality between
string world sheets and conformal field theory at partonic 2-surfaces analogous
to AdS/CFT. Strong form of holography implied by strong form of GCI would
be behind the duality.

2. The new view about the solutions of modified Dirac equation involves local-
ization of the modes at string world sheets: this emerges from the condition
that electric charge is well defined quantum number for the modes. The effec-
tive 2-dimensionality of the space of the modified gamma matrices is crucial
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for the localization. This leads to a concrete model of elementary particles
as string like objects involving two space-time sheets and flux tubes carrying
Kéhler magnetic monopole flux. Holomorphy and complexification of modi-
fied gamma matrices are absolutely essential consequences of the localization
and is expected to be crucial also in the construction of WCW geometry. The
weakest interpretation is that the general solution of modified Dirac is su-
perposition of these localized modes parametrized by the points of partonic
2-surface and integer labelling the modes themselves as in string theory. One
has the same general picture as in ordinary quantum theory.

One can wonder whether finite measurement resolution is realized dynamically
in the sense that a discrete set of stringy world sheets are possible. It will be
found that quantization of induced spinor fields leads to a concrete proposal re-
alizing this: strings would be identified as curves along which Kahler magnetic
field has constant value.

3. Quantum criticality is central notion in TGD framework: Kahler coupling
strength is the only coupling parameter appearing in Kéhler action and is
analogous to temperature. The idea of quantum criticality is that TGD Uni-
verse is quantum critical so that Kéahler coupling strength is analogous to
critical temperature. The hope is that this could make the theory unique. I
have not however been able to really understand it and relate it to the coset
space construction of WCW and to coset representations of Super Virasoro.

3.1 What criticality is?

The basic technical problem has been characterization of it quantitatively [K6]. Here
there is still a lot of fuzzy thinking and unanswered questions. What is the precise
definition of criticality and what is its relation to G/H decomposition of WCW?
Could H correspond to critical deformations so that it would have purely group
theoretical characterization, and one would have nice unification of two approaches
to quantum TGD?

1. Does criticality correspond to the failure of classical determinism?

The intuitive guess is that quantum criticality corresponds classically to the
criticality of Kéahler action implying non-determinism. The preferred extremal asso-
ciated with given 3-surface at the boundary of CD is not unique. There are several
deformations of space-time surface vanishing at X3 and leaving the Kéhler action
and thus Kéhler function invariant.

Some nitpicking before continuing is in order.

1. The key word is "wanishing” in the above definition of criticality relying on
classical non-determinism. Could one allow also non-vanishing deformations of
X3 with the property that Kahler function and Kahler action are not changed?
This would correspond to the idea that critical directions correspond to flat di-
rections for the potential in quadratic approximation: now it would be Kahler
function in quadratic approximation. The flat direction would not contribute
to Kéhler metric G 1 = Ox01.
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Clearly, the subalgebra h associated with H would satisfy criticality in this
sense for all 3-surfaces except the one for which it acts as isotropy group: in
this case one would have criticality in the strong sense.

This identification of criticality is consistent with that based on non-determinism
only if the deformations in H leaving X3 fixed do not leave X4(X?) fixed. This
would apply also to A. One would have bundle like structure: 3-surface would
represent base point of the bundle and space-time surfaces associated with it
would correspond to the points in the fiber permuted by h.

2. What about zero modes, which appear only in the conformal scaling factor of
WCW metric but not in the differentials appearing the line element? Are the
critical modes zero modes but only up to second order in functional Taylor
expansion?

Returning to the definition of criticality relying on classical non-determinism.
One can try to fix X*(X?) uniquely by fixing 3-surface at the second end of CD but
even this need not be enough? One expects non-uniqueness in smaller scales in ac-
cordance with approximate scaling invariance and fractality assignable to criticality.

A possible interpretation would be in terms of dynamical symmetry analogous
to gauge symmetry assignable to H and having interpretation in terms of mea-
surement resolution. Increasing the resolution would mean fixing X3 at upper and
lower boundaries in shorter scale. Finite measurement resolution would give rise
to dynamical gauge symmetry. This conforms with the idea that TGD Universe is
analogous to a Turing machine able to mimic any gauge dynamics. The hierarchy
of inclusions for hyper-finite factors of type I1; supports this view too [K10].

Criticality would be a space-time correlate for quantum non-determinism. I
have assigned this nondeterminism to multi-furcations of space-time sheets giving
rise to the hierarchy of Planck constants. This involves however something new:
namely the idea that several alternative paths are selected in the multi-furcation
simultaneously [K5, [K12].

2. Further aspects of criticality

1. Mathematically the situation at criticality of Kihler action for X*(X3) (as dis-
tinguished from Kéhler function for X?) is analogous to that at the extremum
of potential when the Hessian defined by second derivatives has vanishing
determinant and there are zero modes. Now one would have an infinite num-
ber of deformations leaving Kahler action invariant in second order. What is
important that critical deformations leave X3 invariant so that they cannot
correspond to the sub-algebra h except possibly at point for which H acts as
an isotropy group.

2. Criticality would suggest that conserved charges linear in deformation vanish:
this because deformation vanishes at X3. Second variation would give rise
to charges to and invariance of the Kéhler action in this action would mean
that AS; = AQs = 0 holds true unless effective boundary terms spoil the
situation. Second order charges would be quadratic in the variation and it is
not at all clear whether there is any hope about having a non-linear analog of
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Lie-algebra or super algebra structure. I do not know whether mathematicians
have considered this kind of possibility. Yangian algebra represent involving
besides Lie algebra generators also generators coming as their multilinears have
some formal resemblance with this kind of non-linear structure.

3. Supersymmetry would suggest that criticality for the Kéhler action implies
criticality for the modified Dirac action. The first order charges for Dirac
action involve the partial derivatives of the canonical momentum currents 7}
with respect to partial derivatives dgh! of imbedding space coordinates just
as the second order charges for Kahler action do. First order Noether charges
vanish if criticality means that variation vanishes at X? but not at X4(X3)
since they involve linearly 6h* vanishing at X3. Second order charges for
modified Dirac action get second contribution from the modification of the
induced spinor field by a term involving spin rotation and from the second
variation of the modified gamma matrices. Here it is essential that derivatives
of 0y6h', which need not vanish, are involved.

Note: I use the notation 0, for space-time partial derivatives and 0y, for imbed-
ding space partial derivatives).

3.2 Do critical deformations correspond to Super Virasoro
algebra?

One can try to formulate criticality a in terms of super-conformal algebras and their
sub-algebras h.,, for which conformal weights are integer multiples of integer m.
Now I mean with super-conformal algebra also symplectic and super Kac-Moody
algebras. These decompositions - call them just g. = t. @ h. need not correspond to
g + h associated with G/H although it could do so. For instance, if g. corresponds
to Super Virasoro algebra then the decomposition g. = t. ® h. does not correspond
to g =1t h.

1. There would be a hierarchy of included sub-algebras A ,,, which corresponds to
hierarchy of conformal algebras assignable to the light-like radial coordinate of
the boundary of light-cone and criticalities could form hierarchy in this sense.
The algebras form inclusion hierarchies h,,, D h,,, D ... labelled by sequences
consisting of integers such that given integer is divisible by the previous integer
in the sequence: m,, mod m,,_, = 0.

Critical deformations assignable to h..,, would vanish at preferred X? for which
H is isotropy group and leave Kahler action invariant and would not therefore
contribute to Kihler metric at X3. They could however affect X*(X?3).

Non-critical deformation would correspond to the complement of this sub-
algebra affecting both X*(X3) and X3. This hierarchy would correspond to
an infinite hierarchy of conformal symmetry breakings and would be mani-
fested at the level of WCW geometry. Also a connection with the inclusion
hierarchy for hyper-finite factors of type [I; [K10] having interpretation in
terms of finite measurement resolution is suggested by this hierarchy. Super
Virasoro generators with conformal weight coming as a multiple of m would an-
nihilate physical states so that effectively the criticality correspond to finite-D
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Hilbert space. This is something new as compared to the ordinary view about
criticality for which all Super Virasoro generators annihilate the states.

2. A priori ¢ = t + h decomposition need not have anything to do with the
decomposition of deformations to non-critical and critical ones. Critical de-
formations could indeed appear as sub-algebra of g = ¢t + h and be present for
both ¢ and A in the same manner: that is as sub-algebras of super- Virasoro
algebras: Super Virasoro would represent the non-determinism and criticality
and in 2-D conformal theories describing criticality this is indeed the case.
In this case the actions of G and H identified as super-symplectic and super
Kac-Moody algebras could be unique and non-deterministic aspect would not
be present. This corresponds to the physical intuition.

If criticality corresponds to G/ H structure, symmetric space property [¢,t] C h
would not hold true as is clear from the additivity of super-conformal weights
in the commutators of conformal algebras. The reduction of G/H structure
to criticality would be very nice but personally I would give up covariant
constancy of curvature tensor in infinite-dimensional context only with heavy
heart.

3. The super-symmetric relation between Kéhler action and corresponding modi-
fied Dirac action suggests that the criticality of Kéhler action implies vanishing
conserved charges also for the modified Dirac action (both ordinary and super
charges so that one has super-symmetry). The reason is that conserved charge
is linear in deformation. Conservation in turn means that Kahler action is not
changed: AS = AQ = 0. For non-critical deformations the boundary terms at
the orbits wormhole throats imply non-conservation so that AQ (the difference
of charges at space-like ends of space-time surface) is non-vanishing although
local conservation law holds strue. This in terms implies that the contribution
to the Kahler metric is non-trivial.

At criticality both bosonic and fermionic conserved currents can be assigned
to the second variation and are thus quadratic in deformation just like that
associated with Kahler action. If effective boundary terms vanish the criticality

for Kahler action implies the conservation of second order charges by A,S =
AQQ - 0

3.3 Connection with the vanishing of second variation for
Kahler action

There are three general conjectures related to modified Dirac equation and the
conserved currents associated with the vanishing second variation of Kéahler action
at critical points analogous to extrema of potential function at which flat directions
appear and the determinant defined by second derivatives of the potential function
does not have maximal rank.

1. Quantum criticality has as a correlate the vanishing of the second variation of
Kahler action for critical deformations. The conjecture is that the number of
these directions is infinite and corresponds to sub-algebras of Super Virasorol



4. Quantization of the modified Dirac action 18

4

algebra corresponding to conformal weights coming as integer multiples of
integer. Super Virasoro hypothesis implies that preferred extremals have same
algebra of critical deformations at all points.

Noether theorem applied to critical variations gives rise to conserved currents
and charges which are quadratic in deformation. For non-critical deforma-
tions one obtains linearity in deformation and this charges define the super-
conformal algebras.

Super Virasoro algebra indeed has a standard representation in which gener-
ators are indeed quadratic in Kac-Moody (and symplectic generators in the
recent case). This quadratic character would have interpretation in terms of
criticality not allowing linear representation.

. Modified Dirac operator is assumed to have a solution spectrum for which both

non-critical and critical deformations act as symmetries. The critical currents
vanish in the first order. Second variation involving first variation for the
modified gamma matrices and first variation for spinors (spinor rotation term)
gives and second variation for canonical momentum currents gives conserved
current. The general form of the current is very similar to the corresponding
current associated with Kahler action.

. The currents associated with the modified Dirac action and Kahler action have

same origin. In other words: the conservation of Kahler currents implies the
conservation of the currents associated with the modes of the modified Dirac
operator. A question inspired by quantum classical correspondence is whether
the eigen values of the fermionic charges correspond to the values of corre-
sponding classical conserved charges for Kahler action in the Cartan algebra.
This would imply that all space-time surfaces in superposition representing
momentum eigen state have the same value of classical four-momentum. A
stronger statement of QCC would be that classical correlation functions are
same as the quantal ones.

Quantization of the modified Dirac action

The quantization of the modified Dirac action follows standard rules.

1. The general solution is written as a superposition of modes, which are for other

fermions than vy localized to string world sheets and parametrized by a point
of partonic 2-surface which can be chosen to be the intersection of light-like
3-surface at which induced metric changes signature with the boundary of CD.

. The anti-commutations for the induced spinor fields are dictated from the

condition that the anti-commutators of the super-Hamiltonians identified as
WCW gamma matrices give WCW Hamiltonians as matrix elements of WCW
metric. Super Hamiltonians are identified as Noether charges for the modified
Dirac action assignable to the symplectic algebra of 6C'D being labelled also
by the quantum numbers labelling the modes of the induced spinor field.
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3. Consistency conditions for the modified Dirac operator require that the modi-
fied gamma matrices have vanishing divergence: this is true for the extremals
of Kahler action.

4. The guess for the critical algebra is as sub-algebra of Super Virasoro algebra
affecting on the radial light-like coordinate of C'D as diffeomorphisms. The
deformations of the modified Dirac operator should annihilate spinor modes.
This requires that the deformation corresponds to a gauge transformation
for the induced gauge fields. Furthermore, the deformation for the modified
gamma matrices determined by the deformation of the canonical momentum
densities contracted covariant derivatives should annihilate the spinor modes.
The situation is analogous to that for massless Dirac operator: Dirac equation
for momentum eigenstate does not imply vanishing of the momentum but
only that of mass. The condition that the divergence for the deformation
of the modified gamma matrices vanishes as does also the divergence of the
modified gamma matrices implies that the second variation of Kéahler action
vanishes. One obtains classical Kahler charges and Dirac charges: the latter
act as operators. The equivalence of the two definitions of of four-momenta
would corresponds to EP and QCC.

5. An interesting question of principle is what the almost topological QFT prop-
erty meaning that Kahler action reduces to Chern-Simons form integrated over
boundary of space-time and over the light-like 3-surfaces means. Could one
write the currents in terms of Chern-Simons form alone? Could one use also
Chern-Simons analog of modified Dirac action. What looks like problem at
the first glance is that only the charges associated with the symplectic group
of C'P, would be non-vanishing. Here the weak form of electric-magnetic dual-
ity [K6l, [K13] however introduce constraint terms to the action implying that
all charges can be non-vanishing.

The challenge is to construct explicit representations of super charges and demon-
strate that suitably defined anti-commutations for spinor fields reproduce the anti-
commutations of the super-symplectic algebra.

4.1 Integration measure in the superposition over modes

One can express ¥ as a superposition over modes as usually. Except for vg, the
modes are localized at string world sheets and can be labelled by a point of X2,
integer characterizing the mode and analogous to conformal weight, and quantum
numbers characterizing spin, electroweak quantum numbers, and M* handedness.
The de-localization of the modes of v decouple from left-handed neutrino if the
modified gamma matrices involved only M* or C'P, gamma matrices. It might be
possible to choose the string coordinate to be light-like radial coordinate of 6C'D
but this is by no means necessary.

The integration measure dp in the superposition of modes has nothing to do
with the metric determinants assignable to 3-surface X? or with the corresponding
space-time surface at X3. du at partonic 1-surface X2 must be taken to be such that
its square multiplied by transversal delta function resulting in anti-commutation of
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two modes gives a measure defined by the Kéhler form J,, and given by du =
Jdrtdz” = J \/@dxl Ndz?, J = J,e" (note that permutation tensor is inversely
proportional |/gz). This measure appears in the earlier definition of WCW Hamil-
tonian as the analog of flux integral ¢ HyJda' A dz?, where H, is Hamiltonian to
be replaced with its integral over string.

There are two manners to get J to the measure for Hamiltonian flux.

e Option I: One uses for super charges has ”"half integration measure” given by
dpt1/2 = A /J\/ﬁdaz:1 x dz?. Note that v/.J is imaginary for J < 0 and also the
unique choice of sign of the square root might produce problems.

e Option II: The integration measure is du = J(x, end) \/ﬁdscl/\d:c2 for the super
charge and anti-commutations of ¥ at string are proportional to 1/.J(x, end)./g2
so that anti-commutator of supercharges would be proportional to .J(z, end)./g2
and metric determinant disappears from the integration measure. Note that
the vanishing of J(x, end) does not produce any problems in anti-commutators.

J(x,end) means a non-locality in the anti-commutator. If the string is inter-
preted as beginning from the partonic surface at its second end, one obtains two
different anti-commutation relations unless strings are J(z,y)./g2 = constant
curves. This could make sense for flux tubes which are indeed assumed to
carry the Kahler flux. Note also that partonic 2-surface decomposes naturally
into regions with fixed sign of J forming flux tubes.

J(x,y)\/92 = constant condition seems actually trivial. The reason is that
by a suitable coordinate transformations (z,y) — (f(x,y) leaving string co-
ordinate invariant the /g, gains a factor equal to the Jacobian of the trans-
formation which reduces to 2-D Jacobian for the transformation for the co-
ordinates of partonic 2-surface. By a suitable choice of this transformation
J(x,y)\/92 = constant condition is satisfied along string world sheets. This
transformation is determined only modulo an area preserving - thus symplec-
tic - transformation for each partonic 2-surface in the slicing. One obtains
space-time analog of symplectic invariance as an additional symmetry having
identification as a remnant of 3-D GCI. Since also string parameterizations
t — f(t) are allowed so that 3-D GCI reduces to 1-D Diff and 2-D Sympl.
Natural 4-D extension of string reparameterizations would be to the analogs
of conformal transformations associated with the effective metric defined by
modified gamma matrices so that 4-D Diff would reduce to a product of 2-D
conformal and symplectic groups.

The physical state is specified by a finite number of fermion number carrying
string world sheets (one can of course have a superposition of these states with
different locations of string world sheets). One can ask whether QCC forces
the space-time surface to code this state in its geometry in the sense that only
these string world sheets are possible. J(z,y),/g2 = constant condition does
not force this.

e Option III: If one assumes slicing by partonic 2-surfaces with common coor-
dinates = = (z',2?) and that J(z,y)\/g is included to current density at the
point of string and that 1/.J(x,y),/g2 in the anti-commutations is evaluated
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at the point z of the partonic surface intersecting the string at y, the flux is
replaced with the superposition of local fluxes from all points in the slicing by
partonic 2-surfaces and J(z,y). For J,/ga= constant along strings Options II
an III are equivalent.

On basis of physical picture Option II with J,/ga= constant achieved by a proper
choice of partonic coordinates for the slicing looks very attractive.

4.2 Fermionic supra currents as Noether currents

Fermionic supra currents can be taken as Noether currents assignable to the mod-
ified Dirac action. Charges are obtained by integrating over string. Here possible
technical problems relate to the correct identification of the integration measure.
In the normal situation the integration measure is /g4 but now 2-D delta function
restricts the charge density for a given mode to the string world sheet and might
produce additional factors.

The general form of the super current at given string world sheet corresponding
to a given string world sheet is given by

J* = [9,05,0h D,V + ¥, 6V /g1 ,
or«
03, = ———= . 4.1
B,k a( 8,8 hk) ( )
The covariant divergence of J¢ vanishes. Modified gamma matrices appearing in
the equation are defined as contractions of the canonical momentum densities T%' of
Kéhler action with imbedding space gamma matrices I'* as

re = Tpr
Lk

T¢ = =0

b d(9gh*)

(4.2)

¥, is the mode of induced spinor field considered. oW is the change of ¥ in spin
rotation given by

SO = Ot . (4.3)

The corresponding current is obtained by replacing ¥,, with ¥ and integrating over
the modes.

The current could quite well vanish. The reason is that holography means that
one half of modified gamma matrices whose number is effectively 2 annihilates the
spinor modes. Also the covariant derivative D, or D annihilates it. One obtains
vanishing result if the quantity O3, is proportional to I'*. This can be circumvented
if it is superposition of gamma matrices which are not parallel to the string world
sheet or if is superposition of I'* and I'*: this could have interpretation as breaking
of conformal invariance.
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For critical deformations vanishing at X? §h* appearing in the formula of current
vanishes so that one obtains non-vanishing charge only for second variation.

Note that the quantity OF , involves terms J ok J é and can be non-vanishing even
when J vanishes. The replacement of ordinary +° in fermionic anti-commutation
relations with the modified gamma matrix I'Y helps here since modified gamma
matrices vanish when J vanishes.

Note that for option II favoured by the existing physical picture J is constant
along the strings and anti-commutation relations are non-singular for J # 0.

4.3 Anti-commutators of super-charges

The anti-commutators for fermionic fields- or more generally, quantities related to
them - should be such that the anti-commutator of fermionic super-Hamiltonians
defines WCW Hamiltonian with correct group theoretical properties. To obtain the
correct anti-commutator requires that one obtains Poisson bracket of 6C'D Hamilto-
nians appearing in the super-Hamiltonians. This is the case if the anti-commutator
involved is proportional to ¢Jy; since this gives the desired Poisson bracket

Jujhis = {Ha Hp} . (4.4)

This is achieved if one reBlaces the anti-commutators of ¥ and ¥ with anti-commutator
of A, = O and 4; = YO} (Of was defined in Eq. |4.1) and assumes

_ _ X
{A, A}y = ZJMFOéz(fC%y2)51(y173/2)ﬁ- (4.5)

N

Here I'? is modified gamma matrix and d, is delta function assignable to the partonic
2-surface and 07 is delta function assignable with the string. Depending on whether
one assumes option I, II, or Il one has X =1, X = 1/J, cpq or 1/J (21, 22, 7).

The modified anti-commutation relations do not make sense in higher imbed-
ding space dimensions since the number of spinor components exceeds imbedding
space dimension. For D = 8 the dimension of H and the number of independent
spinor components with given H-chirality are indeed same (leptons and quarks have
opposite H-chirality). This makes the dimension D = 8 unique in TGD framework.

4.4 Strong form of General Coordinate Invariance and strong
form of holography

Strong form of general coordinate invariance (GCI) suggests a duality between de-
scriptions using light-like 3-surfaces X} at which the signature of the induced metric
changes and space-like 3-surface X? at the ends of the space-time surface. Also the
translates of these surfaces along slicing might define the theory but with a Kahler
function to which real part of a holomorphic function defined in WCW is added.
In order to define the formalism for light-like 3-surfaces, one should be able to
define the symplectic algebra. This requires the translation of the boundaries of the
light-cone along the line connecting the tips of the CD so that the Hamiltonians
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of M} or SM* make sense at X7. Depending on whether the the state function
reduction has occurred on upper or lower boundary of CD one must use translates
of M or 6M*: this would be one particular manifestation for the arrow of time.

4.5 Radon, Penrose ja TGD

The construction of the induced spinor field as a superposition of modes restricted to
string world sheets to have well-defined em charge (except in the case of right-handed
neutrino) brings in mind Radon transform [A4] (http://en.wikipedia.org/wiki/
Radon_transform) and Penrose transform [A3] (http://en.wikipedia.org/wiki/
Penrose_transform). In Radon transform the function defined in Euclidian space
E™ is coded by its integrals over n — 1 dimensional hyper-planes. All planes are
allowed and are characterized by their normal whose direction corresponds to a point
of n — 1-dimensional sphere S"~! and by the orthogonal distance of the plane from
the origin. Note that the space of hyper-planes is n-dimensional as it should be if it
is to carry same information as the function itself. One can easily demonstrate that
n-dimensional Fourier transform is composite of 1-dimensional Fourier transform
in the direction normal vector parallel to wave vector obtained integrating over
the distance parameter associated with n—dimensional Radon transform defined by
function multplied by the plane wave.

In the case of Penrose transform [A3] (http://en.wikipedia.org/wiki/Penrose_
transform) one has 6-dimensional twistor space C'P3 and the space of complex two -
planes- topologically spheres in C'P; - one for each point of in C'Pj - defines 4-D com-
pactified Minkowski space. A massless field in M* has a representation in C'P; with
field value at given point of M* represented as an integral over S® of holomorphic
field in C'P;.

In the recent case the situation resembles very much that for Penrose transform.
In the case of space-like 3-surface C'Pj is replaced with the space of strings emanating
from the partonic 2-surface and its points are labelled by points of partonic 2-surface
and points of string so that dimension is still D = 3. The transform describes second
quantize spinor field as a collection of ”Fourier components” along stringy curves.
In 4-D case one has 4-D space-time surface and collection of ”Fourier components”
along string world sheets. One could say that charge densities assignable to partonic
2-surfaces replace the massless fields in M*. Now however the decomposition into
strings and string world sheets takes place at the level of physics rather than only
mathematically.

5 About the notion of four-momentum in TGD
framework

The starting point of TGD was the energy problem of General Relativity [K9]. The
solution of the problem was proposed in terms of sub-manifold gravity and based
on the lifting of the isometries of space-time surface to those of M* x C'P, in which
space-times are realized as 4-surfaces so that Poincare transformations act on space-
time surface as an 4-D analog of rigid body rather than moving points at space-time
surface. It however turned out that the situation is not at all so simple.
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5.1 Scale dependent notion of four-momentum in zero energy ontologs

There are several conceptual hurdles and I have considered several solutions for
them. The basic source of problems has been Equivalence Principle (EP): what
does EP mean in TGD framework [K9, [K16]? A related problem has been the inter-
pretation of gravitational and inertial masses, or more generally the corresponding
4-momenta. In General Relativity based cosmology gravitational mass is not con-
served and this seems to be in conflict with the conservation of Noether charges.
The resolution is in terms of zero energy ontology (ZEO), which however forces to
modify slightly the original view about the action of Poincare transformations.

A further problem has been quantum classical correspondence (QCC): are quan-
tal four-momenta associated with super conformal representations and classical four-
momenta associated as Noether charges with Kahler action for preferred extremals
identical? Could inertial-gravitational duality - that is EP - be actually equivalent
with QCC? Or are EP and QCC independent dualities. A powerful experimental
input comes p-adic mass calculations [K15] giving excellent predictions provided
the number of tensor factors of super-Virasoro representations is five, and this input
together with Occam’s razor strongly favors QCC=EP identification.

There is also the question about classical realization of EP and more generally,
TGD-GRT correspondence.

Twistor Grassmannian approach has meant a technical revolution in quantum
field theory (for attempts to understand and generalize the approach in TGD frame-
work see [K11, [K'7]. This approach seems to be extremely well suited to TGD and I
have considered a generalization of this approach from A/ = 4 SUSY to TGD frame-
work by replacing point like particles with string world sheets in TGD sense and
super-conformal algebra with its TGD version: the fundamental objects are now
massless fermions which can be regarded as on mass shell particles also in internal
lines (but with unphysical helicity). The approach solves old problems related to the
realization of stringy amplitudes in TGD framework, and avoids some problems of
twistorial QFT (IR divergences and the problems due to non-planar diagrams). The
Yangian variant of 4-D conformal symmetry is crucial for the approach in NV = 4
SUSY, and implies the recently introduced notion of amplituhedron [?]. A Yangian
generalization of various super-conformal algebras seems more or less a "must” in
TGD framework. As a consequence, four-momentum is expected to have charac-
teristic multilocal contributions identifiable as multipart on contributions now and
possibly relevant for the understanding of bound states such as hadrons.

5.1 Scale dependent notion of four-momentum in zero en-
ergy ontology

Quite generally, General Relativity does not allow to identify four-momentum as
Noether charges but in GRT based cosmology one can speak of non-conserved mass
[K8], which seems to be in conflict with the conservation of four-momentum in TGD
framework. The solution of the problem comes in terms of zero energy ontology
(ZEO) [K1),[K14], which transforms four-momentum to a scale dependent notion: to
each causal diamond (CD) one can assign four-momentum assigned with say positive
energy part of the quantum state defined as a quantum superposition of 4-surfaces
inside CD.

ZFEO is necessary also for the fusion of real and various p-adic physics to sin-
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gle coherent whole. ZEO also allows maximal ”free will” in quantum jump since
every zero energy state can be created from vacuum and at the same time allows
consistency with the conservation laws. ZEO has rather dramatic implications: in
particular the arrow of thermodynamical time is predicted to vary so that second law
must be generalized. This has especially important implications in living matter,
where this kind of variation is observed.

More precisely, this superposition corresponds to a spinor field in the "world of
classical worlds” (WCW) [K14]: its components - WCW spinors - correspond to
elements of fermionic Fock basis for a given 4-surface - or by holography implied by
general coordinate invariance (GCI) - for 3-surface having components at both ends
of CD. Strong form of GGI implies strong form of holography (SH) so that partonic
2-surfaces at the ends of space-time surface plus their 4-D tangent space data are
enough to fix the quantum state. The classical dynamics in the interior is necessary
for the translation of the outcomes of quantum measurements to the language of
physics based on classical fields, which in turn is reduced to sub-manifold geometry
in the extension of the geometrization program of physics provided by TGD.

Holography is very much reminiscent of QCC suggesting trinity: GCI-holography-
QCC. Strong form of holography has strongly stringy flavor: string world sheets con-
necting the wormhole throats appearing as basic building bricks of particles emerge
from the dynamics of induced spinor fields if one requires that the fermionic mode
carries well-defined electromagnetic charge [K13].

5.2 Are the classical and quantal four-momenta identical?

One key question concerns the classical and quantum counterparts of four-momentum.
In TGD framework classical theory is an exact part of quantum theory. Classical
four-momentum corresponds to Noether charge for preferred extremals of Kahler
action. Quantal four-momentum in turn is assigned with the quantum superposi-
tion of space-time sheets assigned with CD - actually WCW spinor field analogous
to ordinary spinor field carrying fermionic degrees of freedom as analogs of spin.
Quantal four-momentum emerges just as it does in super string models - that is as
a parameter associated with the representations of super-conformal algebras. The
precise action of translations in the representation remains poorly specified. Note
that quantal four-momentum does not emerge as Noether charge: at at least it is
not at all obvious that this could be the case.

Are these classical and quantal four-momenta identical as QCC would suggest?
If so, the Noether four-momentum should be same for all space-time surfaces in the
superposition. QCC suggests that also the classical correlation functions for various
general coordinate invariant local quantities are same as corresponding quantal cor-
relation functions and thus same for all 4-surfaces in quantum superposition - this
at least in the measurement resolution used. This would be an extremely powerful
constraint on the quantum states and to a high extend could determined the U-,
M-, and S-matrices.

QCC seems to be more or less equivalent with SH stating that in some respects
the descriptions based on classical physics defined by Kahler action in the interior of
space-time surface and the quantal description in terms of quantum states assignable
to the intersections of space-like 3-surfaces at the boundaries of CD and light-like
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3-surfaces at which the signature of induced metric changes. SH means effective 2-
dimensionality since the four-dimensional tangent space data at partonic 2-surfaces
matters. SH could be interpreted as Kac-Mody and symplectic symmetries mean-
ing that apart from central extension they act almost like gauge symmetries in the
interiors of space-like 3-surfaces at the ends of CD and in the interiors of light-like
3-surfaces representing orbits of partonic 2-surfaces. Gauge conditions are replaced
with Super Virasoro conditions. The word ”almost” is of course extremely impor-
tant.

5.3 What Equivalence Principle (EP) means in quantum
TGD?

EP states the equivalence of gravitational and inertial masses in Newtonian the-
ory. A possible generalization would be equivalence of gravitational and inertial
four-momenta. In GRT this correspondence cannot be realized in mathematically
rigorous manner since these notions are poorly defined and EP reduces to a purely

local statement in terms of Einstein’s equations.
What about TGD? What could EP mean in TGD framework?

1. Is EP realized at both quantum and space-time level? This option requires
the identification of inertial and gravitational four-momenta at both quantum
and classical level. It is now clear that at classical level EP follows from very
simple assumption that GRT space-time is obtained by lumping together the
space-time sheets of the many-sheeted space-time and by the identification the
effective metric as sum of M* metric and deviations of the induced metrics of
space-time sheets from M? metric: the deviations indeed define the gravita-
tional field defined by multiply topologically condensed test particle. Similar
description applies to gauge fields. EP as expressed by Einstein’s equations
would follow from Poincare invariance at microscopic level defined by TGD
space-time. The effective fields have as sources the energy momentum ten-
sor and YM currents defined by topological inhomogenities smaller than the
resolution scale.

2. QCC would require the identification of quantal and classical counterparts of
both gravitational and inertial four-momenta. This would give three indepen-
dent equivalencesa say Pl,class = PI,quanta Pgr,class = Lgr,quant, Pgr,class = PI,quanta
which imply the remaining ones.

Consider the condition Py, gass = Preass- At classical level the condition
that the standard energy momentum tensor associated with Kahler action has
a vanishing divergence is guaranteed if Einstein’s equations with cosmologi-
cal term are satisfied. If preferred extremals satisfy this condition they are
constant curvature spaces for non-vanishing cosmological constant. A more
general solution ansatz involves several functions analogous to cosmological
constant corresponding to the decomposition of energy momentum tensor to
terms proportional to Einstein tensor and several lower-dimensional projection
operators [K16]. It must be emphasized that field equations are extremely non-
linear and one must also consider preferred extremals (which could be identified



5.3 What Equivalence Principle (EP) means in quantum TGD? 27

in terms of space-time regions having so called Hamilton-Jacobi structure):
hence these proposals are guesses motivated by what is known about exact
solutions of field equations.

Consider next Py gass = Preiass- At quantum level I have proposed coset
representations for the pair of super conformal algebras g and h C g which
correspond to the coset space decomposition of a given sector of WCW with
constant values of zero modes. The coset construction would state that the
differences of super-Virasoro generators associated with g resp. h annhilate
physical states.

The identification of the algebras g and h is not straightforward. The algebra ¢
could be formed by the direct sum of super-symplectic and super Kac-Moody
algebras and its sub-algebra h for which the generators vanish at partonic 2-
surface considered. This would correspond to the idea about WCW as a coset
space G/H of corresponding groups (consider as a model CP, = SU(3)/U(2)
with U(2) leaving preferred point invariant). The sub-algebra h in question
includes or equals to the algebra of Kac-Moody generators vanishing at the
partonic 2-surface. A natural choice for the preferred WCW point would be
as maximum of Kéhler function in Euclidian regions: positive definiteness of
Kaéhler function allows only single maximum for fixed values of zero modes).
Coset, construction states that differences of super Virasoro generators associ-
ated with g and A annihilate physical states. This implies that corresponding
four-momenta are identical that is Equivalence Principle.

3. Does EP at quantum level reduce to one aspect of QCC? This would require
that classical Noether four-momentum identified as inertial momentum equals
to the quantal four-momentum assignable to the states of super-conformal
representations and identifiable as gravitational four-momentum. There would
be only one independent condition: Puss = Preiass = Pgr.quant = Pyuant-

Holography realized as AdS/CFT correspondence states the equivalence of
descriptions in terms of gravitation realized in terms of strings in 10-D space-
time and gauge fields at the boundary of AdS. What is disturbing is that this
picture is not completely equivalent with the proposed one. In this case the
super-conformal algebra would be direct sum of super-symplectic and super
Kac-Moody parts.

Which of the options looks more plausible? The success of p-adic mass calcula-
tions [K15] have motivated the use of them as a guideline in attempts to understand
TGD. The basic outcome was that elementary particle spectrum can be understood
if Super Virasoro algebra has five tensor factors. Can one decide the fate of the two
approaches to EP using this number as an input?

This is not the case. For both options the number of tensor factors is five
as required. Four tensor factors come from Super Kac-Moody and correspond to
translational Kac-Moody type degrees of freedom in M*, to color degrees of freedom
and to electroweak degrees of freedom (SU(2) x U(1)). One tensor factor comes from
the symplectic degrees of freedom in AC'D x C'P, (note that Hamiltonians include
also products of §C'D and C' P, Hamiltonians so that one does not have direct sum!).
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The reduction of EP to the coset structure of WCW sectors is extremely beautiful
property. But also the reduction of EP to QCC looks very nice and deep. It is
of course possible that the two realizations of EP are equivalent and the natural
conjecture is that this is the case.

For QCC option the GRT inspired interpretation of Equivalence Principle at
space-time level remains to be understood. Is it needed at all? The condition that
the energy momentum tensor of Kahler action has a vanishing divergence leads in
General Relativity to Einstein equations with cosmological term. In TGD frame-
work preferred extremals satisfying the analogs of Einstein’s equations with several
cosmological constant like parameters can be considered.

Should one give up this idea, which indeed might be wrong? Could the diver-
gence of of energy momentum tensor vanish only asymptotically as was the original
proposal? Or should one try to generalize the interpretation? QCC states that quan-
tum physics has classical correlate at space-time level and implies EP. Could also
quantum classical correspondence itself have a correlate at space-time level. If so,
space-time surface would able to represent abstractions as statements about state-
ments about.... as the many-sheeted structure and the vision about TGD physics
as analog of Turing machine able to mimic any other Turing machine suggest.

5.4 TGD-GRT correspondence and Equivalence Principle

One should also understand how General Relativity and EP emerge at classical level.
The understanding comes from the realization that GRT is only an effective theory
obtained by endowing M* with effective metric.

1. The replacement of superposition of fields with superposition of their effects
means replacing superposition of fields with the set-theoretic union of space-
time surfaces. Particle experiences sum of the effects caused by the clas-
sical fields at the space-time sheets (see fig. http://www.tgdtheory.fi/
appfigures/fieldsuperpose. jpg or fig. 11 in the appendix of this book).

2. This is true also for the classical gravitational field defined by the deviation
from flat Minkowski metric instandard M* coordinates for the space-time
sheets. One can define effective metric as sum of M* metric and deviations.
This effective metric would correspond to that of General Relativity. This
resolves long standing issues relating to the interpretation of TGD.

3. Einstein’s equations could hold true for the effective metric. They are mo-
tivated by the underlying Poincare invariance which cannot be realized as
global conservation laws for the effective metric. The conjecture vanishing of
divergence of Khler energy momentum tensor can be seen as the microscopic
justification for the claim that Einstein’s equations hold true for the effective
space-time.

4. The breaking of Poincare invariance could have interpretation as effective
breaking in zero energy ontology (ZEO), in which various conserved charges
are length dependent and defined separately for each causal diamond (CD).
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One can of course consider the possibility that Einstein’s equations generalize for
preferred extremals of Kahbler action. This would actually represent at space-time
level the notion of QCC rather than realise QCC interpreted as EP. The condi-
tion that the energy momentum tensor for Kéhler action has vanishing covariant
divergence would be satisfied in GRT if Einstein’s equations with cosmological term
hold true. This is the case also now but one can consider also more general solu-
tions in which one has two cosmological constants which are not genuine constants
anymore [K16].

5.5 How translations are represented at the level of WCW?

The four-momentum components appearing in the formulas of super conformal gen-
erators correspond to infinitesimal translations. In TGD framework one must be
able to identify these infinitesimal translations precisely. As a matter of fact, finite
measurement resolution implies that it is probably too much to assume infinitesi-
mal translations. Rather, finite exponentials of translation generators are involved
and translations are discretized. This does not have practical signficance since for
optimal resolution the discretization step is about C'P, length scale.

Where and how do these translations act at the level of WCW? ZEO provides a
possible answer to this question.

5.5.1 Discrete Lorentz transformations and time translations act in the
space of CDs: inertial four-momentum

Quantum state corresponds also to wave function in moduli space of CDs. The
moduli space is obtained from given CD by making all boosts for its non-fixed
boundary: boosts correspond to a discrete subgroup of Lorentz group and define
a lattice-like structure at the hyperboloid for which proper time distance from the
second tip of CD is fixed to T,, = n x T(C'P,). The quantization of cosmic redshift
for which there is evidence, could relate to this lattice generalizing ordinary 3-D
lattices from Euclidian to hyperbolic space by replacing translations with boosts
(velocities).

The additional degree of freedom comes from the fact that the integer n > 0
obtains all positive values. One has wave functions in the moduli space defined as
a pile of these lattices defined at the hyperboloid with constant value of T(CP,):
one can say that the points of this pile of lattices correspond to Lorentz boosts and
scalings of CDs defining sub-WCW:s.

The interpretation in terms of group which is product of the group of shifts
T.(CPy) — T,1m(CP,) and discrete Lorentz boosts is natural. This group has
same Cartesian product structure as Galilean group of Newtonian mechanics. This
would give a discrete rest energy and by Lorentz boosts discrete set of four-momenta
giving a contribution to the four-momentum appearing in the super-conformal rep-
resentation.

What is important that each state function reduction would mean localisation
of either boundary of CD (that is its tip). This localization is analogous to the
localization of particle in position measurement in E® but now discrete Lorentz
boosts and discrete translations T, — — > T,,.,, replace translations. Since the
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second end of CD is necessary del-ocalized in moduli space, one has kind of flip-
flop: localization at second end implies de-localization at the second end. Could
the localization of the second end (tip) of CD in moduli space correspond to our
experience that momentum and position can be measured simultaneously? This
apparent classicality would be an illusion made possible by ZEO.

The flip-flop character of state function reduction process implies also the alter-
nation of the direction of the thermodynamical time: the asymmetry between the
two ends of CDs would induce the quantum arrow of time. This picture also allows
to understand what the experience growth of geometric time means in terms of CDs.

5.5.2 The action of translations at space-time sheets

The action of imbedding space translations on space-time surfaces possibly becom-
ing trivial at partonic 2-surfaces or reducing to action at §C'D induces action on
space-time sheet which becomes ordinary translation far enough from end end of
space-time surface. The four-momentum in question is very naturally that asso-
ciated with Kahler action and would therefore correspond to inertial momentum
for Prcass = Pyuant,gr Option. Indeed, one cannot assign quantal four-momentum
to Kahler action as an operator since canonical quantization badly fails. In fi-
nite measurement infinitesimal translations are replaced with their exponentials for
PI,class = L quant,gr OptiOH.

What looks like a problem is that ordinary translations in the general case lead
out from given CD near its boundaries. In the interior one expects that the trans-
lation acts like ordinary translation. The Lie-algebra structure of Poincare algebra
including sums of translation generators with positive coefficient for time transla-
tion is preserved if only time-like superpositions if generators are allowed also the
commutators of time-like translation generators with boost generators give time like
translations. This defines a Lie-algebraic formulation for the arrow of geometric
time. The action of time translation on preferred extremal would be ordinary trans-
lation plus continuation of the translated preferred extremal backwards in time to
the boundary of CD. The transversal space-like translations could be made Kac-
Moody algebra by multiplying them with functions which vanish at 6C'D.

A possible interpretation would be that Pjyyuqnt 4 corresponds to the momentum
assignable to the moduli degrees of freedom and P, ; to that assignable to the
time like translations. Pyyuntgr = FPu,r would code for QCC. Geometrically quantum
classical correspondence would state that time-like translation shift both the interior
of space-time surface and second boundary of CD to the geometric future/past while
keeping the second boundary of space-time surface and CD fixed.

5.6 Yangian and four-momentum

Yangian symmetry implies the marvellous results of twistor Grassmannian approach
to N' = 4 SUSY culminating in the notion of amplituhedron which promises to
give a nice projective geometry interpretation for the scattering amplitudes [?].
Yangian symmetry is a multilocal generalization of ordinary symmetry based on the
notion of co-product and implies that Lie algebra generates receive also multilocal
contributions. I have discussed these topics from slightly different point of view
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in [K11], where also references to the work of pioneers can be found.

5.6.1 Yangian symmetry

The notion equivalent to that of Yangian was originally introduced by Faddeev and
his group in the study of integrable systems. Yangians are Hopf algebras which
can be assigned with Lie algebras as the deformations of their universal enveloping
algebras. The elegant but rather cryptic looking definition is in terms of the mod-
ification of the relations for generating elements [K11] . Besides ordinary product
in the enveloping algebra there is co-product A which maps the elements of the
enveloping algebra to its tensor product with itself. One can visualize product and
co-product is in terms of particle reactions. Particle annihilation is analogous to
annihilation of two particle so single one and co-product is analogous to the decay
of particle to two. A allows to construct higher generators of the algebra.

Lie-algebra can mean here ordinary finite-dimensional simple Lie algebra, Kac-
Moody algebra or Virasoro algebra. In the case of SUSY it means conformal algebra
of M*- or rather its super counterpart. Witten, Nappi and Dolan have described
the notion of Yangian for super-conformal algebra in very elegant and and concrete
manner in the article Yangian Symmetry in D=/ superconformal Yang-Mills theory
[?7] . Also Yangians for gauge groups are discussed.

In the general case Yangian resembles Kac-Moody algebra with discrete index n
replaced with a continuous one. Discrete index poses conditions on the Lie group
and its representation (adjoint representation in the case of N' = 4 SUSY). One
of the conditions conditions is that the tensor product R ® R* for representations
involved contains adjoint representation only once. This condition is non-trivial. For
SU(n) these conditions are satisfied for any representation. In the case of SU(2)
the basic branching rule for the tensor product of representations implies that the
condition is satisfied for the product of any representations.

Yangian algebra with a discrete basis is in many respects analogous to Kac-
Moody algebra. Now however the generators are labelled by non-negative inte-
gers labeling the light-like incoming and outgoing momenta of scattering amplitude
whereas in in the case of Kac-Moody algebra also negative values are allowed. Note
that only the generators with non-negative conformal weight appear in the construc-
tion of states of Kac-Moody and Virasoro representations so that the extension to
Yangian makes sense.

The generating elements are labelled by the generators of ordinary conformal
transformations acting in M* and their duals acting in momentum space. These
two sets of elements can be labelled by conformal weights n = 0 and n = 1 and
and their mutual commutation relations are same as for Kac-Moody algebra. The
commutators of n = 1 generators with themselves are however something different
for a non-vanishing deformation parameter h. Serre’s relations characterize the dif-
ference and involve the deformation parameter h. Under repeated commutations
the generating elements generate infinite-dimensional symmetric algebra, the Yan-
gian. For A = 0 one obtains just one half of the Virasoro algebra or Kac-Moody
algebra. The generators with n > 0 are n + 1-local in the sense that they involve
n + 1-forms of local generators assignable to the ordered set of incoming particles of
the scattering amplitude. This non-locality generalizes the notion of local symmetry
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and is claimed to be powerful enough to fix the scattering amplitudes completely.

5.6.2 How to generalize Yangian symmetry in TGD framework?

As far as concrete calculations are considered, it is not much to say. It is however
possible to keep discussion at general level and still say something interesting (as I
hope!). The key question is whether it could be possible to generalize the proposed
Yangian symmetry and geometric picture behind it to TGD framework.

1. The first thing to notice is that the Yangian symmetry of N' = 4 SUSY in ques-
tion is quite too limited since it allows only single representation of the gauge
group and requires massless particles. One must allow all representations and
massive particles so that the representation of symmetry algebra must involve
states with different masses, in principle arbitrary spin and arbitrary internal
quantum numbers. The candidates are obvious: Kac-Moody algebras [A2]
and Virasoro algebras [A5] and their super counterparts. Yangians indeed ex-
ist for arbitrary super Lie algebras. In TGD framework conformal algebra of
Minkowski space reduces to Poincare algebra and its extension to Kac-Moody
allows to have also massive states.

2. The formal generalization looks surprisingly straightforward at the formal
level. In zero energy ontology one replaces point like particles with partonic
two-surfaces appearing at the ends of light-like orbits of wormhole throats lo-
cated to the future and past light-like boundaries of causal diamond (C'D x C P,
or briefly CD). Here CD is defined as the intersection of future and past di-
rected light-cones. The polygon with light-like momenta is naturally replaced
with a polygon with more general momenta in zero energy ontology and having
partonic surfaces as its vertices. Non-point-likeness forces to replace the finite-
dimensional super Lie-algebra with infinite-dimensional Kac-Moody algebras
and corresponding super-Virasoro algebras assignable to partonic 2-surfaces.

3. This description replaces disjoint holomorphic surfaces in twistor space with
partonic 2-surfaces at the boundaries of C'D x C'P; so that there seems to be
a close analogy with Cachazo-Svrcek-Witten picture. These surfaces are con-
nected by either light-like orbits of partonic 2-surface or space-like 3-surfaces
at the ends of CD so that one indeed obtains the analog of polygon.

What does this then mean concretely (if this word can be used in this kind of
context)?

1. At least it means that ordinary Super Kac-Moody and Super Virasoro algebras
associated with isometries of M* x C'P, annihilating the scattering amplitudes
must be extended to a co-algebras with a non-trivial deformation parameter.
Kac-Moody group is thus the product of Poincare and color groups. This
algebra acts as deformations of the light-like 3-surfaces representing the light-
like orbits of particles which are extremals of Chern-Simon action with the
constraint that weak form of electric-magnetic duality holds true. I know so
little about the mathematical side that I cannot tell whether the condition that
the product of the representations of Super-Kac-Moody and Super-Virasoro
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algebras contains adjoint representation only once, holds true in this case. In
any case, it would allow all representations of finite-dimensional Lie group in
vertices whereas N’ = 4 SUSY would allow only the adjoint.

2. Besides this ordinary kind of Kac-Moody algebra there is the analog of Super-
Kac-Moody algebra associated with the light-cone boundary which is metri-
cally 3-dimensional. The finite-dimensional Lie group is in this case replaced
with infinite-dimensional group of symplectomorphisms of 5Mi /- made local
with respect to the internal coordinates of the partonic 2-surface. This picture
also justifies p-adic thermodynamics applied to either symplectic or isometry
Super-Virasoro and giving thermal contribution to the vacuum conformal and
thus to mass squared.

3. The construction of TGD leads also to other super-conformal algebras and the
natural guess is that the Yangians of all these algebras annihilate the scattering
amplitudes.

4. Obviously, already the starting point symmetries look formidable but they still
act on single partonic surface only. The discrete Yangian associated with this
algebra associated with the closed polygon defined by the incoming momenta
and the negatives of the outgoing momenta acts in multi-local manner on
scattering amplitudes. It might make sense to speak about polygons defined
also by other conserved quantum numbers so that one would have generalized
light-like curves in the sense that state are massless in 8-D sense.

5.6.3 Could Yangian symmetry provide a new view about conserved
quantum numbers?

The Yangian algebra has some properties which suggest a new kind of description
for bound states. The Cartan algebra generators of n = 0 and n = 1 levels of
Yangian algebra commute. Since the co-product A maps n = 0 generators to n =1
generators and these in turn to generators with high value of n, it seems that they
commute also with n > 1 generators. This applies to four-momentum, color isospin
and color hyper charge, and also to the Virasoro generator Ly acting on Kac-Moody
algebra of isometries and defining mass squared operator.

Could one identify total four momentum and Cartan algebra quantum numbers
as sum of contributions from various levels? If so, the four momentum and mass
squared would involve besides the local term assignable to wormhole throats also
n-local contributions. The interpretation in terms of n-parton bound states would
be extremely attractive. n-local contribution would involve interaction energy. For
instance, string like object would correspond to n = 1 level and give n = 2-local
contribution to the momentum. For baryonic valence quarks one would have 3-
local contribution corresponding to n = 2 level. The Yangian view about quantum
numbers could give a rigorous formulation for the idea that massive particles are
bound states of massless particles.
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