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Abstract

We derive the electro-osmotic velocity profile in a micro-channel using a recently corrected charge

density distribution within an electrolytic solution. Previous distribution did not take care of charge

conservation principle while solving Poisson-Boltzmann equation and needed modification, hence

the velocity profile also needs modification that we do here. Helmholtz-Smoluchowskii velocity

scale is redefined, which accommodates Debye length parameter in it, unlike old definition.
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Electro-osmosis concerns driving an electrolytic solution through a narrow channel using

an externally applied axial electric field, exploiting a possible non-trivial charge density

distribution (ρe) in the solution. It has a very old history [1, 2] and finds applications

in many fields [3–5]. Now, ρe appears in the body force term in the fluid momentum

equation, which takes a very simple form for a flow with small Reynolds number (typical for

a narrow channel) and when the flow is steady and hydrodynamically fully developed. For

a rectangular geometry, the momentum equation is given by [6, 7]:

0 = µ
d2v

dx2
+ Eyρe (1)

ρe and fluid velocity v vary essentially along the smallest side (‘2a’) of geometry (x direc-

tion); Ey is external electric field, applied in y direction; µ is uniform viscosity. Now, solving

Poisson-Boltzmann (PB) equation we obtain ρe as spatial function that is needed to solve

the above equation. However, the old solution [8, 9] did not take care of charge conserva-

tion principle properly. This author attempted to remove that discrepancy in Ref [10, 11],

and obtained a velocity profile using it in Ref [7]. However, that formulation for ρe still

had problem, for it was not satisfying Poisson’s equation in general. Finally, the correct

expression for ρe (scaled) has been developed in Ref [12], and is given by,

ρ∗e =
1

2 sinh(κ)
[q0κ cosh(κη) − δ sinh(κη)] (2)

Meaning of symbols can be found in Ref [7, 12]. We mention them briefly:

κ ≡ a/λD; η ≡ x/a; ρ∗e ≡ ρe/ρ0; ρ0 ≡
(
εκ2ζ/a2

)
(3)

Where, λD is Debye length [8]; ε is permittivity of liquid; ζ is a suitable scale for electrostatic

potential ψ, (ζ > 0).

δ is the potential difference between walls at η = +1 and η = −1. If Q0 is the net charge

present in liquid ( in a cross-section, per unit axial length),
∫ +1

−1 ρ
∗
edη = Q0/ρ0 ≡ q0, ( using

Eq. 3). Now, using Eq. 3 and Eq. 2, we can write Eq. 1 as,

d2v

dη2
= −

(
a2Ey ρ0
µ

)
ρ∗e

= −
(
εζEy

µ

)
κ2ρ∗e

= −Mκ2 [q0κ cosh(κη) − δ sinh(κη)] (4)

Where, M ≡
(

εζEy

2µ sinh(κ)

)
(5)
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Intergrating Eq. 4 twice w.r.t η we get,

v = −M [q0κ cosh(κη) − δ sinh(κη)] + C1η + C2 (6)

We use no-slip conditions at both walls, i.e. v = 0 at η = ±1. Hence,

0 = −M [q0κ cosh(κ) − δ sinh(κ)] + C1 + C2 (7)

0 = −M [q0κ cosh(κ) + δ sinh(κ)] − C1 + C2 (8)

From Eq. 7 and Eq. 8 we solve for C1 and C2 and get,

C1 = −Mδ sinh(κ) (9)

C2 = Mq0κ cosh(κ) (10)

Using Eq. 9 and Eq. 10 in Eq. 6 and rearranging terms,

v = M [q0κ (cosh(κ) − cosh(κη)) − δ (η sinh(κ) − sinh(κη))]

= M

[
q0κ cosh(κ)

(
1 − cosh(κη)

cosh(κ)

)
− δ sinh(κ)

(
η − sinh(κη)

sinh(κ)

)]
= Mκ cosh(κ)

[
q0

(
1 − cosh(κη)

cosh(κ)

)
− δ

tanh(κ)

κ

(
η − sinh(κη)

sinh(κ)

)]
(11)

Now, using Eq. 5 we get,

Mκ cosh(κ) =
εζEy

2µ sinh(κ)
κ cosh(κ)

= λ||
εζE0κ

2µ tanh(κ)
(12)

Where, λ|| ≡
Ey

E0

,with E0 > 0

Let us define corrected Helmholtz-Smoluchowskii velocity scale vH.S.Corr by,

vH.S.Corr ≡
εζE0κ

2µ tanh(κ)
(13)

It differs from old Helmholtz-Smoluchowskii velocity scale, see Ref [8]. Let v̄ ≡ v/vH.S.Corr.

Finally we arrive at,

v̄ = λ||

[
q0

(
1 − cosh(κη)

cosh(κ)

)
− δ

tanh(κ)

κ

(
η − sinh(κη)

sinh(κ)

)]
(14)

When we reverse Ey, velocity field must reverse too. In the above equation, the sign of λ||

changes when we reverse Ey, and hence v̄ changes sign as expected; in old works it was not
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possible to capture this reversal of direction in the scaled velocity, because vH.S was not

defined properly. This author made an attempt to correct it in Ref [7], however ρe was still

not correct there. We can control the fluid flow easily using the potential difference.
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