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Abstract

       By the use of condition of relativistic covariance, Dirac group theory, Clifford algebra and 

complete  orthonormal  sets  of  ( *)αψ -self-frictional  exponential  type  orbitals  ( ( *)αψ -SFETOs) 

introduced by the author in standard convention, the Hartree-Fock (HF) theory is suggested 

for multideterminantal single configuration states with any number of open shells of atoms 

and  molecules  constructed  from  the  Standard  Model-Fermi  (SM-F)  particles  with 

0, 0 0m s and e� = = defined in the Standard Model of particle physics. It is shown that the 

origin of stability of these systems is the quantum damping or self-frictional forces produced 

by the SM-F particle itself. As an application, we have presented the periodic table for the 

SM-F atomic elements using Pauli principle of spinless noncharged identical SM-F particles.

Key words: Hartree-Fock theory, Standard Model, Relativistic covariance, Exponential type 
orbitals, Self-frictional fields

 I. Introduction 

      According to the condition of relativistic covariance, for a single particle of mass m , charge e  
and spin s , the relativistic Hamilton operator is given by 

2 2 2 4
0

ˆˆ ( )e
cH c p A m c eA= − + +
rr ,           (1)

where 
1 3

0 0, , ,...
2 2

m and s� =   for fermions, 0 1,2,...m and s= =  for bosons, 0A  is the scalar 

potential, A
r

 the vector potential and p̂
i

= �
rhr

 the momentum operator. It is well-known that 

the relativistic energy for a free particle is defined by Einstein’s formula [1]:

2 for 0 and v (2a)

for 0 and v (2b).

mc m c
E

pc m c

� � <
= � = =�

As we see that the particles with 0, 0, 0m s e and� = =   v c=  do not satisfy the condition of 

relativistic covariance and, therefore, these “particles” can not be observed in experiments. 
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Unfortunately, this kind of “particles” has been the target of a long search in Particle Physics 

(see Ref. [2] and references therein). Consequently, other theories in or beyond the Standard 

Model of particle physics are needed instead. The arguments of a new theory given in this 

work are based on completely different point of view, namely, making use of the condition of 

relativistic covariance, i.e., the condition of linearity for a relativistic Hamiltonian of SM-F 

particle (see Appendix). We note that the Schrödinger equation describes the motion of the 

spin- 0 particles  in  the  nonrelativistic  domain,  while  the  Klein-Gordon  equation  is  the 

relativistic equation appropriate for spin- 0 particles. As it was shown in the previous papers 

[3,  4],  the wave function of Dirac equation  for spin-
1

2
particle  satisfies  the Klein-Gordon 

equation component-wise, and the relativistic wave functions of scalar particles are reduced to 

the nonrelativistic complete sets of orbitals. Therefore, the SM-F atomic-molecular systems 

can be also treated in the nonrelativistic way.  

      It should be noted that the SM-F particles  have non-zero rest mass and cannot move 

like photons. Because of this, the situation is changed fundamentally. Therefore, one has to 

arrive immediately at the conclusion that the identical spinless noncharged SM-F particles can 

be studied by the use of two-component antisymmetric functions [4]. The aim of this paper is 

to suggest the new theory for open shell HF theory of SM-F atomic and molecular systems 

based on the use of condition of relativistic covariance, complete orthonormal sets of ( )*αψ -

SFETOs  in  standard  convention  and  self-frictional  quantum  fields  which  are  analog  of 

radiation damping or self-frictional fields introduced by Lorentz in classical electrodynamics 

[5, 6] (see. Refs. [7-9] and references therein to our papers).  We note that the presented 

approach in this work is an extension of suggested in a previous paper [10] to the case of  

atomic-molecular systems constructed from noncharged scalar particles. We believe that 

the presented theory will  be of interest especially  in the Standart Model of particles 

physics, astrophysics and Bose-Fermion theory. 

2. Definitions and basic formulas

    According to the relativistic covariance, the identical scalar particles ( 0s = ) in position and 

momentum  spaces  with  hyperspherical  harmonics  can  be  described  by  antisymmetric 

functions (see Eqs. (25) in Ref. [4]). This statement can also be used for a system consisting 

of an arbitrary number of identical SM-F particles. Therefore, we can write in position space 
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the antisymmetric wave function of SM-F particles in the form of a determinant (a so-called 

Slater determinant):
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where  0k = and 1 k N� � for closed and open shells, respectively;  n nlm� , x xyz� and *α  

are  the  integer  ( *α α= , 2α−� < � )  and  noninteger  ( *α α� , 3α−� < < )  self-frictional 

quantum numbers; the ( )*
nlmu α are determined by

( ) ( ) ( ) ( ) ( )* *, , ,nlm nl m lmu r g r Yα αζ ζ β θ ϕ=r
.                                                                                      (4)

The functions ( ) ( )* *,u gα α  and ( )*U α  form the orthonormal sets,

( ) ( ) ( ) ( )* * * 3
' ' ', ,nlm nlm nn l l mmu r u r d rα αζ ζ δ δ δ=�

r r r
                                                                                (5)

( ) ( ) ( ) ( )* * 2
' ', ,nl n l nng r g r r drα αζ ζ δ=�                                                                                          (6)

( ) ( ) ( ) ( ) ( ) ( )* *

* † * 3

'
, ' ,

U U
U r U r d α α

α αζ ζ τ δ=�
r r r

 ,                                                                               (7)

where 3 3 3 3
1 2... Nd d r d r d rτ =r r r r

 , ( ) ( ) 2
1

m m

mβ −= − andζ is the self-frictional parameter 

( )0 ζ< < � .

3. Periodic table of SM-F atomic elements

    It has been shown in a previous paper [4] that the relativistic spinors with 0s =  are reduced 

to  the  nonrelativistic  complete  sets  of  orbitals.  Accordingly,  it  is  completely  relevant  to 
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investigate the periodic table of SM-F atoms within the framework of nonrelativistic quantum 

mechanics. We notice that the stability of SM-F atomic-molecular systems is performed with 

the help of Lorentz damping or self-frictional quantum forces. 

    To construct the periodic table, we use the Hamiltonian of the system of N  SM-F particles 

in the following form:

( ) ( ) ( ) ( ) ( )
1

* * *2

1 1 1

1ˆ , ,
2

N N N

nl nl a nl
a

H V r V rα α α
µ µ µν

µ µ ν µ
ζ ζ

−

= = = +

� �= − � + +� �� �
� � � �  ,                                                (8)

where ( ) ( )* ,nlV rα ζ is the self-frictional potential determined as follows [7]:

( ) ( ) ( ) ( )* *, ,nl nl

n
V r G r

r
α αζζ ζ= −                                                                                                   (9)

( ) ( ) ( ) ( ) ( ) ( )
1

2* * 1 *
1

1 1
, 1 ( * 1) , ,

2nl nl nl

n l
G r R r R r

n r
α α αζ α ζ ζ

ζ
+

+
− −� �= + − � �� �

.                                     (10)

It is easy to show that the function ( ) ( )* ,nlG rα ζ  occurring in Eq (9), as is expected, has the 

following properties:

( ) ( )* , 1nlG r for rα ζ = � �  .                                                                                              (11)

    As can be seen from Eqs.(9) and (10), the self-frictional properties disappear for 
Z

n
ζ =  

and 1n l= + , i.e., 

( ) ( )* ,nl

Z
V r

r
α ζ = −                                                                                                                    (12)

2 2

22 2n

Z

n

ζε = − = −  ,                                                                                                                (13)

where Z  denotes the SM-F -nucleus number of elements in the periodic table. In this case, 

the ( )*αψ -SFETOs are reduced to the Schrödinger’s wave function for the SM-F-like atoms 

and become the noncomplete, i.e., ( )1
nlm nlmψ ψ� ,where nlmψ is the Schrödinger wave function in 

nonstandard convention.
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    As can be seen from Eq. (8), the potential of the field acting upon a particle in a SM-F atom 

is the self-frictional. The state of a SM-F particle in such a field will be characterized by the 

four quantum numbers , ,n l m  and *α . In SM-F atoms, we find that the energy depends on 

the three quantum numbers ,n l  and *α ; these numbers are used to denote the corresponding 

energy states: *nlα .

    In the ground state of SM-F atom, the particles fill, in accordance with the Pauli principle 

for spinless ( 0s = ) particles, the lowest energy states. No more than one particle can be in 

each s-state, no more than 3 in a p-state, and no more than 5 in a d-state;… The SM-F atoms 

with completed shells (H, He, B, C, F, Si, …) are very stable, they have great difficulty in 

forming chemical compounds with other SM-F atoms and interact weakly with one another.

         We show in Table 1 the SM-F configurations of the atoms for the first 14 elements of  

the periodic table. The rectangles indicate the open shells (the number of chemical valence) of 

SM-F  atoms.  As  we  see  from  this  table  that  the  total  number  of  SM-F  energy  states 

corresponding to one principal quantum number n  is equal to 2n .

Table 1. Configurations of SM-F atoms

Z
SM-F 

Element
1s 2s 2p 3s 3p 3d Terms

1 H 1 S

2 He 1 1 S

3 Li 1 1 1  P

4 Be 1 1 2 P

5 B 1 1 3 S

6 C 1 1 3 1 S

7 N 1 1 3 1 1 P

8 O 1 1 3 1 2 P

9 F 1 1 3 1 3 S

10 Ne 1 1 3 1 3 1 D

11 Na 1 1 3 1 3 2 P,F

12 Mg 1 1 3 1 3 3 P,F

13 Al 1 1 3 1 3 4 D

14 Si 1 1 3 1 3 5 D
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     As an example, we study now the ground states of a system of two SM-F particles moving 

in the field of a SM-F -nucleus of 2Z = . The SM-F He atom is such a system, which has two 

SM-F particles and a SM-F -nucleus with 2Z = : other examples are the single “ionised” SM-

F Li “ion”, the double “ionised” SM-F Be “ion”, and other multiply “ionised” SM-F He-like 

“ions”.

     Now we obtain the independent determinantal wave functions and terms of SM-F atoms by 

the use of modified determinantal method introduced in a previous paper [10]. To make the 

argument concrete, let us consider the configuration Na ( )1 1 3 1 3 21 2 2 3 3 3s s p s p d in which two 

SM-F particles occur outside closed shells. The complete sets for these particles are classified 

by LM values and the independent determinants obtained by modified determinantal method. 

It is easy to find the terms and the orthonormal sets of multideterminantal wave functions 

which are eigenfunctions of operators 2L̂ and ˆ
zM .The results are given in Table 2.

Table  2. The  terms  of  SM-F  configuration  of  Na  ( )1 1 3 1 3 21 2 2 3 3 3s s p s p d  and  their 

multideteminantal wave functions

Terms LM ( )*U α

P 1 ( ) ( )* 321,320U α

0 ( ) ( )* 321,32 1U α −

-1 ( ) ( )* 321,32 2U α −

F 3 ( ) ( )* 322,321U α

2 ( ) ( )* 322,320U α

1 ( ) ( )* 322,32 1U α −

0 ( ) ( )* 322,32 2U α −

-1 ( ) ( )* 320,32 1U α −
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-2 ( ) ( )* 320,32 2U α −

-3 ( ) ( )* 32 1,32 2U α − −

4.  Orbital-dependent energy expression for system of SM-F particles

    By the use of method set out in [10], the postulated energy expectation value for a single 

configuration multideterminantal state of SM-F atomic-molecular systems with a given space 

symmetry can be written as follows:

( ) ( ) ( ) ( ) ( ) ( )* *
* * * *

,

1 1

2 2

n n
ij ijij ij

i i kl kl kl kl
i ij kl

E f h A J B K
α αα α α α� �= + −� �� �

� � ,                                                       (14)

where ( ) ( )* *

4 , 2 ,
ij ijij ij

kl kl kl klA A B B
α α= = c on n n= + is the number of occupied orbitals belonging to 

the closed shells  ( )cn and open shells  ( )on ,  and  1 , , ,i j k l n� � .  The Eq. (14) denotes the 

energy expectation value of SM-F atomic-molecular systems; if  is the fractional occupancy 

of shell i  determined by

0

i
i

i

N
f

N
= .                                                                                                                                 (15)

Here, 0iN  and iN  are number of states and SM-F particles in shell i , respectively.

    The coefficients  ij
klA  and  ij

klB  are the coupling projection constants (see Ref. [10]). For 

closed-closed  and  closed-open  shell  interaction  energies  (1 , , 1 ,ci j n k l n� � � �  and 

1 , , 1 , ci j n k l n� � � � ) the coupling projection coefficients are determined as follows:

ij ij
kl kl i k ij klA B f f δ δ= =  .                                                                                                             (16)

In the case of open-open shell interaction energies ( 1 ,cn i j n+ � � and 1 ,cn k l n+ � � ) the 

values of coefficients ij
klA  and ij

klB  depend on the state under study.

    We notice that the possibility of writing the energy of SM-F atomic-molecular systems in 

the form (14) is based on the assumption that the energy  ( )*E α  is the average expectation 
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value for all degenerate total orthonormal sets of  multideterminantal wave functions  ( )*
MU α

ΓΓ  

for state with the irreducible representation Γ : 

( )
( )

( ) ( ) ( )* * † * * 3

*

1 ˆ
M M

M

E U H U d
N

α α α α
α τ

Γ Γ

Γ

Γ Γ Γ
Γ

= ￥�
r

 ,                                                                                (17)

where 

( )
( )

( ) ( ) ( )* * † * * 3

*

1 ˆ
L L

L

L LM LM
ML

E U H U d for SM F atoms
N

α α α α
α τ= −￥�

r
                          (18)

( )
( )

( ) ( ) ( )* * † * * 3

*

1 ˆ
M M

M

E U H U d for linear SM F molecules
N

α α α α
α τ

Λ Λ

Λ

Λ Λ Λ
Λ

= −￥�
r

             (19)

( )
( )

( ) ( ) ( )* * † * * 3

*

1 ˆ
M M

M

E U H U d for nonlinear SM F molecules
N

α α α α
α τ

Γ Γ

Γ

Γ Γ Γ
Γ

= −￥�
r

 .       (20)

The integrals ( )*
ih α , ( )* ij

klJ α and ( )* ij
klK α  occurring in Eq.(14) are determined by

( ) ( ) ( ) ( ) ( ) ( )* * * * * 3
1 1 1

ˆ
i i ih u r h u r d rα α α α= �

r r r
 

(21)

( ) ( ) ( ) ( ) ( ) ( ) ( )* * * * * 3
1 1 1 1

ˆij
kl i kl jJ u r J r u r d rα α α α= �

r r r r
                                                                             (22a)

( ) ( ) ( ) ( ) ( ) ( )* * * * 3
2 2 2 2

ˆ
k ij lu r J r u r d rα α α= �

r r r r
                                                                            (22b)

( ) ( ) ( ) ( ) ( ) ( ) ( )* * * * * 3
1 1 1 1

ˆij
kl i kl jK u r K r u r d rα α α α= �

r r r r
                                                                          (23a) 

( ) ( ) ( ) ( ) ( ) ( )* * * * 3
2 2 2 2

ˆ
k ij lu r K r u r d rα α α= �

r r r r
 ,                                                                        (23b)

where 

( ) ( ) ( )* *2
1 1

1ˆ ,
2 nl a

a

h V rα α ζ= − � +￥                                                                                               (24)
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* * * * * 3
1 1 2 21 2 2 1

ˆ ,kl k nl lJ r r u r V r u r d r rα α α αϕ ζ ϕ
� �

= � �
� �
�

r r r r r r r
                                             (25)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* * * * *3
1 1 2 21 2 2 1

ˆ ,kl k nl lK r r u r V r r d r u rα α α αϕ ζ ϕ
� �

= � �
� �
�

r r r r r r r
 .                                          (26)

Here, ( )*ˆ
klK α  is the exchange operator.

    In the single-determinantal closed shell case ( 1i kf f= =  and ij ij
kl kl ij klA B δ δ= = ), the formula 

for ( )*E α , Eq.(14), can be rewritten using  2-indexed integrals ( )* ii
kkJ α   and ( )* ii

kkK α :

( ) ( ) ( ) ( )( )* * * *2
n n

ii ii
i kk kk

i ik

E h J Kα α α α= + −� �  .                                                                                (27)

 It  should  be  noted  that  the  Eqs.  (14)  and  (27)  are  completely general  for  a  single 

configuration with arbitrary open and closed shells , respectively.  These formulas have no 

spin.  Accordingly,  the  HF  and  Combined  Hartree-Fock-Roothaan  (CHFR)  equations 

presented in a previous paper [10] can be also used in the case of SM-F atomic-molecular 

systems. 

5. Conclusion

     In this paper, using complete orthonormal sets of ( )*αψ -SFETOs, condition of relativistic 

covariance  and  Pauli  principle  for  fermions  with  0 0s and e= = ,  the  periodic  table  for 

configurations  of SM-F atoms has been constructed  up to Z=14.  The suggested method 

successfully works also beyond Z=14. The open shell HF and CHFR equations for SM-F 

atomic-molecular systems are also suggested. The presented formulas can be used in the study 

of  different  quantum  mechanical  problems  in  both  the  theory  and  practice  of  structure 

calculations dealing with SM-F atomic-molecular and solid systems with arbitrary values of 

quantum numbers, screening constants and location of SM-F orbitals.

      We note that the suggested theory in this paper can be also used in the case of SM-F 

atomic-molecular and nuclear systems. This work and presented approach in Ref. [10] 

will do to help understand atomic and molecular systems within the domain of nuclear 

particles. An application of presented theory in this paper to the atomic-molecular and 

nuclear systems will be examined in future studies. 
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Appendix

    In accordance with the condition of relativistic covariance, the Hamilton operator of 

relativistic noncharged ( 0e = ) scalar ( 0s = ) particle

2 2 2 4ˆĤ c p m c V= + +r                                                                                                           (A1)

corresponding to the Hamilton function 
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2 2 2 4H c p m c V= + +r                                                                                                           (A2)

has  to  be  linear  and  Hermitian,  where  V  is  the  potential  produced  by the  Lorentz  self-

frictional field (see Eq. (9)). For the linearization of the square root in Eq. (A1) one has to use  

the Dirac group theory and Clifford algebra. In the case of 
1

2
-spin theories, the groups with a 

Clifford algebraic structure are discussed in [11]. The self-frictional SM-F field problem can 

be solved in a similar way.

    Using the method set out in [3] and [11], in the case of spinless particle ( 0s = ), one can 

easily show that, the order of the Dirac group is: 

8.g =                                                                                                                                    (A3)

It has five classes, and therefore five irreducible representations of dimensions in  such that 

5
2

1
i

i

n g
=

=￥                                                                                                                               (A4)

of  which  four  are  one-dimensional  and  one  is  four-dimensional. One-dimensional 

representations  are  commutative,  i.e.,  do  not  satisfy  the  conditions  of  Clifford  algebra. 

Accordingly,  only  the  four-dimensional representation  is  of  help.  The  matrices  for  this 

irreducible representation are given in a previous paper [3]. The properties of the Dirac group 

are summarized in Table A.

Table A. Summary of Dirac group properties for 0s =

s Group order
Number of 

classes
Number of 1-D 

irreps
Number of 2-D 

irreps

0 8 5 4 1

Note: irreps, irreducible representations 
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