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I got my own way, to go, 

And now I want, 

To take your minds;

I, believe, if you could see,

The blood between the lines,

I, believe, that you could be,

A better kind;

Please lead the way so the unborn can play,

On some greener hill;

Laugh as the flames eat their burning remains, 

Fools die laughing still.
1

1 ‘Fools’, Deep Purple, Fireball, 1971, (Gillan, I., Glover, 

R., Lord, J., Blackmore, R., Paice, I.)  

I. Introduction

Gerardus  ‘t  Hooft  is  a  Dutch  professor  of

physics  at  the  University  of  Utrecht  in  the

Netherlands.  He  is  a  winner  of  the  Nobel

Prize for physics. He is currently, and for some

years  has  been,  the  Editor  in  Chief  of  the

journal Foundations of Physics. He has kindly

brought  attention  to  my  writings  on  black

holes,  big  bang  cosmology,  and  General

Relativity,  on  his  personal  website.  I’m

honoured that Professor ‘t Hooft  has taken

the time and trouble to inform people of my
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ABSTRACT

I  extend my thanks to Professor Gerardus ‘t Hooft, Nobel Laureate in Physics,  for making

more  widely  known  my  work  on  black  hole  theory,  big  bang  cosmology,  and  Einstein’s

General Theory of Relativity, by means of his personal website, and for providing me thereby

with the opportunity to address the subject matter - supported by extensive references to

primary sources for further information - in relation to his many comments, by means of this

dedicated  paper.  The  extensive  mathematical  appendices  herein  are  not  prerequisite  to

understanding the text. 



research  proving  the  falsity  of  black  hole

theory,  big  bang  cosmology,  and  Einstein’s

General  Theory  of  Relativity. Although  he

comments  on  the  works  of  five  particular

scientists, he has allocated perhaps the most

of his comments to me.

Mr. ‘t  Hooft [1] refers cryptically to the five

scientists as Mr. L, Mr. C, Mr. DC, Mr. E, and

Mr. AL, although it is a well known secret that

Mr. L is Dr. Chung Lo of the Applied and Pure

Research Institute, Mr. C is me, Mr. DC is Dimi

Chakalov (independent researcher)2, Mr. E is

Professor  Myron  W.  Evans  of  the  Alpha

Institute  for  Advanced Study,  and Mr.  AL  is

Professor Angelo Loinger of the Dipartimento

di Fisica, Universitá di Milano,  Italy; for those

Readers  who  were  not  aware  of  the  well

known secret. Mr. ‘t Hooft provided a link on

his  webpage  to  an  interesting  paper  by

Professor Loinger, but none, unfortunately, to

me  or  the  other  scientists.  I  therefore

elaborate herein on the many comments Mr.

‘t Hooft has made on his webpage concerning

me and my scientific work.

I  shall  begin  by  comparing  the  generic

defining  characteristics  of  all  alleged  black

hole  universes  to  all  alleged  big  bang

universes as they require no mathematics to

fully understand. 

II. Black holes and big bangs in contrast

There are four different types of black hole

universes  advanced  by  the  astrophysical

scientists; (a) non-rotating charge neutral, (b)

non-rotating  charged,  (c)  rotating  charge

neutral,  (d)  rotating  charged.  Black  hole

masses or ‘sizes’, are not types, just masses or

sizes of the foregoing types. There are three

purported  types  of  big  bang  universes  and

they  are  characterised  by  their  constant  k-

curvatures;  (a)  k  =  -1,  negative  spacetime

curvature and spatially infinite, (b) k = 0, flat

spacetime  and  spatially  infinite,  (c)  k  =  1,

2 http://www.god-does-not-play-dice.net 

positive  spacetime  curvature  and  spatially

finite.  Compare  now  the  generic  defining

characteristics of all black hole universes with

those of all big bang universes [2, 3, 4, 5].

 All black hole universes:

(1) are spatially infinite

(2) are eternal 

(3) contain only one mass

(4) are not expanding (i.e. are static or  

      stationary)

(5) are either asymptotically flat or  

      asymptotically curved.

All big bang universes:

(1) are either spatially finite (1 case; k = 1) or  

      spatially infinite (2 different cases; k = -1, 

      k = 0)

(2) are of finite age (~13.8 billion years)

(3) contain radiation and many masses 

(4) are expanding (i.e. are non-static)

(5) are not asymptotically anything.

Note also that  no black hole universe  even

possesses a big bang universe k-curvature.

Comparison of the defining characteristics of

all  black  hole  universes  with  all  big  bang

universes  immediately reveals that  they are

contradictory  and  so  they  are  mutually

exclusive; they cannot co-exist. No proposed

black hole universe can be superposed with

any other  type of  black hole universe,  with

any big bang universe, or with itself. Similarly,

no proposed type of big bang universe can be

superposed with any other type of big bang

universe,  with  any  black  hole  universe,  or

with itself. All proponents of black holes are

blissfully  unaware  of  these  simple

contradictions  and  so  they  combine  (i.e.

superpose)  their  black  hole  universes  with

black  hole  universes  and  with  big  bang

universes to conjure up black hole big bang

hybrid  universes  ad  arbitrium,  and  without

ever specifying what black hole universes in

what big bang universes they intend. 

www.sjcrothers.plasmaresources.com/index.html 2



Furthermore, General Relativity is a nonlinear

theory and so the Principle of Superposition

is invalid therein. Let X be some alleged black

hole universe and Y be some alleged big bang

universe.  Then  the  linear  combination  (i.e.

superposition) X + Y is not a universe. Indeed,

X and  Y pertain to completely different sets

of Einstein field equations and so they have

absolutely  nothing  to  do  with  one  another

whatsoever. 

Despite  the  contradictory  nature  of  the

defining  characteristics  of  black  hole

universes and big bang universes, and despite

the fact that the Principle of Superposition is

invalid in General Relativity, Mr. ‘t Hooft [1, 6]

superposes and says that multiple black holes

exist,  along with other matter such as stars

and  galaxies,  and  all  together  in  some

(unspecified) big bang universe [7]. 

“We not  only  accept  the  existence  of  black

holes,  we  also  understand  how  they  can

actually  form  under  various  circumstances.

Theory allows us to calculate the behavior of

material particles, fields or other substances

near  or  inside  a  black  hole.  What  is  more,

astronomers  have  now  identified  numerous

objects in the heavens that completely match

the  detailed  descriptions  theoreticians  have

derived. These objects cannot be interpreted

as  anything  else  but  black  holes.  The

‘astronomical  black  holes’  exhibit  no  clash

whatsoever with other physical laws. Indeed,

they have become rich sources of knowledge

about  physical  phenomena  under  extreme

conditions.  General  Relativity  itself  can  also

now be examined up to great accuracies.” [6]

Mr. ‘t  Hooft  [7]  begins his  exposition of big

bang creationism with the following words,

“General relativity plays an important role in

cosmology.  The simplest  theory is  that  at a

certain moment “t = 0”, the universe started

off from a singularity, after which it began to

expand.”

and  he  concludes  from   the  Friedman-

Robertson-Walker metrics that,

“All solutions start with a ‘big bang’ at t = 0.”

[7]

All  so-called black hole solutions for various

respective sets of Einstein field equations are

also said to pertain to stars and other masses,

including the Sun and the Earth. For instance,

according to Mr. ‘t Hooft [7],

“Einstein’s equation, (7.26), should be exactly

valid. Therefore it is interesting to search for

exact  solutions.  The  simplest  and  most

important one is empty space surrounding a

static star or planet. There, one has

Tμν = 0.”

Consequently,  all  the  generic  defining

characteristics  listed  above  for  black  hole

universes apply equally to stars and planets

and  such,  and  they  too  are  supposed  to

subsist  in  some  unspecified  big  bang

universe. Black hole universes differ however

to those of stars and planets described by the

very  same  equations  on  a  secondary  level.

For instance, all black holes have a so-called

‘event  horizon’  within  which  is  located  an

‘infinitely  dense  singularity’  at  which

spacetime  is  ‘infinitely  curved’;  stars  and

planets  have  no  event  horizons  or

singularities. Mr. ‘t Hooft [1, 6, 7], as is usual

for  cosmologists,  urges  that  singularities,

which  are  actually  just  places  in  a

mathematical  expression  where  it  is

undefined, are physical entities. Mr. ‘t Hooft,

along with the astrophysical scientists, reifies

points in an equation where that equation is

undefined. 

Since  Einstein’s  gravitational  field  is

spacetime  curvature,  it  follows  that  the

cosmologists,  including  Mr.  ‘t  Hooft,

necessarily maintain that Einstein’s gravity is

infinite  at  a  black  hole  singularity.  These
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infinities of density, spacetime curvature, and

gravity are also said to be physically real.  For

instance, according to Hawking [8],

“The  work  that  Roger  Penrose  and  I  did

between  1965  and  1960  showed  that,

according to general relativity, there must be

a  singularity  of  infinite  density  and  space-

time curvature, within the black hole. This is

rather like the big bang at the beginning of

time ...” 

According to Carroll and Ostlie [9],

 

“A nonrotating black hole has a particularly

simple  structure.  At  the  center  is  the

singularity,  a  point  of  zero  volume  and

infinite density where all  of  the black hole’s

mass is located. Spacetime is infinitely curved

at  the  singularity.  .  .  .  The  black  hole’s

singularity is a real physical entity. It is not a

mathematical artifact . . .”

According to Dodson and Poston [10],

“Once a body of matter, of any mass m, lies

inside  its  Schwarzschild  radius  2m  it

undergoes gravitational collapse . . . and the

singularity  becomes  physical,  not  a  limiting

fiction.”

According to Penrose [11],

“As  r  decreases,  the  space-time  curvature

mounts  (in  proportion  to  r−3),  becoming

theoretically infinite at r = 0.”

And according to Mr. ‘t Hooft [1],

“C is ‘self taught’, so he had no math courses

and so  does  not  know what  almost  means

here,  in  terms  of  carefully  chosen  limiting

procedures.”

How does Mr. ‘t Hooft know if I have taken

any mathematics courses or not? He doesn’t!

He certainly never asked me about it.  What

evidence  does  he  adduce  for  his  charge?

None! Mr. ‘t Hooft just invented this charge

for  his  own  convenience.  And for  what  it’s

worth, I have taken formal university courses

in  mathematics;  not  that  it  makes  any

difference to the scientific realities.

As for “carefully chosen limiting procedures”,

Dodson and Poston have already told us that

a  black  hole  singularity  is  “not  a  limiting

fiction”.  Carroll and Ostlie have already told

us that “The black hole’s singularity is a real

physical  entity.  It  is  not  a  mathematical

artifact”.  Hawking and Penrose have already

told us that  “there must  be a singularity  of

infinite  density,  within  the  black  hole.”

Penrose has  already told  us  that  spacetime

curvature becomes “theoretically infinite at r

= 0.”

It  is  not  difficult  to  see  when  a  limiting

procedure  is  employed  or  not,  and  it  is

certainly  not  employed  by  the  foregoing

Authors, in their very own words. Such is the

nature of the alleged black hole.

There are two types of black hole singularity

reported  by  cosmologists  and  astronomers,

according to whether or not their black hole

is  rotating.  In  the  case  of  no  rotation  the

singularity is a point; in the case of rotation

the  singularity  is  the  circumference  of  a

circle.  Cosmologists  and  astronomers  call

them ‘physical singularities’; and so does Mr.

‘t  Hooft  [6].  These and other  mathematical

singularities  of  black  hole  equations  are

reified so as to contain the masses of black

holes  and  to  locate  their  event  horizons.

Black  holes  are  said  to  range  in  size  (by

means of their masses) from micro to mini to

intermediate  to  supermassive  to  ultra-

supermassive, up to billions of solar masses. 

Since singularities are actually only places in

an equation where the equation is undefined,

owing  for  example,  to  a  division  by  zero,

singularities  are  not  real  physical  entities,

www.sjcrothers.plasmaresources.com/index.html 4



contrary  to  the  claims  of  the  cosmologists

and astronomers.  

Similarly,  astrophysical  scientists  assert  that

there  was  a  big  bang  singularity,  also

possessing various associated physically real

infinities. According to Hawking [12],

“At the big bang itself, the universe is thought

to  have  had  zero  size,  and  to  have  been

infinitely hot.” 

That which has zero size has no volume and

hence  cannot  contain  mass  or  have  a

temperature.  What  is  temperature?

According to the physicists and the chemists

it is the motion of atoms and molecules. The

more  energy  imparted  to  the  atoms  and

molecules the faster they move about and so

the higher the temperature. In the case of a

solid  the atoms or  molecules  vibrate  about

their  equilibrium  positions  in  a  lattice

structure  and  this  vibration  increases  with

increased temperature. According to Pauling

[13],

“As  the  temperature  rises,  the  molecules

become more and more agitated;  each one

bounds  back  and  forth  more  and  more

vigorously in the little space left for it by its

neighbours,  and  each  one  strikes  its

neighbours  more  and  more  strongly  as  it

rebounds from them.”  

Increased energy causes atoms or molecules

of a solid to break down the long range order

of its lattice structure to form a liquid or gas.

Liquids have short range order, or long range

disorder.  Gases  have  a  great  molecular  or

atomic disorder. In the case of an ideal gas its

temperature  is  proportional  to  the  mean

kinetic energy of its molecules [14, 15, 16],

2

2

1

2

3
vmkT =

wherein <v2> is the mean squared molecular

speed,  m the  molecular  mass,  and  k is

Boltzman’s constant.

Now that which has zero size has no space for

atoms and molecules to exist in or for them

to  move  about  in.  And  just  how  fast  must

atoms and molecules be moving about to be

infinitely  hot?  Zero  size  and  infinitely  hot  -

there  is  no  such  thing.  Nonetheless,

according  to  Misner,  Thorne  and  Wheeler

[17], 

“One  crucial  assumption  underlies  the

standard  hot  big-bang  model:  that  the

universe ‘began’ in a state of rapid expansion

from  a  very  nearly  homogeneous,  isotropic

condition of infinite (or near infinite) density

and pressure.”

Just how close to infinite must one get to be

“near infinite”? There are no such things as

infinite or “near infinite” density and pressure

either,  just  as  nothing  can  have  infinite

gravity.  

Near infinities of  various sorts are routinely

entertained  by  cosmologists  and

astronomers.  Here  is  another  example;  this

time  it’s  Professor  Lawrence  Krauss  [18]  of

Arizona State University, who says, 

“But is  that,  in  fact,  because of  discovering

that empty space has energy, it seems quite

plausible that our universe may be just one

universe in what could be almost an infinite

number  of  universes  and  in  every  universe

the  laws  of  physics  are  different  and  they

come into existence when the universe comes

into existence.”

Just  how  close  to  infinite  is  “almost  an

infinite number”? There is  no such thing as

“almost an infinite number” at all. 

www.sjcrothers.plasmaresources.com/index.html 5



Krauss  [18]  reaffirms  Hawking’s  zero  size

beginning of the big bang universes with the

following,

“There’s no real particles but it actually has

properties but  the point  is  that  you can go

much  further  and  say  there’s  no  space,  no

time,  no  universe  and  not  even  any

fundamental  laws  and  it  could  all

spontaneously arise and it seems to me if you

have no laws, no space, no time, no particles,

no  radiation,  it  is  a  pretty  good

approximation of nothing.”    

                                                                                

Thus, the Universe sprang into existence from

absolutely  nothing,  by  some  big  bang

creationism, “at time t = 0” [7] and nothing,

apparently,  is  “a  good  approximation  of

nothing” [18].  And not only is nothing a good

approximation of nothing, Krauss [18] says, 

“But I would argue that nothing is a physical

quantity. It’s the absence of something.”

Krauss [19] reiterated the big bang universes

creation ex nihilo dogma, thus,

“There  was  nothing  there.  There  was

absolutely no space, no time, no matter, no

radiation. Space and time themselves popped

into  existence  which  is  one  of  the  reasons

why it is hard …”

Yet  despite  the  zero  size,  the  infinities  and

near infinities possessed by nothing, and big

bang  creation  ex  nihilo,  Hawking  [12]  still

admits that,

“energy cannot be created out of nothing”

Thus stands yet another contradiction. 

III. A black hole is a universe

Consider now a black hole universe; the type

does not matter. Each and every black hole is

indeed an independent universe by the very

definition of a black hole, no less than the big

bang  universes  are  independent  universes,

although the proponents of black holes and

big  bangs,  including  Mr.  ‘t  Hooft,  do  not

realise this. 

The  black  hole  universe  is  not  contained

within its so-called ‘event horizon’ because its

spacetime supposedly extends indefinitely far

from its so-called ‘singularity’. Recall from the

list of generic defining characteristics that all

types  of  black  hole  universes  are  spatially

infinite and eternal, and that they are either

asymptotically  flat  or  asymptotically  curved.

There  is  no  bound  on  asymptotic,  for

otherwise it would not be asymptotic, and so

every  type  of  black  hole  constitutes  an

independent  universe,  bearing in  mind  also

that  each  different  type  of  black  hole

universe pertains to a different set of Einstein

field  equations  as  well,  and  therefore  have

nothing to do with one another whatsoever.

Without  the  asymptotic  condition  one  can

write  as  many  non-asymptotic  non-

equivalent  solutions  to  the  corresponding

Einstein  field  equations  for  the  supposed

different types of black holes as one pleases,

none of which contains a black hole. 

According  to  the  Dictionary  of  Geophysics,

Astrophysics and Astronomy [20],  

“Black holes were first  discovered as  purely

mathematical  solutions  of  Einstein’s  field

equations.  This  solution,  the  Schwarzschild

black  hole,  is  a  nonlinear  solution  of  the

Einstein  equations  of  General  Relativity.  It

contains no matter, and exists forever in an

asymptotically flat space-time.”

According to Penrose [11],

“The  Kerr-Newman  solutions  …  are  explicit

asymptotically flat stationary solutions of the

Einstein-Maxwell  equation  (λ  =  0)  involving

just three free parameters m, a and e. … the

mass,  as  measured  asymptotically,  is  the

www.sjcrothers.plasmaresources.com/index.html 6



parameter  m  (in  gravitational  units).  The

solution also possesses angular momentum,

of magnitude am. Finally, the total charge is

given  by  e.  When  a  =  e  =  0  we  get  the

Schwarzschild solution.” 

According to Wald [21],

“The charged Kerr metrics are all stationary

and axisymmetric … They are asymptotically

flat…”

I illustrate the black hole universe in figure 1.

Figure 1

As the ‘radial’  distance from the black hole

singularity  increases  indefinitely  the

spacetime  curvature  asymptotically

approaches either flat  or curved spacetime;

thus, if Rp is the radial distance, Rp → ∞. Note

again that at the singularity gravity is infinite

owing to infinite spacetime curvature there.

This is what Mr. ‘t Hooft [6] calls a “physical

singularity”  or  “curvature  singularity”.

Furthermore,  as  the  ‘radial  distance’

increases it approaches and then grows larger

than the radius of the event horizon of the

black  hole,  the  so-called  ‘Schwarzschild

radius’,  also  sometimes  called  the

‘gravitational  radius’.   The  ‘Schwarzschild

radius’  is  what  Mr.  ‘t  Hooft  and  the

astrophysical  scientists  call  a  ‘coordinate

singularity’,  which they say can be removed

by some change of coordinate system. 

Consider  now  a  black  hole  ‘binary  system’.

Such a binary system is also supposed to be

in  some  (unspecified)  big  bang  universe.  I

have already shown above that no black hole

universe  can  be  combined  with  any  other

universe or with itself, and so the notions of a

black  hole  binary  system  and  black  hole

collisions and mergers are inconsistent  with

the theory of  black  holes  itself.  To  reaffirm

this conclusion refer to figure 2 in which two

supposed black holes are depicted.

Figure 2

Recall again that the spacetimes of all black

hole universes are either asymptotically flat

or asymptotically curved, by definition. Note

that  in  figure  2  it  is  immediately  apparent

that each black hole significantly disturbs the

asymptotic  nature  of  the  spacetime  of  the

other  black  hole  and  so  neither  of  their

spacetimes  is  asymptotically  anything.

Indeed,  each  black  hole  encounters  an

infinite spacetime curvature (infinite gravity)

at the singularity of the other. This is true no

matter how far from one another the black

holes might be imagined, because there is no

bound on asymptotic, for otherwise it would

not  be  asymptotic.  Thus  the  presence  of

another  black  hole  violates  the  very

definition of a black hole itself and so there

cannot  be  multiple  black  holes.  Thus  the

black hole is necessarily a one-mass universe,

on the assumption that the related equations

even contain a mass in the first place. Such a

model  bears  no  relation  to  reality.

Nonetheless  it  is  routinely  claimed  by

www.sjcrothers.plasmaresources.com/index.html 7
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cosmologists and astronomers that not only

are  there  billions  of  black  holes  (types

unspecified), they are all present in some big

bang  universe  (also  unspecified),  none  of

which  can  be  superposed.  NASA  scientists,

for  example,  have  reported  that  they  have

found  2.5  million  black  holes  (types

unspecified) with their WISE survey [22]. But

then  none  of  their  black  holes  are

asymptotically anything since each and every

one of them encounters 2, 499, 999 infinite

spacetime curvatures around it, and so none

of  their  black  holes  even  satisfies  the

definition of a black hole. And all these black

hole  universes,  despite  being  eternal,  are

inside some big bang expanding universe of

finite  age,  ~13.8  billion  years.

Notwithstanding,  Daniel  Stern  [22],  a

Principal  Scientist  for  the  NASA/JPL  WISE

Survey, reports,  

“We’ve got the black holes cornered.”

Astronomer Royal, Martin Rees [23], says,

“Black  holes,  the  most  remarkable

consequences of Einstein’s theory, are not just

theoretical  constructs.  There  are  huge

numbers of them in our Galaxy and in every

other  galaxy,  each  being  the  remnant  of  a

star and weighing several times as much as

the Sun. There are much larger ones, too, in

the centers of galaxies.”

All the different black hole ‘solutions’ are also

applicable  to  stars  and  planets  and  such.

Thus,  these  equations  do  not  permit  the

presence of more than one star or planet in

the universe.  In the case of a body such as a

star, the only significant difference in figures

1 and 2 is that the spacetime does not go to

infinite curvature at the star, because there is

no  singularity  and  no  event  horizon  in  the

case of a star (or planet).  

IV. Gravitational collapse

Mr ‘t Hooft [1] adds his own invention to the

notion  of  the  mass  of  a  black  hole  and  its

infinite  gravity,  in  his  discussion  of  the

formation of a black hole.

“Matter travels onwards to the singularity at

r  = 0,  and becomes invisible  to  the  outside

observer. All this is elementary exercise, and

not  in  doubt  by  any  serious  researcher.

However, one does see that the Schwarzschild

solution  (or  its  Kerr  or  Kerr-Newman

generalization) emerges only partly: it is the

solution in the forward time direction, but the

part corresponding to a horizon in the past is

actually  modified by the contracting ball  of

matter.  All  this  is  well-known.  An  observer

cannot look that far towards the past, so he

will  interpret  the  resulting  metric  as  an

accurate  realization  of  the  Schwarzschild

metric. And its mass? The mass is dictated by

energy  conservation.  What  used  to  be  the

mass of a contracting star is turned into mass

of a ‘ball of pure gravity’. I actually don’t care

much  about  the  particular  language  one

should use here; for all practical purposes the

best  description  is  that  a  black  hole  has

formed.” [1]

Note  that  Mr  ‘t  Hooft  urges  that  a

mathematical  point  (and  indeed  the

circumference  of  a  circle  too)  can  contain

matter.  But  that  is  quite  impossible  -  one

might  just  as  well  claim that  the  centre  of

mass of a body (a mathematical artifice) is a

real object, and has an infinite density. Also

note that this  mass, from a star,  that forms

his  black  hole,  produces  a  “ball  of  pure

gravity”. However, the mathematical point he

reifies, at his “singularity at r = 0”, for infinite

gravity,  is  not  a  ball,  and  neither  is  the

universe  that  contained his  star  in  the first

place. 

Recall  that  all  the  purported  black  hole

solutions  to  Einstein’s  field  equations  each
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constitute  an  independent  universe  that

contains only one mass, that of the black hole

itself, on account of the asymptotic nature of

their respective spacetimes. Mr. ‘t Hooft [1, 6,

7] refers only to asymptotically flat black hole

universes,  by  virtue  of  his  invoking  of  only

Schwarzschild, Reissner-Nordström, Kerr, and

Kerr-Newman black holes. Recall further, that

all  black  hole  equations,  according  to  the

proponents thereof,  pertain to the ‘outside’

of  a star  without any change in  their  form;

the only difference being that a star has no

event horizon and no singularity,  and so all

the  generic  defining  characteristics  of  all

black  hole  universes  also  pertain  to  stars.

Consequently,  to result  in  any one of  these

solutions for the formation of a black hole it

must begin with a universe that contains only

one mass, such as a lone star. If Mr. ‘t Hooft,

to form a black hole, begins, as he apparently

does,  with a universe full  of  stars,  since he

talks of clusters of stars [1], he does not begin

with a relativistic universe, but a Newtonian

universe.  Indeed,  according  to  Mr.  ‘t  Hooft

[1],

“And now there is a thing that L and C fail to

grasp: a black hole can be seen to be formed

when matter implodes. Start with a regular,

spherically  symmetric  (or  approximately

spherically  symmetric)  configuration  of

matter, such as a heavy star or a star cluster.”

Since a black hole is actually, according to the

cosmologists’  actual  definition  of  a  black

hole, a one mass universe, with the collapse

of Mr ‘t Hooft’s star into a black hole, the rest

of  the  Universe  must  somehow  completely

disappear, but without falling into his newly

formed  black  hole.  Energy  is  therefore  not

conserved at all. And a Newtonian universe,

which contains as many stars as one pleases

to consider, cannot magically transform itself

into a one-mass black hole universe by means

of the irresistible ‘gravitational collapse’ of a

single  star.  Since  the  black  hole  equations

(metrics)  also apply  to a star  or  planet,  the

star that ‘collapses’ to form a black hole must

be the only mass in the Universe in the first

place. 

Furthermore, the gravity at the singularity of

a black hole is infinite because spacetime is

supposedly  infinitely  curved  there  –  so  a

finite amount of mass ‘collapses’ to produce

infinite gravity! This finite mass is converted

into infinite “pure gravity” by Mr. ‘t Hooft [1].

Moreover, according to him, matter no longer

even  induces  spacetime  curvature  by  its

presence: gravity can exist without matter to

cause it. Indeed, according to Mr. ‘t Hooft [1],

“But where  does the black hole mass come

from? Where is the source of this mass? Rμν  =

0 seems to imply that there is no matter at

all, and yet the thing has mass! Here, both L

and C suffer from the misconception that a

gravitational field cannot have a mass of its

own. But Einstein’s equations are non-linear,

and this is why gravitational fields can be the

source  of  additional  amount  of  gravity,  so

that a gravitational field can support itself. In

particle theories, similar things can happen if

fields  obey  non-linear  equations,  we  call

these solutions "solitons". A black hole looks

like  a  soliton,  but  actually  it  is  a  bit  more

complicated than that.”

Mr.  ‘t  Hooft  alters  Einstein’s  theory  ad

arbitrium so  that  he  can  have  gravitational

fields not caused by the presence of  material

sources and that have a mass of their own.

Contrast  his  notions  with  Einstein’s  actual

theory. According to Einstein [24],

“We  make  a  distinction  hereafter  between

‘gravitational field’ and ‘matter’ in this way,

that  we  denote  everything  but  the

gravitational field as ‘matter’. Our use of the

word  therefore  includes  not  only  matter  in

the ordinary sense, but  the electromagnetic

field as well.” 

Einstein [25] also asserts,
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“In  the  general  theory  of  relativity  the

doctrine of space and time, or kinematics, no

longer figures as a fundamental independent

of  the  rest  of  physics.  The  geometrical

behaviour of bodies and the motion of clocks

rather depend on gravitational  fields, which

in their turn are produced by matter.”

According to Pauli [26],

“Since  gravitation  is  determined  by  the

matter  present,  the  same  must  then  be

postulated for geometry, too.  The geometry

of  space  is  not  given  a  priori,  but  is  only

determined by matter.” 

According to Weyl [27],

“Again, just as the electric field, for its part,

depends  upon  the  charges  and  is

instrumental  in  producing  mechanical

interaction between the charges, so we must

assume  here  that  the  metrical  field  (or,  in

mathematical  language,  the  tensor  with

components  ikg  )  is related to the material

filling the world.”

According to McMahon [28],

“In  general  relativity,  the  stress-energy  or

energy-momentum  tensor  Tab acts  as  the

source of the gravitational field. It is related

to  the  Einstein  tensor  and  hence  to  the

curvature  of  spacetime  via  the  Einstein

equation.” 

According to Carroll and Ostlie [9],

“Mass  acts  on  spacetime,  telling  it  how  to

curve. Spacetime in turn acts on mass, telling

it how to move.” 

According to Einstein [29],

“space as opposed to ‘what fills space’, which

is  dependent  on  the  coordinates,  has  no

separate existence”

According to Einstein [30],

“I  wish  to  show  that  space-time  is  not

necessarily  something  to  which  one  can

ascribe  a  separate  existence,  independently

of the actual objects of physical reality.”

Thus,  Einstein’s  gravitational  field  does  not

have a mass of its own at all, although it  is

fancied to possess energy and momentum [1,

24, 31, 32].

Although, on the one hand, Mr. ‘t Hooft [1]

alleges,  incorrectly,  that  Einstein’s

gravitational field does not require a material

source,  because  it  “can have  a  mass  of  its

own”, he also, on the other hand, says that

Einstein’s  gravitational  field  must  have  a

material source,

“Clearly,  the  mass  density,  or  equivalently,

energy density ( )tx;
r

ρ  must play the role as a

source. However, it is the 00 component of a

tensor  Tμν(x),  the  mass-energy-momentum

distribution of matter. So, this tensor must act

as the source of the gravitational field.” [6]

Mr. ‘t Hooft [1] says he does not care about

the language used in describing a black hole.

Indeed;  and  so  he  foists  his  own  language

upon black hole mass and its related infinite

gravity  merely  by  means  of  linguistic

licentiousness. 

  

Now  gravity  is  not  a  force  in  General

Relativity because it is curvature of spacetime

according to Einstein, but gravity is a force in

Newton’s  theory.  Nonetheless,  Mr.  ‘t  Hooft

invokes  Newton’s  gravitational  forces  to

enable  black  hole  forming  ‘gravitational

collapse’. Mr. ‘t Hooft [1] says of his collapsing

star or star cluster,

“Assume that it obeys an equation of state. If,

according  to  this  equation  of  state,  the

pressure  stays  sufficiently  low,  one  can
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calculate that this ball of matter will contract

under its own weight.”

Mr. ‘t Hooft [6] also says, 

“One  must  ask  what  happens  when  larger

quantities  of  mass  are  concentrated  in  a

small  enough  volume.  If  no  stable  soution

(sic)  exists,  this  must mean that the system

collapses under its own weight.” 

However, weight is a force, Newton’s force of

gravity, not a curvature of spacetime. Despite

the methods  of  Mr.  ‘t  Hooft,  although  also

routine  for  astronomers  and  cosmologists,

Newtonian  forces  of  gravity  cannot  be

invoked for gravity in General Relativity. As de

Sitter [33] remarked,

“In Einstein’s new theory, gravitation is of a

much more fundamental nature: it becomes

almost a property of space. … Gravitation is

thus,  properly speaking,  not a ‘force’ in the

new theory.” 

V. Black hole escape velocity

They  don’t  realise  it,  but  according  to  all

proponents  of  black  holes,  of  which  Mr.  ‘t

Hooft is a typical example, their black holes

all  have  both  an  escape  velocity  and  no

escape velocity  simultaneously   at  the very

same  place;  which  is  of  course  quite

impossible,  and  therefore  again  completely

invalidates  the  theory  of  black  holes.

However,  since  none  of  the  proponents  of

black holes understands what escape velocity

means, this additional contradiction has also

escaped them. 

On  the  one  hand  it  is  asserted  by

cosmologists  and  astronomers  that  their

black  holes  have  an  escape  velocity.

According  to  the  Dictionary  of  Geophysics,

Astrophysics and Astronomy [20],  

“black hole A region of spacetime from which

the  escape  velocity  exceeds  the  velocity  of

light. In  Newtonian  gravity  the  escape

velocity  from  the  gravitational  pull  of  a

spherical star of mass M and radius R is 

vesc=√ 2GM

R
,

where G is Newton’s constant. Adding mass

to the star (increasing M), or compressing the

star  (reducing  R)  increases  vesc.  When  the

escape velocity exceeds the speed of light  c,

even  light  cannot  escape,  and  the  star

becomes a black hole. The required radius RBH

follows from setting vesc equal to c:

RBH=
2GM

c
2

…  In  General  Relativity  for  spherical  black

holes (Schwarzschild black holes), exactly the

same expression RBH holds for the surface of a

black hole. The surface of a black hole at RBH

is  a null  surface, consisting of those photon

trajectories  (null  rays)  which  just  do  not

escape to infinity. This surface is also called

the black hole horizon.”

According to Hawking [8],

“I had already discussed with Roger Penrose

the idea of defining a black hole as a set of

events from which it is not possible to escape

to  a  large  distance.  It  means  that  the

boundary  of  the  black  hole,  the  event

horizon,  is  formed by rays of light  that just

fail to get away from the black hole. Instead,

they stay forever hovering on the edge of the

black hole.” 

According to the Collins Encyclopædia of the

Universe [34], 

“black hole A massive object so dense that

no  light  or  any  other  radiation  can  escape
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from it; its escape velocity exceeds the speed

of light.”

According to O’Neill [35],

“No  particle,  whether  material  or  lightlike,

can escape from the black hole”

According  to  Mr.  ‘t  Hooft  [6]  the  escape

velocity of a black hole is at least the speed of

light, 

“A black hole is characterized by the presence

of  a  region  in  space-time  from  which  no

trajectories  can  be  found  that  escape  to

infinity while keeping a velocity smaller than

that of light.”

According  to  Joss  Bland-Hawthorn  [36],

Professor of Astrophysics at the Institute for

Astronomy at the University of Sydney,

“A black hole is, ah, a massive object, and it’s

something  which  is  so  massive  that  light

can’t  even  escape.  …  some  objects  are  so

massive that the escape speed is basically the

speed of  light  and therefore  not  even  light

escapes. … so black holes themselves are, are

basically inert, massive and nothing escapes.”

So it  is  routinely  claimed by proponents  of

black  holes  that  they  do  have  an  escape

velocity. Bland-Hawthorn’s escape velocity is

a  particularly  curious  one:  if  the  escape

velocity of a black hole is the speed of light

and light  travels  at  the speed of  light,  then

surely  light must not  only  leave or emerge,

but  also  escape.  However,  Bland-Hawthorn

assures all and sundry, on national television,

that  because  the  escape  speed  of  a  black

hole is that of light, light cannot escape!

Figure 3

The small body escapes from the large body at speed

vesc.

Figure 3 simply depicts escape velocity.  The

small body escapes from the large body if it is

initially  propelled  from  the  latter  at  the

escape speed. 

On the other hand the proponents of black

holes  also  routinely  claim  that  nothing  can

even leave or emerge from a black hole, let

alone  escape  from  it.  Things  can  go  into  a

black hole but nothing can come out of it. A

journey into a  black hole  is  a  one way trip

since anything that crosses its event horizon

is inexorably destined, say the cosmologists,

to  be  obliterated  by  crashing  into  and

merging  with  the  black  hole’s  singularity.

According to Chandrasekhar [37],

“The problem we now consider is that of the

gravitational collapse of a body to a volume

so small that a trapped surface forms around

it; as we have stated, from such a surface no

light can emerge.”

According to d’Inverno [38], 

“It is clear from this picture that the surface r

= 2m is a one-way membrane, letting future-

directed  timelike  and null  curves  cross  only

from  the  outside  (region  I)  to  the  inside

(region II).”

According to Hughes [39],

“Things can go into the horizon (from r > 2M

to  r  <  2M),  but  they  cannot  get  out;  once
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inside, all causal trajectories (timelike or null)

take  us  inexorably  into  the  classical

singularity at r =0. … The defining property of

black holes is their event horizon. Rather than

a true surface, black holes have a ‘one-way

membrane’ through which stuff can go in but

cannot come out.”

According to Taylor and Wheeler [40],

“Einstein  predicts  that  nothing,  not  even

light,  can  be  successfully  launched outward

from the horizon ...  and that light launched

outward  EXACTLY  at  the  horizon  will  never

increase its radial  position by so much as a

millimeter.”

According to O’Neill [35],

“In  the  exceptional  case  of  a  ∂v photon

parametrizing  the  positive  v  axis,  r  =  2M,

though it is racing ‘outward’ at the speed of

light  the  pull  of  the  black  hole  holds  it

hovering at rest.”

According to Dirac [41],

“Thus  we  cannot  have  direct  observational

knowledge  of  the  region  r  <  2m.  Such  a

region is called a black hole, because things

can fall into it (taking an infinite time, by our

clocks, to do so) but nothing can come out.”  

According to Hawking and Ellis [42],

“The  most  obvious  asymmetry  is  that  the

surface r = 2m acts as a one-way membrane,

letting  future-directed  timelike  and  null

curves cross only from the outside (r > 2m) to

the inside (r < 2m).” 

And according to Mr. ‘t Hooft [6],

“It  turned  out  that,  at  least  in  principle,  a

space traveller could go all the way in such a

‘thing’ but never return. Not even light could

emerge  out  of  the  central  region  of  these

solutions. It was John Archibald Wheeler who

dubbed these strange objects ‘black holes’”.

But  escape  velocity  does  not  mean  that

things cannot leave or emerge, only that they

cannot escape unless they are propelled at or

greater than the escape velocity. Throw a ball

into the air. Did it leave the Earth’s surface?

Of  course!  Did  it  escape  from  the  Earth’s

gravity? No. This is simply depicted in figure

4.

Figure 4

The small body leaves or emerges but cannot escape

because  v  <  vesc.  It  falls  back  down  after  leaving  or

emerging.

If the initial speed of the small body in figure

4 is less than vesc then it will not escape; it will

rise  to  some maximum  distance  depending

upon  its  initial  speed  and  then  fall  back

down.  Hence,  escape  velocity  means  that

things  can  either  leave  or  escape  from the

surface of some other body, depending upon

initial speed of propulsion. But this is not so

in  the  case  of  the  black  holes,  because

nothing  is  able  to  even  leave  a  black  hole

event horizon. Even light hovers “forever” at

the event horizon. Things can only go into a

black hole; nothing can even leave its event

horizon  or  emerge  from  below  its  event-

horizon.  The  black  hole  event  horizon  is

therefore  often  referred  to  as  a  “one-way

membrane”  [38,  39,  42].  This  is  simply

depicted in figure 5.

www.sjcrothers.plasmaresources.com/index.html 13



Figure 5 

Nothing can even leave the black hole event horizon or

emerge from beneath it. Light itself ‘hovers forever’ at

the event horizon. The black hole event horizon has no

escape velocity. 

Thus, proponents of the black hole, including

Mr. ‘t Hooft, do in fact claim that their black

holes  have  and  do  not  have  an  escape

velocity  simultaneously,  and  at  the  same

place.  Contra-hype!   Proponents  of  black

holes don’t even understand escape velocity.

It’s  also  important  to  note  that  escape

velocity is an implicit two-body relation; one

body escapes from another body (see figures

3  and  4).  There’s  no  meaning  to  escape

velocity  in  a  model  of  the  Universe  that

contains  only  one mass,  and  such  a  model

bears  no relation  to  reality  anyhow. But  all

black holes are independent universes which

contain only  one mass,  on account of  their

asymptotic  flatness  or  asymptotic

curvedness. Despite this, proponents of black

holes and big bangs, such as Mr. ‘t Hooft, talk

about untold numbers of black holes present

in  some  unspecified  expanding  big  bang

universe  that  also  contains  many  masses

other than black holes.

The  escape velocity  of  a  black  hole  is,  as  I

have  already  revealed,  claimed  by  the

proponents thereof, to be ≥  c, the speed of

light in vacuo. Recall that Mr. ‘t Hooft [6] has

also alluded to this when he claims that black

holes have an escape velocity. In order to see

how  Mr.  ‘t  Hooft  and  the  astrophysical

scientists obtain the value of their black hole

escape  velocity  consider  Hilbert’s  solution,

with a positive constant  m, for static empty

spacetime  described  by  Einstein’s  so-called

‘field equations’ Rμν = 0, 
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In  this  expression  both  c and  G are  set  to

unity.  Note  that  the  coefficients  of  the

squared  differential  elements  (i.e.  the

components of  the metric tensor) of (1)  do

not depend on the time  t and so the black

hole obtained from (1) is eternal (or static).

According to the astrophysical  scientists  the

quantity  m in  expression (1) is  the mass  of

the  body  producing  the  gravitational  field.

Mr. ‘t Hooft [6] also identifies m in expression

(1) as the gravity inducing mass,

“Newton's constant G has been absorbed in

the  definition  of  the  mass  parameter:  M  =

Gm.”

The astrophysical scientists say that Hilbert’s

metric  (1)  describes  the  gravitational  field

‘outside’  a  body such  as  a  star,  and  also  a

black  hole.  Expression  (1)  is  almost  always

called  ‘Schwarzschild’s  solution’  by

cosmologists.  However,  it  is  not

Schwarzschild’s solution, which can be easily

verified  by  reading  Schwarzschild’s  original

paper  [43].  Rewriting  (1)  with  c and  G

explicitly, so that nothing is hidden, gives,
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According  to  Mr.  ‘t  Hooft  [6]  and  all  other

proponents  of  black  holes,  there  is  a

‘coordinate’ or ‘apparent’ singularity’ at,
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2

2

c

Gm
rr s ==                         (3)

It  is  from equation (3) that they obtain the

value of the ‘radius’ of the black hole event

horizon, the so-called ‘Schwarzschild radius’.

They mistakenly think that  r  in (1) and (2) is

the radius therein. 

Solving (3) for c yields,

sr

Gm
c

2
=                         (4)

It  is  from  equation  (4)  that  the  strange

‘escape velocity’ of a black hole is adduced as

≥  c by  the  proponents  of  black  holes.

However, equation (4) is nothing other than

Newton’s expression for escape speed. Since

Newton’s  expression,  although  containing

only  one  mass  term,  m,  is  an  implicit  two-

body  relation,  it  cannot  rightly  appear  in

what is the solution to a one-body problem.

It  appears  in  (2)  simply  because  the

astrophysical scientists put it there, post hoc,

in order to make a mass appear in it to satisfy

the initial  claim that  Rμν = 0, where  Tμν = 0,

describes Einstein’s gravitational field outside

a body such as a star,  bearing in  mind that

Einstein’s  gravitational  field  must  have  a

material  source.  For  example,  according  to

Mr. ‘t Hooft [7],

“Einstein’s equation, (7.26), should be exactly

valid. Therefore it is interesting to search for

exact  solutions.  The  simplest  and  most

important one is empty space surrounding a

static star or planet. There, one has

Tμν = 0” 

Note  that  Mr.  ‘t  Hooft  thus  acknowledges

that  Hilbert’s  solution  pertains  to  a  static

problem (“a static  star or  planet”) and that

the space surrounding this hypothetical static

star  or  planet  is  “empty  space”.  Indeed,

according  to  Einstein  [24],  Tμν = 0  produces

“The  field  equations  of  gravitation  in  the

absence of matter”. 

Furthermore, since equation (3) is Newtonian

it is the critical radius for the formation of the

theoretical Michell-Laplace dark body, since r

is the radius in Newton’s expression, but the

Michell-Laplace dark body is not a black hole

because  it  does  not  possess  any  of  the

characteristics  of  a  black  hole,  other  than

possessing a finite mass.  

In  Eq.(3)  the  escape  speed  at  the  'event

horizon' of a black hole is set to  c = 2.998 x

108m/s, in order to determine the 'radius' of

the  black  hole.   Thus,  on  the  one  hand,

according  to  the  cosmologists,  the  escape

speed at the event horizon of a black hole is

the  speed  of  light in  vacuo;   c =  2.998  ×

108m/s. By various mathematical approaches

which  amount  to  the  same  thing,  the

cosmologists  on  the  other  hand  claim  that

the escape speed (the speed of light) at the

event horizon is 0m/s. One of their means is

to set  θ =  const. and  φ =  const. in Hilbert's

solution to yield for 'radial motion'. For light

ds =  cdτ =  0,  because the so-called  'proper

time' dτ = 03. Hence,

0=c
2(1�

2Gm

c
2
r )dt

2�(1�
2Gm

c
2
r )

�1

dr
2

Rearrangement  for  what  cosmologists  call

'the radial velocity' [100,101] gives,

v=
dr

dt
=±c(1�

2Gm

c
2
r )           (3b)

“The  +  sign  is  for  a  light  ray  heading

outwards i.e. r increasing with time, and the

−  is  for  a  light  ray  heading  inwards,  i.e.  r

decreasing with time.” Rennie [101]

3The motion of light is ‘light-like’, or 'null': hence dτ = 0.
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At  the  event  horizon  r =  rs =  2GM/c2 (the

'Schwarzschild radius'). Putting this value into

Eq.(3b) yields,

v=
dr

dt
=±c(1�

2Gm

c
2

c
2

2Gm )=0    (3c)

Thus,  according  to  the  cosmologists,  the

speed of light at the event horizon is zero for

light travelling either outward or inward.

“We  find  that  the  velocity  of  light  at  the

event horizon is zero.” Rennie [101]

This is the other cosmologist 'escape speed'

(here the outward radial speed for the + sign)

at  the  black  hole  event  horizon.

Consequently,  light  cannot  leave  or  escape

the  'event  horizon'  because  it  is  unable  to

even  move.  Contrast  this  with  the  'escape

speed'  at  the  black  hole  event  horizon

obtained from the 'Schwarzschild radius':  vesc

=  √(2Gm/rs)  =  c =  2.998 x  108m/s.  A  body

freely  falling  from  rest  'at  infinity'  along  a

radial line acquires a speed equal to that of

the  escape  speed,  according  to  the

'Schwarzschild  radius'  rs,  because  rs  is

obtained  from  the  Newtonian  relation  for

escape  speed.  Note  that  in  Eq.(3c)  the

cosmologists  give  the  speed  of  light  two

different  values at  their  'event horizon':  the

escape  speed  c  =  2.998  x 108m/s  by  rs =

2GM/c2 and  the  escape  speed  0  m/s  by

means of   v =  dr/dt =  c =  0.  However,  the

speed  of  light  (the  'escape  speed')  cannot

have  two  different  values  in  the  one

equation. This logical absurdity however does

not  stop  cosmologists.  Furthermore,

according to Einstein,  no material  body can

move with a speed that is equal to or greater

than the speed of light in vacuo, i.e. c = 2.998

x 108m/s,  but  can  certainly  move  with  a

speed v such that 0 < v < c = 2.998 x 108m/s.

Cosmologists, with an escape speed vesc = c =

0, do not permit any material object to have a

speed  greater  than  zero  at  their  event

horizon,  contrary  to  Einstein's  fundamental

tenet on the speed of light, because, they say,

no material body can move at or greater than

the  speed  of  light.  In  other  circles  this  is

called 'an each-way bet'. 

VI. The radius of a black hole

As noted above, the ‘Schwarzschild radius’ is,

according to the astrophysical scientists, and

Mr.  ‘t  Hooft  [6,  7],  the  radius  of  the  event

horizon of  a  black  hole,  which  they  in  fact

obtain  from  Newton’s  expression  (4)  for

escape velocity. It is also claimed that bodies

such  as  stars  and  planets  have  a

Schwarzschild  radius.  One regularly  finds  in

the  literature,  for  example,  that  the

Schwarzschild radius of the Sun is ~ 3km, and

that  of  the  Earth  ~1cm.  According  to

d’Inverno [38],

“The  Schwarzschild  radius  for  the  Earth  is

about 1.0 cm and that of the Sun is 3.0 km.” 

According to Wald [21], 

“For example,  a Schwarzschild black hole of

mass  equal  to  that  of  the  Earth,  ME =  6  x

1027g, has rs = 2GME/c2 ~ 1 cm. … A black hole

of one solar mass has a Schwarzschild radius

of only 3km.”

According to McMahon [28],

“For ordinary stars, the Schwarzschild radius

lies deep in the stellar interior.” 

In Hilbert’s [44 - 46] equations (1) and (2), the

quantity  r therein  has  never  been correctly

identified  by  the  astrophysical  scientists.  It

has  been  variously  and  vaguely  called  the

“areal  radius”  [11,  21,  37,  39,  47],  the

“Schwarzschild  r-coordinate”  [17],  the

“distance”  [27,  48],  “the  radius”  [6,  10,  20,

28,  48-59],  the  “radius  of  a  2-sphere”  [60],

the “radial coordinate” [9, 17, 20, 28, 37, 40,

42],  the  “reduced  circumference”  [39],  the

“radial space coordinate” [61]. What does Mr
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‘t Hooft call  it?  In his lecture notes on the

theory of black holes, Mr. ‘t Hooft [6] says it’s

the  “radial  coordinate”.  In  relation  to  the

following metrical ground-form,

( ) ( ) 22222 Ω++−= drdrrBdtrAds

( )2222 sin ϕθθ ddd +=Ω

Mr. ‘t Hooft [6] says it’s “the radius r”. In his

lecture  notes  on  General  Relativity  Mr.  ‘t

Hooft again calls it the “radius”, thus,

“‘ordinary’ stars and planets contain matter

(Tμν ≠  0)  within a certain radius r  >  2M, so

that  for  them  the  validity  of  the

Schwarzschild solution stops there.” [7]

In 2007 and 2008 I had some email exchange

with Mr. ‘t Hooft about his  radial coordinate

cum radius cum distance cum whatever else,

amongst other things. In September 2007 he

wrote to me that r in (2) is,

“a gauge choice: it determines the coordinate

r” [62]

In May 2008 Mr. ‘t Hooft  wrote this to me,

“As for 'r' in Schwarzschild, any choice for the

radial  coordinate  would  do,  but,  in  the

spherically  symmetric  case,  the  choice  that

turns  the  angular  distance  into  that  of  a

sphere with radius r is  the most  convenient

one.  In  physics,  we  call  that  a  coordinate

choice or gauge choice. Yes, if you keep this r

constant,  then the curvature in  the  angular

directions indeed happens te (sic) be that of a

sphere with radius r. It is that by choice.” [62]

From the above passage it is evident that Mr.

‘t Hooft says that his “radial coordinate” r  in

Hilbert’s  metric  (since  he  calls  Hilbert’s

solution ‘Schwarzschild’s solution’) is also the

“radius  r”. No  matter  what  they  call  it  the

astrophysical  scientists  always  treat  r  in  (1)

and (2) as the radius, and refer to r = 0 as the

origin,  where  their  black  hole’s  mass  is

located,  where  spacetime  is  ‘infinitely

curved’, and where the density is infinite!

Despite his various claims as to the identity of

r, in the very same email exchange with me

Mr. ‘t Hooft wrote,

“Of course, no astronomer in his right mind

would  claim  that  r  stands  for  a  spatial

distance” [62]

Notwithstanding  his  hypothesised  right

mindedness of astronomers, Mr. ‘t Hooft [7]

also says,

“...where  r0 is  the  smallest  distance  of  the

light ray to the central source.”

Here Mr. ‘t  Hooft calls  r  =  r0 a distance and

also  the  radius  (implicitly)  in  the  one

sentence, bearing in mind that he is referring

to  a  spherically  symmetric  configuration.

Stefan Gillessen is an astronomer at the Max

Planck Institute for Extraterrestrial Physics; he

[63] also says that r in (2) is “the radius”, and

although  also  claiming in  news  reports  and

published papers in journals to have found a

black hole, with his colleagues, at Sgt A*, he

has  admitted  that  not  only  did  he  and  his

colleagues  not  find  a  black  hole  at  Sgt  A*,

nobody  has  ever  found  a  black  hole

anywhere,  amongst  other  admissions  [63].

This  has  not  stopped  Gillessen  from

continued claims for a black hole at  Sgt  A*

and from receiving research grants to study

this nonexistent black hole [63]. 

Note that Mr. ‘t Hooft has given four different

‘definitions’  of   r,  but  none  of  them  are

correct,  and  neither  are  any  of  the  other

‘definitions’  proposed  by  the  astrophysical

scientists.  Yet  Mr.  ‘t  Hooft  objects  to  my

correct identification of what the radius is in

Hilbert’s metric, and my correct identification

of r therein,

www.sjcrothers.plasmaresources.com/index.html 17



“Mr.  C.  adds  more  claims  to  this:  In  our

modern notation, a radial coordinate r is used

to  describe  the  Schwarzschild  solution,  the

prototype of a black hole. ‘That’s not a radial

distance!’  he  shouts.  ‘To  get  the  radial

distance  you  have  to  integrate  the  square

root  of  the  radial  component  grr of  the

metric!!’ Now that happens to be right, but a

non-issue; in practice we use r just because it

is  a  more convenient  coordinate,  and every

astrophysicist  knows  that  an  accurate

calculation of the radial distance, if needed,

would  be  obtained  by  doing  exactly  that

integral.” [7]

So  although  Mr.  ‘t  Hooft  admits  that  I  am

right  again,  he  nonetheless  clings  to  his

“radial  coordinate  r”,  which  he  has  already

also  said  is  the  “radius  r”  [62],  and  other

things  besides.  As  for  his  claim  that  every

astrophysicist knows what the radial distance

in  Hilbert’s  metric  really  is,  that  is  patently

false,  as  Gillessen  [63],  a  typical  example,

attests, as do my many citations above. The

‘Schwarzschild  radius’  and  the  ‘gravitational

radius’ also attest to the routine identification

of r by astrophysical scientists as the radius in

(1) and (2), by means of Newton’s expression

for escape velocity (4), and the claim that in

(2) 0 ≤ r with ‘the origin’ at r = 0. Contrary to

Mr.  ‘t  Hooft’s  assertion,  the  correct

identification of  r in (2) is not a “non-issue”,

but a very important issue.

It  was  during  my  aforementioned  email

exchange with  Mr.  ‘t  Hooft  that  I  informed

him  of  the  true  identity  of  r in  Hilbert’s

metric; that r is in fact the inverse square root

of the Gaussian curvature of the spherically

symmetric  geodesic  surface  in  the  spatial

section of  Hilbert’s  metric.  He subsequently

acknowledged that  I  am correct,  as  quoted

above.  But  here  again,  for  convenience  is

what he said on this issue,

“Yes,  if  you  keep  this  r  constant,  then  the

curvature  in  the  angular  directions  indeed

happens  te  (sic)  be  that  of  a  sphere  with

radius r. It is that by choice.” [62]

Note that although Mr. ‘t Hooft admitted the

truth  of  my argument  about  ‘curvature’  he

still  incorrectly says that  r is the radius of a

sphere,  and that  it  is  such by choice!  Well,

the fact that it is the inverse square root of

the Gaussian curvature of a spherical surface

means that it  is  not  the radius of anything,

and  a  sphere  is  not  a  surface  because  the

former is three-dimensional but the latter is

two-dimensional.   As  for  there  being  any

choice, that too is patently false because the

metric determines what r is, not the arbitrary

choice  of  astrophysical  scientists  and Mr.  ‘t

Hooft.  This  is  a  question  of  pure

mathematics, as I will now prove, although I

have expounded it in a number of my papers

[64]. 

The  squared  differential  element  of  arc-

length of a curve in  any surface is given by

the First  Fundamental  Quadratic Form for a

surface,

ds2 = E du2 + 2F du dv + G dv2         (5)

wherein  u and  v are curvilinear coordinates

and E = E(u,v), F = F(u,v), G = G(u,v). The only

independent variables are u and v and so this

is a two-dimensional metric. If either u or v is

constant the resulting line-elements describe

parametric  curves  in  the  surface.  The

differential  element of  surface area is given

by,

dvduFEGdA
2−=                 (6)

Writing the coefficients in (5) in matrix form

gives,









=

GF

FE
aik

the determinate of which is,
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2
FEGa −=

and so the differential element of area can be

written as,

dvduadA =                    (6a)

Definition 1 (Bending Invariant): In relation

to the First Fundamental Quadratic Form for

a surface, an expression which depends only

on  E,  F,  G  and  their  first  and  second

derivatives is called a bending invariant. 

Definition 2 (Spherical Surface): A surface of

constant positive Gaussian curvature is called

a spherical surface.

Definition  3  (Pseudospherical  Surface): A

surface  of  constant  negative  Gaussian

curvature  is  called  a  pseudo-spherical

surface.

Definition 4 (Plane Surface): The surface of

constant zero Gaussian curvature is the plane

surface.

Theorem 1 - ‘Theorema Egregium’ of Gauss:

The Gaussian curvature K at any point P of a

surface  depends  only  on the  values  at  P  of

the  coefficients  in  the  First  Fundamental

Form and their first and second derivatives.

 

It follows from Definition 1 that the Gaussian

curvature  is  a  bending  invariant.

Interestingly,  Gaussian  curvature is  the only

second-order  differential  invariant  of  2-

dimensional Riemannian metrics.  

It  is  of  utmost  importance to note that  the

intrinsic  geometry  of  a  surface  is  entirely

independent of any embedding space; 

“And  in  any  case,  if  the  metric  form  of  a

surface  is  known  for  a  certain  system  of

intrinsic  coordinates,  then  all  the  results

concerning  the  intrinsic  geometry  of  this

surface can be obtained without appealing to

the embedding space.” [65]

Hilbert’s metric (2) consists of a timelike part

and a spacelike part. The timelike part is that

which contains dt; all the rest is the spacelike

part. The spacelike part is three-dimensional.

Using the spacelike part one can calculate the

length  of  curves  in  the  space,  the  radial

distance to any point therein, the volume of

some  part  thereof,  the  area  of  a  surface

therein,  etc.  A  3-dimensional  spherically

symmetric metric manifold has the following

metrical ground-form [66],

( ) ( )2222222 sin ϕθθ ddkdkkAds ++=    (7)

Note that expression (7) is a positive-definite

quadratic form. 

The spatial section of (2) is,

( )22222

1

2

2 sin
2

1 ϕθθ ddrdr
rc

Gm
ds ++








−=

−

(8)

This  has  the  same metrical  ground-form as

(7),  so  it  describes  a  3-dimensional

spherically  symmetric  space,  provided  the

coefficient of dr2 is not negative, because (7)

is  a  positive-definite  quadratic  form.  Thus,

the  coefficient  of  dr2 in  (8)  can  never  be

negative if (8) is to describe a 3-dimensional

spherically  symmetric  space. Since  the

intrinsic  geometry  of  a  surface  is  entirely

independent  of  any  embedding  space,  the

properties  of  the  surface  embedded  in  (8)

can be ascertained from the metric  for  the

surface itself. The surface in (8) is described

by,

( )22222 sin ϕθθ ddrds +=              (9)

Note that there are only two variables in this

expression,  θ and  φ,  since  (9)  is  obtained

from (8) by setting  r =  constant ≠  0.  Since
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there are no cross terms in (9), i.e. no dθdφ,

its metric tensor is diagonal.

Expression (9) has the form of (5), and so it is

a  particular  First  Fundamental  Quadratic

Form for a surface. This is easily seen by the

following identifications,

u = θ,  v = φ,  E = r2,  F = 0,  G = r2sin2θ   (10)

Now  calculate  the  Gaussian  curvature  K of

this surface by using the relation,

g

R
K 1212=                         (11)

where  R1212 is a component of the Riemann-

Christoffel  curvature tensor of the first  kind

and g is the determinant of the metric tensor

for  (9).  To  apply  (11)  to  (9),  utilize  the

following  relations  for  a  diagonal  metric

tensor,
λ

νρσµλµνρσ .RgR =

1

221

1

1222

1

21

1

1

221

212. k

k

k

k

xx
R ΓΓ−ΓΓ+

∂

Γ∂
−

∂

Γ∂
=

j

ii

i

ji

i

ij
x

g

∂









∂

=Γ=Γ

ln
2

1

( )ji
x

g

g i

jj

ii

i

jj ≠
∂

∂
−=Γ

2

1
          (12)

and all other 
i

jkΓ   vanish.  In the above, i, j, k

= 1, 2; x1 =  θ,  x2 =  φ.   Applying expressions

(11) and (12) to (9) yields,  

2

1

r
K =                          (13)

which  is  a  positive  constant  Gaussian

curvature,  and  hence,  by  Definition  2,  (9)

describes a spherical surface.

From (13),

K
r

1
=                        (14)

and so  r in (2) is the inverse square root of

the  Gaussian  curvature  of  the  spherically

symmetric  geodesic  surface  of  the  spatial

section thereof.  Thus r is neither a radius nor

a distance in (9) and (2). It is defined by (13)

via the expression (11), and therefore has a

clear and definite intrinsic geometric identity.

The result  (13) obtains  because the surface

(9)  is  independent of  any embedding space

whatsoever  and so  does not  change if  it  is

embedded  into  some  higher  dimensional

space. 

Consequently,  contrary  to  Mr.  ‘t  Hooft’s  [1]

claim, there is no choice in the ‘definition’ of

r in  Hilbert’s  metric  (2)  because  it  is  fully

determined by the intrinsic geometry of the

metric.  Hence,  r is  not a ‘radial coordinate’,

not  a  ‘distance’,  not  ‘a  gauge  choice  that

determines  r’,  and is not ‘the radius’,  in (2).

The  ‘Schwarzschild  radius’  is  therefore  not

the  radius  of  anything  in  (2),  since  it’s  not

even a distance in (2). 

Despite  this  irrefutable  mathematical  fact,

Mr. ‘t Hooft [1] says,

“‘r is defined by the inverse of the Gaussian

curvature’,  C  continues, but  this happens to

be  true  only  for  the  spherically  symmetric

case. For the Kerr and Kerr-Newman metric,

this is no longer true. Moreover, the Gaussian

curvature is not locally measurable so a bad

definition indeed for a radial coordinate. And

why should one need such a definition? We

have  invariance  under  coordinate

transformations. If so desired, we can use any

coordinate  we  like.  The  Kruskal-Szekeres

coordinates are an example.  The Finkelstein

coordinates  another.  Look  at  the  many

different  ways  one  can  map the  surface  of

the Earth on a flat  surface. Is  one mapping

more fundamental than another?”
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It is trivially true that  r in the Kerr and Kerr-

Newman  metrics  is  not  simply  the  inverse

square root  of  the Gaussian  curvature  of  a

spherically symmetric geodesic surface in the

spatial section thereof, because the Kerr and

Kerr-Newman  metrics  are  not  spherically

symmetric!  However,  this  does  not  change

the fact that  r in the Kerr and Kerr-Newman

metrics  is  neither  the  radius  nor  even  a

distance therein, and is  defined in  terms of

the  associated  Gaussian  curvature,  as

calculation of the Gaussian curvature of the

surface in the spatial section of the Kerr and

Kerr-Newman  metrics  again  attests  (see

Appendix  A).  Consider  the  Kerr-Newman

metric  in  the  so-called  ‘Boyer-Lindquist

coordinates’,

−






 −∆
−= 2

2

22
2 sin

dt
a

ds
ρ

θ

             

              
( )

ϕ
ρ

θ
ddt

ara
2

222sin2 ∆−+
−

              
( ) 22

2

22222

sin
sin

ϕθ
ρ

θ
d

aar ∆−+
+ +

                         222
2

θρ
ρ

ddr +
∆

+

(15)
222 2 qamrr ++−=∆

θρ 2222 cosar +=        

        

In  this  metric  a supposedly  accounts  for

angular momentum, q supposedly stands for

electric charge, and m is to be the mass that

carries  the  charge and  angular  momentum.

Note that both c and G are again set to unity

and so both disappear from the metric, just

as  they  do  in  Hilbert’s  solution  (1).  Once

again,  the intrinsic  geometry of  the surface

embedded  in  the  metric  is  independent  of

the  embedding  space.  The  infinitely  dense

singularity of the Kerr-Newman metric for a

black hole is the circumference of a circle!

Furthermore, Mr. ‘t Hooft’s [1] claim that the

correct identity of r in (2) is “a bad definition

indeed  for  a  radial  coordinate”  is  quite

nonsensical since the correct identification of

r is  not  a  ‘definition’  by  the  choice  of

astrophysical scientists or Mr. ‘t Hooft, and is

not a ‘radial coordinate’ or ‘the radius’ (terms

which  Mr.  ‘t  Hooft  uses  equivalently).

Contrary to Mr. ‘t Hooft’s claims, there is no

choice  in  the  matter;  it  is  fixed  by  the

geometry of the metric itself. 

Note that Mr. ‘t Hooft [1, 6, 7] appeals to the

Kruskal-Szekeres  ‘coordinates’  and  the

Eddington-Finkelstein ‘coordinates’, as if they

change the foregoing geometrical facts. They

don’t!  In  both  these  sets  of  ‘coordinates’  r

maintains its identity as in (2). This is easily

determined  by  inspection.  Consider  the  so-

called ‘Kruskal-Szekeres extension’,

( ) 22222

3
2 32

Ω−−=
−

drdudve
r

m
ds m

r

(16)

( )2222 sin ϕθθ ddd +=Ω

 

0 ≤ r

The surface embedded in (16) is exactly the

same  as  in  (2).  Consider  the  ‘Eddington-

Finkelstein extension’, 

2222 2
2

1 Ω−−







−= drdvdrdv

r

m
ds

(17)

( )2222 sin ϕθθ ddd +=Ω

0 ≤ r

The  surface  embedded  in  (17)  is  again

precisely the same as in (2). 

Since  the  surface  in  both  (16)  and  (17)  is

exactly that in (2),  r in (16) and (17) has the

very same identity as in (2).  Mr. ‘t Hooft’s [1]

analogy of a mapping of  the surface of  the
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Earth  to  a  flat  surface,  in  various  ways,  is

misleading  because  such  mappings  change

the  spherical  surface  of  Earth  into  the  flat

plane,  which,  ipso  facto,  is  not  a  spherical

surface.  The Gaussian curvature of the plane

is zero; that of a spherical surface is not zero.

Consider now the spatial section of the Kerr-

Newman metric, which is obtained by setting

t = constant in the metric (15),

++
∆

= 222
2

2 θρ
ρ

ddrds

                
( ) 22

2

22222

sin
sin

ϕθ
ρ

θ
d

aar ∆−+
+  

                  
222 2 qamrr ++−=∆

 θρ 2222 cosar +=                                      
(18)

Since expression (18) does not have the form

of  expression  (7),  it  is  not  spherically

symmetric. This is reaffirmed by the Gaussian

curvature of the surface in the spatial section

of  (15),  the  latter  obtained  from  (18)  by

setting r = const. ≠ 0,

( ) 22

2

22222
222 sin

sin
ϕθ

ρ

θ
θρ d

aar
dds

∆−+
+=

(19)
222 2 qamrr ++−=∆

θρ 2222 cosar +=

Note that if  a = 0 expression (19) reduces to

expression  (9)  and  (15)  reduces  to  the

Reissner-Nordström  solution,  which  is

spherically symmetric. If both a = 0 and q = 0

then  expression  (15)  reduces  to  Hilbert’s

solution, in the form of expression (1).

Expression  (19)  has  the  form  of  expression

(10)  and  is  therefore  a  particular  First

Fundamental  Quadratic  Form  for  a  surface,

from  which  the  Gaussian  curvature  can  be

calculated (see Appendix A). Once again the

Gaussian  curvature  of  (19)  definitely

identifies the quantity  r  in the Kerr-Newman

metric (15), which does not change by (19)

being embedded in (15), and so  r is neither

the radius  nor  even a  distance in  the Kerr-

Newman metric.  The  Gaussian  curvature  of

the  surface  (19)  is  not  a  constant  positive

quantity  (see  Appendix  A)  and  so,  by

Definition  2  it  is  not  a  spherical  surface.

Therefore, despite Mr. ‘t Hooft’s assertions, r

in  the  Kerr-Newman  metric  is  neither  the

radius nor even a distance therein and so it is

not a “radial coordinate” (whatever he really

means  by  this  vague  term)  because  it  is

strictly identified in relation to the Gaussian

curvature of the surface in the spatial section

thereof,  entirely  independent  of  any

embedding space.  

What  then  is  the  actual  radius  in  Hilbert’s

metric  (2)?  Recall  that  Mr.  ‘t  Hooft  [1]  also

admitted that my identification of the radius

in Hilbert’s  metric is  actually  correct.  Let  Rp

denote the radius.  Consider Hilbert’s metric

in the following form,

222

1

22 11 Ω−







−−








−=

−

drdr
r

dt
r

ds
αα

0 ≤ r                          (20)

( )2222 sin ϕθθ ddd +=Ω

wherein  α is merely a positive real constant.

Then the radius is given by,

∫
−

=

r

dr
R p

α
1

And so,

     ( ) 








 −+
+−=

α

α
αα

rr
rrR p ln    (21)
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If  α  is  assigned  the  value  α =  2Gm/c2 by

means  of  Newton’s  equation  (4),  then

Hilbert’s  metric  (2)  results  in  (20),  but  not

Hilbert’s solution, because according to (21)

when the radius Rp = 0, r = α. Values 0 ≤ r < α

are impossible because they would make the

radius  Rp   take  imaginary  (i.e.  complex)

values. 

VII. Metric ‘extensions’

Since black hole universes have been proven

fallacious  in  the  previous  sections  herein,

discussion of the so-called ‘metric extensions’

for  them  is  merely  a  formal  mathematical

exercise,  which  I  will  limit  here  to  the

consideration  of  Schwarzschild  spacetime

because similar  results  obtain  for the other

equally phantasmagorial types of black hole

universes (see Appendices A, B and C).

Mr. ‘t  Hooft [1] complains that I  insist  on a

metric  signature  (+,  −,  −,  −)  for  Hilbert’s

metric (2). He says,

“‘The horizon is a real singularity because at

that spot the metric signature switches from

(+, −,  −,  −) to (−, +,  −,  −)’, C continues. This is

wrong. The switch takes place when the usual

Schwarzschild coordinates are used, but does

not  imply  any  singularity.  The  switch

disappears in coordinates that are regular at

the  horizon,  such  as  the  Kruskal-Szekeres

coordinates.  That’s  why there is no physical

singularity at the horizon.” [1]

First consider the signature switch of Hilbert’s

metric.  The  components  of  Hilbert’s  metric

tensor are,

1

211200

2
1

2
1

−









−−=








−=

rc

Gm
g

rc

Gm
g

θ22

33

2

22 sinrgrg −=−=       (22)

When r > 2Gm/c2, g00 > 0, g11 < 0, g22 < 0, and

g33 < 0; consequently the signature is (+, −, −,

−). If 0 < r < 2Gm/c2, then g00 < 0, g11 > 0, g22 <

0,  and  g33 <  0;  consequently  the  signature

changes  to  (−,  +,  −,  −).  Such  a  signature

change is inconsistent with that of Minkowski

spacetime  in  which  Special  Relativity  is

couched,  because Minkowski  spacetime has

the fixed Lorentz signature of (+, −, −, −). It is

also  inconsistent  with  the  metric  ground-

form  (7)  for  a  3-dimensional  spherically

symmetric  space  because  then  the  spatial

section  is  no  longer  positive  definite.  Also,

Hilbert’s  metric  is  actually  undefined at  r =

2Gm/c2 and  at  the  ‘origin’  r =  0,  owing  to

divisions  by  zero  in  both  cases.  The  Dirac

Delta  Function  does  not  in  fact  circumvent

this. 

Furthermore,  according to  the astrophysical

scientists, when 0 ≤ r < 2Gm/c2, the quantities

t and  r exchange their  roles, i.e.  t  becomes

spacelike and r becomes timelike. Since time

marches  forwards  they  then  maintain  that

anything that enters a black hole must collide

and merge with its singularity because time

drives  it  there  inexorably;  a  time  gradient

becomes  the  driver.  Some  astrophysical

scientists begin with the signature (−, +, +, +)

for Hilbert’s metric as opposed to the more

usual (+,  −, −, −),  but all  the alleged effects

are  still  the  same.  According  to  Misner,

Thorne  and  Wheeler  [17],  who  use  the

spacetime signature (−,  +, +,  +) for  Hilbert’s

solution (1),

“The most obvious pathology at r = 2M is the

reversal  there  of  the  roles  of  t  and  r  as

timelike  and  spacelike  coordinates.  In  the

region r > 2M, the t direction, ∂/∂t, is timelike

(gtt < 0) and the r direction, ∂/∂r, is spacelike

(grr >  0);  but  in the region r  < 2M,  ∂/∂t,  is

spacelike (gtt > 0) and ∂/∂r, is timelike (grr <

0). 

“What  does  it  mean  for  r  to  ‘change  in

character  from  a  spacelike  coordinate  to  a
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timelike one’? The explorer in his jet-powered

spaceship prior  to arrival  at  r  =  2M always

has the option to turn on his jets and change

his  motion  from  decreasing  r  (infall)  to

increasing  r  (escape).  Quite  the  contrary  in

the  situation  when  he  has  once  allowed

himself to fall inside r = 2M. Then the further

decrease of r represents the passage of time.

No command that the traveler can give to his

jet  engine will  turn back time. That unseen

power  of  the  world  which  drags  everyone

forward willy-nilly  from age twenty to forty

and from forty to eighty also drags the rocket

in from time coordinate r = 2M to the later

time coordinate r = 0. No human act of will,

no engine, no rocket, no force (see exercise

31.3) can make time stand still. As surely as

cells  die,  as  surely  as  the  traveler’s  watch

ticks  away  ‘the  unforgiving  minutes’,  with

equal  certainty,  and  with  never  one  halt

along the way, r drops from 2M to 0.

According to Chandrasekhar [37],

“There  is  no  alternative  to  the  matter

collapsing  to  an  infinite  density  at  a

singularity  once  a  point  of  no-return  is

passed.  The  reason  is  that  once  the  event

horizon  is  passed,  all  time-like  trajectories

must  necessarily  get  to  the  singularity:  ‘all

the  King’s  horses  and  all  the  King’s  men’

cannot prevent it.”

According to Carroll [67],

“This is worth stressing; not only can you not

escape back to region I, you cannot even stop

yourself  from  moving  in  the  direction  of

decreasing r, since this is simply the timelike

direction. (This could have been seen in our

original  coordinate  system;  for  r  <  2GM,  t

becomes spacelike and r  becomes timelike.)

Thus  you can no more stop moving toward

the  singularity  than  you  can  stop  getting

older.”

According  to  Vladmimirov,  Mitskiévich  and

Horský [68], 

“For  r  <  2GM/c2,  however,  the  component

goo becomes negative,  and grr,  positive,  so

that  in  this  domain,  the  role  of  time-like

coordinate  is  played  by  r,  whereas  that  of

space-like  coordinate  by  t.  Thus  in  this

domain,  the  gravitational  field  depends

significantly on time (r) and does not depend

on the coordinate t.”

In other words, for 0 ≤  r  < 2Gm/c2, Hilbert’s

static solution for a static problem becomes a

non-static solution for a static problem (recall

that  Rμν = 0 is Einstein’s [24, 32, 33] fanciful

field equations for his static gravitational field

in the absence of matter). To amplify this, set

t = r* and r = t*, and so for 0 ≤ r < 2m, metric

(1) becomes [69],
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






−−




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
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−

dtdt
t

m
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t

m
ds

0 ≤ t* < 2m                     (23)

( )2222 sin ϕθθ ddd +=Ω

which has the signature (−, +, −, −), which no

longer has Lorentz character. It now becomes

quite  clear  that  this  is  a  time-dependent

metric since all the components of the metric

tensor are functions of the timelike t*, and so

this  metric  bears  no  relationship  to  the

original  time-independent  (i.e.  static)

problem to be solved [69]. 

Since it is claimed for Hilbert’s metric (1) that

0 ≤  r,  this  r passes right  through the event

horizon at the ‘Schwarzschild radius’  r = 2m

on  its  way  down  to  r =  0.  For  instance,

according  to  Misner,  Thorne  and  Wheeler

[17], 

“At r = 2M, where r and t exchange roles as

space  and  time  coordinates,  gtt vanishes

while grr is infinite.” 
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In mathematical form this says,

∞==
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1

1
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2
1
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g

m

m
g rrtt

and according to Dirac [41], Hilbert’s metric

(1), in accordance with expressions (22), 

“becomes singular at  r  = 2m, because then

g00 = 0 and g11 = -∞.”

This  is  however  incorrect  since  division  by

zero  is  undefined.  Despite  this  elementary

mathematical fact the astrophysical scientists

permit division by zero by a smooth passage

of r down through r = 2m in Hilbert’s solution

and claim that r and t exchange roles [17, 37,

67, 68] for 0 ≤ r < 2m according to expression

(23). 

Recall  that  in  Hilbert’s  solution  (2)  Mr.  ‘t

Hooft [1, 6, 7] and the astrophysical scientists

claim that the ‘Schwarzschild radius’  r =  rs =

2Gm/c2 is  a  removable  ‘coordinate

singularity’,  and  that  r =  0  is  the  ‘true’  or

‘physical singularity’ or ‘curvature singularity’.

Mr.  ‘t  Hooft  [1,  6,  7]  employs  the  usual

methods of the cosmologists by invoking the

so-called  ‘Kruskal-Szekeres  coordinates’  and

‘Eddington-Finkelstein  coordinates’.   It  is  by

means of these ‘coordinates’ that Mr. ‘t Hooft

[1]  asserts  that  the  switch  in  signature

manifest in  expression (23) is circumvented,

despite (23) still  being retained to argue for

what happens after passing down through r =

2Gm/c2 due to an exchange of the rôles of  t

and r. The very notion that such ‘coordinates’

are necessary is based on the false idea that r

in Hilbert’s metric (2) is the radius (distance)

therein and hence must be able to take the

values 0 ≤  r. However, by means of equation

(21) it is clear that the radius does in fact take

the values 0 ≤ Rp. It has already been proven

in Section VI above that r in all the black hole

solutions  Mr.  ‘t  Hooft  [1,  6,  7]  utilises  is

neither the radius nor a distance and that this

is also the case for the Kruskal-Szekeres and

Eddington-Finkelstein  ‘coordinates’.

Consequently, any a priori assertion as to the

range  of  r in  (2)  has  no  valid  basis  [44].

Expression (21) determines, from the metric

itself,  the range on  r in (2). To examine this

issue  further,  consider  Schwarzschild’s  [43]

actual solution,

222
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
−−








−=

−

dRdR
R

dt
R

ds
αα

( )2222 sin ϕθθ ddd +=Ω

( ) 3
1

33 α+= rR

0 ≤ r                              (24)

Here  α is  a  positive  but  otherwise

indeterminable  real-valued  constant,  and

222
zyxr ++=  where x, y, z are the usual

Cartesian  coordinates  for  3-dimensional

Euclidean space, the metric for which is,

2222
dzdydxds ++=               (25)

Converting  (25)  into  spherical  coordinates

yields,

( )222222 sin ϕθθ ddrdrds ++=

(26)

0 ≤ r

Note that when r = 0, Schwarzschild’s metric

is  undefined,  and  the  radius  Rp is  zero,

consistent with equation (21).  To see this just

substitute  r in  (21)  with  R(r)  as  defined  in

equations (24). 

Metric  (26)  is  the  spatial  section  of

Minkowski’s spacetime metric, which is given

by,

( )22222222 sin ϕθθ ddrdrdtcds +−−=     

                                                                      

0 ≤ r                           (27)
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Note that  for every value of  r in  (27) there

corresponds a unique value of the radius  Rp

for (24). The quantity r in (26) is not only the

inverse square root of the Gaussian curvature

of  the  spherically  symmetric  surface

embedded therein, but is also the radius for

the spherically symmetric 3-space (26), which

is easily affirmed by a trivial calculation,

rdrR
r

p == ∫0                  (28)

The spatial  section of  Schwarzschild’s actual

solution is given by,

( )22222

1

2 sin1 ϕθθ
α

ddRdR
R

ds ++
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
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
−=

−

( ) 3
1

33 α+= rR                  (29)

0 ≤ r

Note that if α = 0, Schwarzschild’s metric (24)

reduces to the flat  spacetime of  Minkowski

(27)  and  the  spatial  section  (29)  of

Schwarzschild’s  metric  reduces  to  that  for

ordinary Euclidean 3-space (26). 

The metric of (29) is undefined when  r = 0,

owing to a division by zero; otherwise it has

the  form  of  expression  (7)  and  is  thus  a

positive-definite quadratic form. Metric (29)

can  never  be  indefinite,  i.e.  its  signature

cannot  change  from  (+,  +,  +)  to  (−,  +,  +),

because  (7)  is  always  a  positive-definite

quadratic form.  Similarly, metric (26) has the

form of (7) and is a positive-definite quadratic

form. It too can’t change signature from (+, +,

+) to (−, +, +). To be consistent with (7), (26)

and (29),  the spatial  section (8) of  Hilbert’s

metric  must  also  be  a  positive-definite

quadratic  form.  This  means  that  Hilbert’s

metric (2) can’t change its signature from (+,

−,  −,  −)  to  (−,  +,  −,  −),  as  expression  (21)

reaffirms. But it is by means of a change of

signature of (2), producing (23), on the false

assumption that r in (2) is the radius, that the

Kruskal-Szekeres  and  Eddington-Finkelstein

‘coordinates’ are based, and employed by Mr.

‘t Hooft and the cosmologists. 

To  amplify  that  there  can  be  no change  of

signature  in  (2),  consider  Brillouin’s  [69]

solution,
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0 ≤ r                              (30)

Here m is a positive constant and c = 1.

Now consider Droste’s [70] solution (again c =

1),
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Solutions (24), (30), and (31) are equivalent.

However, Hilbert’s solution is not equivalent

to them on account of 0 ≤ r in (2). 

I  have  shown  elsewhere  [71  -  79]  that  all

solutions  equivalent  to  Schwarzschild’s  are

generated by (using c = 1),
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r=√(x�x0)
2+( y� y0)

2+(z�z0)
2

+√ x0

2+ y0

2+z0

2=r '+r0
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where  r0 is an entirely arbitrary real number

and  n an  entirely  arbitrary  positive  real

number. For instance, setting r0 = 0, n = 1, r ≥

r0, Brillouin’s solution (30) is obtained. Setting

r0 =  0,  n =  3,  r ≥  r0,  Schwarzschild’s  actual

solution (24) is obtained. Setting r0 = α, n = 1,

r ≥  r0,  Droste’s  solution  (31)  is  obtained.

Expressions  (32)  generate  an  infinite  set  of

equivalent  solutions.  Expressions  (32)  are

easily rendered in isotropic form as well (see

[79] and Appendix D). The signature is always

(+, −, −, −) in accordance with (27), except at r

= r0 where the metric is undefined. 

Expressions  (32)  are  not,  from  a  purely

mathematical  perspective,  restricted  to

values of r ≥ r0. The only value for which the

metric (32) is undefined is r = r0, and so there

is only one singularity in (32).  However,  the

radius  for  (32)  is  defined  for  all  r and  the

radius  Rp(r0)  =  0  for  all  arbitrary  r0 for  all

arbitrary n. 

Hilbert’s  solution  has  no  representation  by

(32)  because  it  is  not  equivalent  to  any

solution  generated  by  it.  Only  Hilbert’s

metrical form, which is the same as Droste’s,

obtains  from  (32).  Values  Rc <  α are  not

possible. Rc can only take the value of 0 if α =

0, in which case only Minkowski spacetime is

produced [71 - 79].  

Since  (32)  generates  all  the  possible

equivalent solutions in Schwarzschild form, if

any  one  of  them  is  extendible  then  all  of

them must be extendible. In other words, if

any  one  of  (32)  can’t  be  ‘extended’  to

produce  a  black  hole  then  none  can  be

extended  to  produce  a  black  hole.  Thus,  if

Hilbert’s solution is valid it must require that

in  Schwarzschild’s  actual  solution  –α ≤  r.

Similarly  this  must  require  that  –α ≤  r in

Brillouin’s  solution,  and  0  ≤  r in  Droste’s

solution.  It  is  evident  from (32)  that  this  is

impossible.  To amplify,  consider the specific

case r0 = 0, n = 2, for which (32) yields,
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According  to  Hilbert’s  solution  this  would

require the range –α2 ≤  r2 in (33).  However,

although  r can  now  take  any  real  value

whatsoever,  r2 cannot  take  values  <  0.  The

mathematical theory of black holes requires

that the square of a real number must take

on negative values.  It  therefore violates the

rules  of  pure  mathematics.  Moreover,  the

term |r – r0| in (32) can be written,

∣r�r0∣=∣√(x�x0)
2+( y�y0)

2+(z� z0)
2∣

which  is  the  Theorem  of  Pythagoras.  The

mathematical theory of black holes requires

that the hypotenuse must take on a negative

length,  which  is  a  violation  of  fundamental

geometry.

Thus, (33) cannot be ‘extended’ by any means

to  produce  a  black  hole.  Since  (33)  is

equivalent to (24), (30), and (31), none of the

latter  can  be  made  equivalent  to  Hilbert’s

solution  (2)  either.  Consequently,  the

supposed  extension  of  Droste's  solution  to

Hilbert’s  values 0 ≤  r < 2m by means of the

Kruskal-Szekeres ‘coordinates, the Eddington-

Finkelstein  ‘coordinates’,  the  Lemaître

‘coordinates'  the  Painleve-Gullstrand

‘coordinates’,  and  also  the  isotropic

coordinates  are  all  fallacious.  Thus,  in

Hilbert’s metric 0 ≤  r < 2m is not valid [44 -

46, 71 - 79]. Mr. ‘t Hooft’s [1, 6, 7] claims for

the  Kruskal-Szekeres  and  Eddington-

Finkelstein  ‘coordinates’  are  both  standard,

and patently false. 

Putting Rc from (32) into the Kruskal-Szekeres

form yields,
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This does not extend Hilbert’s metric to 0 ≤ r

since the minimum value of Rc is Rc(r0) = α for

all  r0 for all  n.  Metric (34) is not singular at

Rc(r0) but it is degenerate there since then u2

= v2.

Putting  Rc from  (32)  into  the  Eddington-

Finkelstein form yields,
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This too does not extend Hilbert’s metric to 0

≤ r since the minimum value of Rc is Rc(r0) = α

for all  r0 for all  n. Metric (35) is not singular

anywhere, but it is degenerate at Rc(r0). 

The Lemaître ‘extension’ has the form,
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Putting  Rc from (32) into the Lemaître form

yields,
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Once  again  this  does  not  extend  Hilbert’s

metric to 0 ≤ r because the minimum value of

Rc is Rc(r0) = α for all  r0 for all  n, at which the

minimum value of 3(ρ – τ)/2 is α.  Once again,

metric  (37)  is  not  singular  at  Rc(r0),  or

anywhere for that matter.

The  Painlevé-Gullstrand  'extension'  has  the

form,

ds
2=(1�α

r )d τ2�2√α
r

d τdr�dr
2�r

2
d Ω2

( )2222 sin ϕθθ ddd +=Ω         (37b)

Putting Rc from (32) into (37b) yields,

ds
2=(1� α

Rc)d τ2�2 √ α
Rc

d τdR c�dRc

2
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2
d Ω2
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oc rrR
1
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which also does not extend Hilbert’s metric

to 0 ≤  r because the minimum value of  Rc is

Rc(r0) = α for all r0 for all n.

Mr.  ‘t  Hooft  and the astrophysical  scientists

claim  that  the  Riemann  tensor  scalar

curvature  invariant  (also  called  the

Kretschmann scalar)  must  be unbounded at

their ‘physical’ or ‘curvature’ singularity. They

then claim that this justifies their ‘extension’

of Hilbert’s solution to 0 ≤  r  < 2m. However,

there  is  nothing  in  General  Relativity  or  in
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pure  mathematics  that  requires  this

condition to be met. In fact, it is not required

at  all  because such curvature invariants are

fully determined by the metric, not by any a

priori assumed condition foisted upon it. 

The Kretschmann scalar  f is defined in terms

of  the  Riemann-Christoffel  curvature  tensor

of the first kind, as follows, f = RαβμνRαβμν.  

In  the  case  of  the  Schwarzschild  form  it  is

given by,
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where from (32),
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Since (32) and all its equivalent solutions are

inextendible the maximum value of  f occurs

at  r  =  r0,  irrespective of the value of  r0 and

irrespective of the value of  n. Now Rc(r0) =  α

and  so  the  maximum  value  of  the

Kretschmann scalar is,

( )
40

12

α
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This  is  a  finite  curvature  invariant  for  the

Schwarzschild form. 

Similarly, when  r =  r0  the Gaussian curvature

K  of  the  spherically  symmetric  geodesic

surface  in  the  spatial  section  of  the

Schwarzschild form takes the value,

2

1

α
=K

which is also a finite curvature invariant, and

is  independent  of  the  values  of  r0 and  n.

Owing to (32) the curvature invariants f and K

are always finite.

For the Schwarzschild form both  f and  K are

curvatures  that  depend only  upon position.

There  is  another  curvature  that  is  of

importance,  which  depends  upon  both

position and a pair of directions determined

by two vectors; it is called the Riemannian (or

sectional) curvature Ks, and is given by,
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where  U =  
iU  and  V  =  

iV  are  two

linearly independent contravariant vectors of

appropriate  dimension.  The  Riemannian

curvature of a metric space is a generalisation

of  the  Gaussian  curvature  for  a  surface  to

spaces  of  dimension  higher  than  2.  It  is

therefore not surprising that the Riemannian

curvature  reduces  to  Gaussian  curvature  in

the case  of  dimension 2 (see equation (11)

above),  which  is  entirely  independent  of

direction vectors – it is dependent only upon

position.  

In  the case of  a diagonal  metric tensor the

expression  for  the  Riemannian  curvature  is

simplified  somewhat.  The  metric  tensor  of

the spatial section of the Schwarzschild form

is diagonal, and the Riemannian curvature for

it is found to be given by (see Appendix B),
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where in turn  Rc is given by expression (32)

(and expression (A17) in Appendix A) and the

Wijkl by the determinant product,
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The most important result of all  this is that

when r = r0 in (32), the Riemannian curvature

of  the  spatial  section  of  the  Schwarzschild

form is,

22

1

α
−=sK

which is entirely independent of any direction

vectors U and V. This is another finite valued

curvature  invariant  for  the  Schwarzschild

form,  and  reaffirms  that  the  Schwarzschild

form cannot be extended.  

Thus, there are no curvature singularities, no

‘infinite  curvatures’,  in  the  Schwarzschild

form,  contrary  to  the  standard  claims.  All

curvature  invariants  take  finite  values

everywhere in the Schwarzschild form. 

Similar  results  obtain  for  the  other  alleged

black  hole  forms.  For  instance,  the

Kretschmann  scalar  for  the  Reissner-

Nordström form is [72],
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In  this  case  when  r =  r0 the  Kretschmann

scalar takes the value [72, 80],
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which is finite irrespective of the values of  r0

and n. 

At  r =  r0 the  Gaussian  curvature  K  for  the

spherically symmetric geodesic surface in the

spatial  section  of  the  Reissner-Nordström

form has the finite value (see Appendix A),
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Note  that  if  q =  0  all  these  curvature

invariants  reduce  to  that  for  the

Schwarzschild form.

The  Riemannian  curvature  for  the  spatial

section  of  the  Reissner-Nordström  form  is

given by (see appendix B),
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where again, in turn, Rc is given by expression

(A17)  and  the  Wijkl by  the  determinant

product,
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Once  again,  when  r =  r0 in  (A17),  the

Riemannian curvature  of  the spatial  section

of the Reissner-Nordström form is,
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or explicitly, 
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since in this case  Rc(r0) =  ξ, where, according

to expression (A17),
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Note that if  q = 0, the Riemannian curvature

reduces to that for the Schwarzschild form.

Thus, there are no curvature singularities in

the Reissner-Nordström form either [72, 73,

80],  once  again  contrary  to  the  standard

claims. 

Similar curvature invariants can be deduced

for  the  Kerr  and  Kerr-Newman  forms  by

means of equations (A17) (see Appendices A

and B).

That none of the ‘black hole’ metrics can be

extended  to  produce  a  black  hole  is

reaffirmed  yet  again  by  considering  the

acceleration of a point in the Schwarzschild

form.  Doughty  [81]  has  shown  that  the

acceleration  β of  a  point  along  a  radial

geodesic  in  the  Schwarzschild  manifold  is

given by the following form (see Appendix C),
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From expressions (32), the radial acceleration

is given explicitly,
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Then r → r0 ⇒β →∞, for all r0 for all n.

In the case of  the Reissner-Nordström form

(see Appendix C) the acceleration of a point

along a radial geodesic is given by,
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which  naturally  reduces  to  that  for  the

Schwarzschild form when q = 0; once again, r

→ r0 ⇒  β →∞, for all r0 for all n. 

Consequently, 

∞→⇒→ β0rr

constitutes an invariant and hence reaffirms

that  the  Schwarzschild  and  the  Reissner-

Nordström forms cannot be extended.
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Nevertheless,  unbeknown   to  the

cosmologists,  and  Mr.  ‘t  Hooft,  the

acceleration approaches  ∞ where, according

to them, there is no matter! [44]. The mass of

their black holes is located, they say, at their

‘curvature’ singularity, at their ‘origin’  r = 0,

where their spacetime is ‘infinitely curved’.

VIII. Black hole universes contain no mass

Mr.  ‘t  Hooft  [1]  mocks  me because I  argue

that  black holes  don’t  exist  on the grounds

that no mass is present in the relevant field

equations in the first place. The first section

that  he  devotes  to  me  on  his  webpage  is

titled,  "Black  holes  do  not  exist,  they  are

solutions of the equation for the Ricci tensor

Rμν = 0, so they cannot carry any mass. And

what is usually called a "horizon" is actually a

physical singularity." [1]

Another section of his webpage, dedicated to

me, is titled, "You can’t have massive objects

near  a  black  hole;  and  you  can’t  have

multiple  black  holes  orbiting  one  another"

[1].

As  I  have  already  shown  above,  multiple

black  holes  are  inconsistent  with  the  very

definition of a black hole, and can’t exist in

any of the alleged big bang universes either.

Nonetheless  Mr.  ‘t  Hooft  superposes  his

many  unspecified  black  holes  upon  some

unspecified big bang universe. Also recall that

the  very  same  black  hole  equations  also

describe  a  star  of  the  corresponding  type.

Since  the  alleged  black  hole  is  a  one-mass

universe  according  to  its  definition,  it  is

physically  meaningless.  Stars  exist,  but  they

are not one-mass universes, so they too can’t

be modelled by black hole equations. But Mr.

‘t  Hooft  vilifies  me  for  arguing  that  the

Einstein  field  equations  Rμν =  0  contain  no

matter  because  in  this  case  the  energy-

momentum tensor  is  zero  (i.e.  Tμν =  0).  He

goes  on  and  on  about  test  particles,  and

complains that, 

“Mr.  C  attacks  some  generally  accepted

notions about black holes. It appears that the

introduction of  test  particles  is  inadmissible

to  him.  A  test  particle,  freely  falling  in  a

gravitational field, feels no change in energy

and  momentum,  and  mathematically,  we

describe this situation in terms of comoving

coordinate  frames.  This  does  not  fit  in  C’s

analysis,  so,  test  particles  are  forbidden.  A

test particle is an object with almost no mass

and almost  no  size,  such as  the  space ship

Cassini orbiting Saturn.” [1]

Mr. ‘t Hooft [1] also complains about me,

“He has  a  problem with  the  notion  of  test

particles,  which  are  objects  whose  mass

(and/or charge) is negligible for all practical

purposes, so that they can be used as probes

to  investigate  the  properties  of  field

configurations.  Again,  this  is  a  question  of

making  valid  approximations  in  physics.  A

space  ship  such  as  the  Cassini  probe  near

Saturn,  has  mass,  but  it  is  far  too  light  to

have  any  effect  on  the  planets  and  moons

that it observes, so, its orbit is a geodesic as

long  as  its  engines  are  switched  off.  No

physicist is surprised by these facts, but for C,

approximations are inexcusable. For him, the

Cassini  probe  cannot  exist.  Astrophysicists

studying black holes routinely make the same

assumptions.  A  valid  question  is:  could  the

tiny  effects  of  probes  such  as  Cassini  have

explosive  consequences  for  black  holes  or

other  solutions  to  Einstein’s  equations?  You

don’t have to be a superb physicist - but you

must  have  better  intuitions  than  C  -  to

conclude that such things do not happen.”

Although  Mr.  ‘t  Hooft  harps  on  his  test

particles, they are located in some big bang

universe  that  also  allegedly  contains  many

large  masses,  such  as  stars,  galaxies,  and

untold  numbers  of  black holes,  despite  the

fact that the equations (metrics) for stars and

black holes,  being one and the same, don’t

contain  any  other  masses  whatsoever  by
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their very definitions, and neither do any of

the big bang universes.  

It is not difficult to prove mathematically that

Rμν =  0  actually  contains  no  matter

whatsoever  and  is  therefore  physically

meaningless,  and  hence  the  black  hole  a

figment  of  irrational  imagination.  First,

according  to  Einstein  [24,  32],  his

gravitational field equations are,

Rμν - ½Rgμν = -κTμν                  (38)

If in (38) the Einstein tensor Gμν =  Rμν - ½Rgμν

is  used,  these  equations  are  compactly

written as,

Gμν = -κTμν                        (39)

The  Einstein  tensor  describes  spacetime

geometry  (i.e.  Einstein’s  gravitational  field)

and the material sources of his gravitational

field are denoted by the energy-momentum

tensor  Tμν.  Matter is  the cause of  Einstein’s

gravitational field as it induces by its presence

curvature  in  his  spacetime.  Thus  Einstein’s

field equations couple his  gravitational  field

to  its  material  sources.  In  words  Einstein’s

field equations are just,

spacetime geometry = -κ(material sources)

Recall  that  according  to  Einstein  [24],

everything  except  his  gravitational  field  is

matter.

Einstein [24, 32] says that the field equations

for his static gravitational field in the absence

of matter are,

Rμν = 0                            (40)

In words these equations are simply,

spacetime geometry = 0

Although equations (40) are not coupled to

any  material  sources,  since  all  matter  is

removed by setting Tμν = 0 (in which case R =

0  in  (38)),  Einstein  nonetheless  claims  that

equations  (40)  contain  a  massive  source

because  they  allegedly  describe  the

gravitational field outside a body such as the

Sun.  Thus Einstein on the one hand removes

all material sources by setting Tμν = 0 and on

the  other  hand  immediately  reinstates  the

presence  of  a  massive  source  with  words

(linguistic legerdemain) by alluding to a body

outside of which equations (40) apply. After

all, his gravitational field must be caused by

matter:  his  gravitational  field  does  not

conjure  itself  up  from  nothing,  and

everything  but  the  gravitational  field  is

matter.  Indeed,  Einstein  [31]  refers  to  the

‘Schwarzschild solution’ for equations (40) as

follows,
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M  denotes  the  sun’s  mass  centrally

symmetrically placed about the origin of co-

ordinates;  the  solution  (109a)  is  valid  only

outside this mass, where all the Tμν vanish.”

According  to  Einstein  his  equation  (109a)

contains a massive source, at “the origin”, yet

also according to Einstein his equations (40),

from  which  (109a)  is  obtained,  contain  no

matter.  Thus  Einstein’s  argument  is  a

contradiction  and  therefore  false.  This

contradiction  is  readily  amplified  by

comparison to the ‘field equations’,

Rμν = λgμν                         (41)
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In words these equations are,

spacetime geometry = λ(metric tensor)

Here  λ is  the  so-called  ‘cosmological

constant’,  which  is  said  to  be  tiny  in

magnitude. The solution for equations (41) is

de  Sitter’s  empty  universe.  It’s  empty

because it contains no matter:

“This is not a model of relativistic cosmology

because it is devoid of matter.” [38] 

“the de Sitter line element corresponds to a

model  which  must  strictly  be  taken  as

completely empty.” [82]

“the  solution  for  an  entirely  empty  world.”

[83] 

“there is no matter at all!” [84] 

Now  note  that  in  both  equations  (40)  and

(41)  the  energy-momentum  tensor  is  zero

(Tμν = 0). Thus, according to Einstein and his

followers  when  the  energy-momentum

tensor  is  zero  material  sources  are  both

present and absent. However, matter cannot

be both present and absent by the very same

mathematical constraint. 

Since de Sitter’s universe is devoid of matter

by  virtue  of  Tμν =  0,  the  ‘Schwarzschild

solution’  must  also  be devoid  of  matter  by

the very same condition. Thus, equations (40)

contain no matter.  But  it  is  upon equations

(40) that all black holes rely. Thus, once again,

no  black  hole  solution  has  any  physical

meaning and so black holes are not predicted

by General Relativity at all – they don’t have

any basis in any theory or observation, since

Newton’s theory does not predict black holes

either,  contrary  to  the  claims  of  the

astrophysical scientists [85]; and nobody has

ever  found  a  black  hole  [63].  Nonetheless,

according to Hawking and Ellis [42],

“Laplace  essentially  predicted  the  black

hole…”

According  to  the  Cambridge  Illustrated

History of Astronomy [86], 

“Eighteenth-century  speculators  had

discussed the characteristics of stars so dense

that  light  would be  prevented from leaving

them  by  the  strength  of  their  gravitational

attraction;  and  according  to  Einstein’s

General  Relativity,  such  bizarre  objects

(today’s  ’black  holes’)  were  theoretically

possible as end-products of stellar evolution,

provided the stars were massive enough for

their  inward  gravitational  attraction  to

overwhelm the repulsive forces at work.”

In  part  C  of  Box  24.1  in  their  book

‘Gravitation’,  Misner,  Thorne  and  Wheeler

[17]  include  the  Michell-Laplace  dark  body

under  the  heading  of  ‘BLACK  HOLES’.  In

section 24.2 they include a copy of the cover

of Laplace’s paper ‘Exposition du Syetème du

Monde’, and a page from his paper, in French,

beside two papers, one by Oppenheimer and

Volkov,  the  other  by  Oppenheimer  and

Snyder,  on  neutron  stars  and  gravitational

contraction  respectively,  and  a  paper  by

Baade and Zwicky on neutron stars. All these

papers are denoted as ‘Figure 24.1’, with this

caption:

“Two  important  arrivals  on  the  scene:  the

neutron star (1933) and the black hole (1795,

1939).  No  proper  account  of  either  can

forego general relativity.”

According to Chandrasekhar [37], 

“That  such  a  contingency  can  arise  was

surmised already by Laplace in 1798. Laplace

argued as  follows.  For  a  particle  to  escape

from the surface of a spherical body of mass

M and radius R, it must be projected with a

velocity  v  such  that ½v2 >  GM/R;  and  it

cannot escape if v2 < 2GM/R. On the basis of
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this last  inequality, Laplace concluded that if

R <  2GM/c2 =Rs  (say)  where  c  denotes  the

velocity of light, then light will not be able to

escape from such a body and we will not be

able to see it! 

“By  a  curious  coincidence,  the  limit  Rs

discovered  by  Laplace  is  exactly  the  same

that  general  relativity  gives  for  the

occurrence of the trapped surface around a

spherical mass.”

But  it  is  not  “a  curious  coincidence”  that

General  Relativity  gives  the  same  Rs

“discovered  by  Laplace”  because  the

Newtonian expression for escape velocity (4)

is deliberately inserted post hoc into Hilbert’s

solution  (2)  by the proponents of  the black

hole  in  order  to  make  a  mass  appear  in

equations that contain no material source. 

The Michell-Laplace dark body is not a black

hole [87 - 90]. It possesses an escape velocity

at its surface, but the black hole has both an

escape  velocity  and  no  escape  velocity

simultaneously  at  its  ‘surface’  (i.e.  event

horizon);  masses  and  light  can  leave  the

Michell-Laplace  dark  body,  but  nothing  can

leave  the  black  hole;  it  does  not  require

irresistible  gravitational  collapse  to  form,

whereas  the  black  hole  does;  it  has  no

(infinitely  dense)  singularity,  but  the  black

hole does;  it  has no event  horizon,  but  the

black  hole  does;  it  has  ‘infinite  gravity’

nowhere,  but  the  black  hole  has  infinite

gravity  at  its  singularity;  there  is  always  a

class of observers that can see the Michell-

Laplace dark  body,  but  there  is  no  class  of

observers  that  can  see  the  black  hole;  the

Michell-Laplace dark body persists in a space

which  by  consistent  theory  contains  other

Michell-Laplace dark bodies and other matter

and  they  can  interact  with  themselves  and

other matter, but the spacetime of all types

of  black  hole  pertains  to  a  universe  that

contains only one mass (but actually contains

no mass by mathematical  construction) and

so cannot interact with any other masses; the

space of the Michell-Laplace  dark body is 3-

dimensional  and  Euclidean,  but  the  black

hole  is  in  a  4-dimensional  non-Euclidean

(pseudo-Riemannian) spacetime; the space of

the  Michell-Laplace  dark  body  is  not

asymptotically  anything  whereas  the

spacetime of the black hole is asymptotically

flat  or  asymptotically  curved;  the  Michell-

Laplace  dark  body  does  not  ‘curve’  a

spacetime,  but  the  black  hole  does.

Therefore,  the  Michell-Laplace  dark  body

does  not  possess  the  characteristics  of  the

black hole and so it is not a black hole.

Mr.  ‘t  Hooft’s  [1]  test  particle  in  the

spacetime of  Rμν = 0 has no meaning either

since  Rμν =  0  is  physically  meaningless.  Not

only  does  Rμν =  0 contain  no matter it  also

violates other physical  principles  of  General

Relativity.  According  to  Einstein  [32]  his

Principle  of  Equivalence  and  his  Special

Theory  of  Relativity  must  hold  in  his

gravitational field, 

“Let  now  K  be  an  inertial  system.  Masses

which are sufficiently far from each other and

from other bodies are then, with respect to K,

free  from  acceleration.  We  shall  also  refer

these masses to a system of co-ordinates K',

uniformly  accelerated  with  respect  to  K.

Relatively to K' all the masses have equal and

parallel accelerations; with respect to K' they

behave  just  as  if  a  gravitational  field  were

present  and  K'  were  unaccelerated.

Overlooking for the present  the question as

to  the  'cause'  of  such  a  gravitational  field,

which will occupy us later, there is nothing to

prevent our conceiving this gravitational field

as real, that is, the conception that K' is 'at

rest'  and a gravitational  field is  present  we

may consider as equivalent to the conception

that  only  K  is  an  'allowable'  system  of  co-

ordinates  and  no  gravitational  field  is

present.  The  assumption  of  the  complete

physical  equivalence  of  the  systems  of

coordinates, K and K', we call the 'principle of
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equivalence';  this  principle  is  evidently

intimately  connected  with  the  law  of  the

equality  between  the  inert  and  the

gravitational mass, and signifies an extension

of  the  principle  of  relativity  to  co-ordinate

systems  which  are  in  non-uniform  motion

relatively to each other. In fact, through this

conception  we  arrive  at  the  unity  of  the

nature of inertia and gravitation.” [32]

“Stated more exactly, there are finite regions,

where,  with  respect  to  a  suitably  chosen

space of  reference,  material  particles  move

freely without acceleration, and in which the

laws of the special theory of relativity, which

have  been  developed  above,  hold  with

remarkable accuracy.” [32]

Note that  both the Principle of  Equivalence

and Special Relativity are defined in terms of

the  a priori presence  of  multiple  arbitrarily

large finite masses and photons. There can be

no multiple arbitrarily large finite masses and

photons  in  a  spacetime  that  contains  no

matter by mathematical construction, and so

neither  the  Principle  of  Equivalence  nor

Special  Relativity  can  manifest  therein.  But

Rμν = 0 is a spacetime that contains no matter

by mathematical  construction.  Furthermore,

Mr. ‘t  Hooft’s test particle, be it the “space

ship  Cassini  orbiting  Saturn”  or  otherwise,

must surely constitute a finite region in which

Special  Relativity  must  hold  in  accordance

with Einstein’s tenets, assuming that Special

Relativity is valid in the first place, and if so,

multiple  arbitrarily  large  finite  masses  and

photons  must  be  able  to  be  present

anywhere.  This  is  impossible  for  Rμν =  0.  It

follows  from  this  that  Einstein’s  field

equations  do  not  in  fact  reduce  to  Rμν =  0

when Tμν = 0. 

Notwithstanding the facts,  the astrophysical

scientists  see  black  holes  in  multitudes,

throughout  the  galaxies,  at  the  centres  of

galaxies, in binary systems, and colliding and

merging. According to Chandrasekhar [37],

“From what I have said, collapse of the kind I

have  described  must  be  of  frequent

occurrence  in  the  Galaxy;  and  black-holes

must be present in numbers comparable to, if

not exceeding, those of the pulsars. While the

black-holes  will  not  be  visible  to  external

observers, they can nevertheless interact with

one  another  and  with  the  outside  world

through their external fields.

“In  considering  the  energy  that  could  be

released by interactions with black holes,  a

theorem  of  Hawking  is  useful.  Hawking’s

theorem  states  that  in  the  interactions

involving black holes,  the total  surface area

of  the  boundaries  of  the  black  holes  can

never  decrease;  it  can  at  best  remain

unchanged (if the conditions are stationary).

“Another  example  illustrating  Hawking’s

theorem  (and  considered  by  him)  is  the

following.  Imagine  two  spherical

(Schwarzschild)  black  holes,  each  of  mass

½M, coalescing to form a single black hole;

and let the black hole that is eventually left

be, again, spherical and have a mass M.”

According to Hawking [8],

“Also,  suppose two black holes collided and

merged together to form a single black hole.

Then  the  area  of  the  event  horizon  of  the

final  black  hole  would  be  greater  than  the

sum of the areas of the event horizons of the

original black holes.”

 And according to Mr. ‘t Hooft [6],

“We not  only  accept  the  existence  of  black

holes,  we  also  understand  how  they  can

actually  form  under  various  circumstances.

Theory allows us to calculate the behavior of

material particles, fields or other substances

near  or  inside  a  black  hole.  What  is  more,

astronomers  have  now  identified  numerous

objects in the heavens that completely match
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the  detailed  descriptions  theoreticians  have

derived.”

IX.  Big  bang  universes  are  one-mass

universes

All big bang models treat the universe, after

the  initial  bang  from  nothing  (or,

semantically,  a  reified  mathematical

‘singularity’),  as  being  entirely  filled  by  a

single  continuous  indivisible  homogeneous

distribution of matter of uniform macroscopic

density  and  pressure.  This  continuous

distribution of matter is given the form of an

idealised  fluid  that  completely  fills  the

universe.  For  instance,  according to  Tolman

[82],

“…  it  must  be  remembered  that  these

quantities apply to the idealized fluid in the

model, which we have substituted in place of

the matter and radiation actually present in

the real universe.” 

“We may, however, introduce a more specific

hypothesis  by  assuming  that  the  material

filling the model can be treated as a perfect

fluid.”

The multiple black holes merging or colliding

or capturing other matter or forming binary

systems, the many stars and galaxies, and the

radiation too that appear in big bang models

is therefore inconsistent with the very basis

of  the models,  and  are  obtained  by  invalid

application of the Principle of Superposition.

Tolman [82] reveals this explicitly, 

“We can then treat the universe as filled with

a  continuous  distribution  of  fluid  of  proper

macroscopic density ρoo and pressure po, and

shall  feel  justified  in  making  this

simplification  since  our  interest  lies  in

obtaining  a  general  framework  for  the

behaviour  of  the  universe  as  a  whole,  on

which the details  of  local  occurrences could

be later superposed.”

However, the Principle of Superposition is not

valid  in  General  Relativity.  Nonetheless,

superposition  is  inadmissibly  applied  to

obtain  multiple  masses,  radiation  and

multiple  black  holes  in  big  bang  creation

models. 

Mr. ‘t  Hooft [1, 6, 7] talks of multiple black

holes,  and  other  matter  such  as  stars  and

planets,  presumably  in  some  big  bang

universe. In 2008 Mr. ‘t Hooft [62] wrote in an

email to me,

“Black  holes  can  be  in  the  vicinity  of  other

black holes.” 

Hence, his big bang universes are riddled with

infinite  ‘gravitational  fields’  at  the

singularities  of  all  his  black  holes,  where

spacetime  curvature  is  infinite,  and  where

the density  is  also  infinite thereby violating

into  the  bargain  the  uniform  macroscopic

density of all the one-mass big bang models.

None  of  Mr.  ‘t  Hooft’s  black  holes  are

asymptotically anything in his multiple black

hole  universe,  and  this  violates  the  very

definition of the black hole as well. 

X.  Einstein’s  gravitational  waves  and  the

usual  conservation  of  energy  and

momentum

Mr.  ‘t  Hooft  [1]  first  mentions  me  in  the

section  of  his  webpage  titled  “Einstein’s

equations  for  gravity  are  incorrect,  they

have  no  dynamical  solutions,  and  do  not

imply  gravitational  waves  as  described  in

numerous  text  books."   In  this  section  he

derides Dr. Lo, but includes me, as follows,

“Apparently, he fails to understand where the

energy in a gravitational wave packet comes

from, thinking that it is not given by Einstein’s

equations,  a  misconception  that  he  shares

with  Mr.  C.  Due  to  the  energy  that  should

exist in a gravitational wave, gravity should

interact with itself. Einstein’s equation should
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have a term describing gravity’s own energy.

In  fact,  it  does.  This  interaction  is

automatically  included  in  Einstein’s

equations,  because,  indeed,  the  equations

are non-linear, but neither L nor C appear to

comprehend this.” [1]

Mr.  ‘t  Hooft  has  offered  no  evidence  to

support his claim that I  think that Einstein’s

gravitational  energy   “is  not  given  by

Einstein’s equations”; and for good reason –

there is none. This is another false allegation

that  he  has  conveniently  conjured  up  by

means of his imagination. None of my papers

[64]  even  remotely  suggests  Mr.  ‘t  Hooft’s

claim,  and  neither  does  our  email

communications [62]. 

Mr. ‘t Hooft goes on to explain his division of

a metric  gμν into two parts; a flat spacetime

background go
μν and a dynamical part g1

μν, in

order  to  account  for  Einstein’s  alleged

gravitational waves; thus  gμν  =  go
μν +  g1

μν.  He

then makes the following remarks [1],

“The  stress-energy-momentum  tensor  can

then  be  obtained  routinely  by  considering

infinitesimal  variations  of  the  background

part, just like one does for any other type of

matter field; the infinitesimal  change of the

total  action  (the  space-time  integral  of  the

Lagrange  density)  then  yields  the  stress-

energy-momentum  tensor.  Of  course,  one

finds  that  the  dynamical  part  of  the metric

indeed carries energy and momentum, just as

one expects in a gravitational field. As hydro-

electric  plants  and  the  daily  tides  show,

there’s  lots  of  energy  in  gravity,  and  this

agrees  perfectly  with  Einstein’s  original

equations. In  spite  of  DC  calling  it  ‘utter

madness, this procedure works just perfectly.

L  and  C  shout  that  this  stress-energy-

momentum tensor is a ‘pseudotensor’.” 

Let’s  now  investigate  how  Einstein  fed  the

conservation of energy and momentum of his

gravitational  field  and  its  material  sources

into his field equations.

It must first be noted that when Einstein talks

of  the  conservation  of  energy  and

momentum he  means  that  the  sum  of  the

energy  and  momentum  of  his  gravitational

field and its material sources is conserved in

the  usual  way  for  a  closed  system,  as

experiment attests, for otherwise his theory

would  be  in  conflict  with  a  vast  array  of

experiments  and therefore  invalid.   Einstein

[31] emphasises that,

“It  must  be  remembered  that  besides  the

energy density of the matter there must also

be  given  an  energy  density  of  the

gravitational  field,  so  that  there  can  be  no

talk  of  principles  of  conservation  of  energy

and momentum of matter alone.”

Mr. ‘t Hooft [1] acknowledges Einstein,

“The truth is  that  gravitational  energy  plus

material  energy  together  obey  the  energy

conservation  law.  We  can  understand  this

just as we have explained it for gravitational

waves.”

Consider  Einstein’s  field  equations  in  the

following form,

               







−−= uvuvuv TgTR

2

1
κ               (42)

According to Einstein when Tuv = 0, and hence

T = 0, this reduces to,

                               Ruv = 0                          (43)

The  solution  to  (43)  is  Schwarzschild’s

solution.  It  is  routine amongst  astrophysical

scientists  to  consider  a  ‘weak’  gravitational

field  and  a  very  slow  moving  ‘particle’  in

relation  to  the  ‘Schwarzschild  solution’  to

finally  obtain  an  expression  for  the

component of the metric tensor  g00  in terms
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of the Newtonian potential  function φ.  The

inclusion of φ in g00,  although standard, is ad

hoc,  by  means  of  a  false  analogy  with

Newton’s  theory,  as  explained  above  in

relation  to  equation  (4).  Equations  (43)  are

Einstein’s analogue of the Laplace equation. 

Eventually the divergence of the Newtonian

potential function is often equated to  R00 to

obtain  the Poisson  equation  by assuming  a

particular  form  for  T00.  One  can’t  use  the

‘Schwarzschild  solution’  to  effect  this

analogue of the Poisson equation since (43) is

allegedly  an  analogue  of  the  Laplace

equation.  When  Einstein  developed  his

analogue of the Poisson equation he had no

‘Schwarzschild solution’ to work with. Instead

he  began  with  his  analogue  of  the  Laplace

equation  and  attributed  energy  and

momentum  to  his  gravitational  field,  the

latter he described by the following form of

(43), with a constraint [24, 32], 

0=ΓΓ+
∂

Γ∂ b

va

a

uba

a

uv

x
                (44)

1=− g

Einstein writes the Christoffel symbol of the

second kind as,
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Einstein [24] proceeded from his analogue of

the Laplace equation,  equations (44),  to his

analogue  of  the  Poisson  equation.  Using

equations  (44)  he  first  alleged  the

conservation of the energy-momentum of his

gravitational field by introducing his so-called

‘pseudotensor’, tα
σ, via a Hamiltonian form of

equations (44). According to Einstein [24] the

components of his pseudotensor are,

“the ‘energy components’ of the gravitational

field”. 

His conservation law for his gravitational field

alone is by means of an ordinary divergence

of tα
σ, not a tensor divergence, since tα

σ is not

a  tensor,  and  therefore  in  conflict  with  his

tenet  that  all  the  equations  of  physics  be

covariant  tensor  expressions.  He  and  his

followers  to this  day attempt  to  justify  this

procedure  on  the  basis  that  tα
σ acts  ‘like  a

tensor’  under  linear  transformations  of

coordinates.  Nevertheless,  this  does  not

make tα
σ a tensor. After a long-winded set of

calculations  Einstein  [24]  produces  the

ordinary divergence,

0=
∂

∂

α

α
σ

x

t
                        (45)

and  proclaims  a  conservation  law,  but  only

for  the  energy  and  momentum  of  his

gravitational field, 

“This  equation  expresses  the  law  of

conservation  of  momentum  and  energy  for

the gravitational field.”  [24]

Einstein  then  replaces  equations  (44)  with

the following,

( ) 







−−=Γ

∂

∂
ttg

x

σ
µ

σ
µ

α
µβ

σβ

α

δκ
2

1
       (46)

1=− g

Equations  (46)  are  still  Einstein’s  proposed

analogue of the Laplace equation. To get his

analogue of the Poisson equation he simply

adds a term for  the material  sources of  his

gravitational  field,  namely,  his  energy-

momentum tensor Tσ
μ, thus4, 

“The system of equation (51) shows how this

energy-tensor (corresponding to the density ρ

in Poisson’s equation) is to be introduced into

the field equations of  gravitation.  For if  we

consider  a  complete  system  (e.g.  the  solar

4 Einstein’s equation (51) is equation (46) herein.
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system),  the  total  mass  of  the  system,  and

therefore its total gravitating action as well,

will depend on the total energy of the system,

and  therefore  on  the  ponderable  energy

together  with the gravitational  energy.  This

will  allow  itself  to  be  expressed  by

introducing into (51), in place of the energy-

components of the gravitational field alone,

the sums  tσ
μ + Tσ

μ of the energy-components

of  matter  and  of  gravitational  field. Thus

instead of (51) we obtain the tensor equation

( ) ( ) ( )





+−+−=Γ

∂

∂
TtTtg

x

σ
µ

σ
µ

σ
µ

α
µβ

σβ

α

δκ
2

1

(52)

1=− g

where we have set T = Tμ
μ (Laue’salar). These

are  the  required  general  equations  of

gravitation in mixed form.” [24]

Recall  that  Mr.  ‘t  Hooft  [1]  invoked  “a

‘pseudotensor’”  in  relation  to  the

conservation of  the energy and momentum

of  Einstein’s  shadowy  gravitational  waves,

and  mocks  me  for  my  rejection  of  it.  The

overt problem is that Einstein’s pseudotensor

is  not  a  tensor  and  is  therefore  coordinate

dependent.  This  is  not  in  keeping  with

Einstein’s requirement that all the equations

of  physics  must  be coordinate  independent

by means of tensor relations. 

“It is to be noted that tα
σ is not a tensor” [24]

“Let us consider the energy of these waves.

Owing to the pseudo-tensor not being a real

tensor,  we  do  not  get,  in  general,  a  clear

result independent of the coordinate system.”

[41]

 

“It is not possible to obtain an expression for

the energy of the gravitational field satisfying

both the conditions: (i) when added to other

forms of energy the total energy is conserved,

and  (ii)  the  energy  within  a  definite  (three

dimensional)  region  at  a  certain  time  is

independent of the coordinate system. Thus,

in  general,  gravitational  energy  cannot  be

localized.  The best  we can do is  to use the

pseudo-tensor,  which  satisfies  condition  (i)

but  not  (ii).  It  gives  us  approximate

information  about  gravitational  energy,

which in some special cases can be accurate.”

[41]

However,  besides  coordinate  dependence

there is an even more compelling reason to

reject  Einstein’s  pseudotensor;  it  is  a

meaningless  concoction  of  mathematical

symbols  and  therefore  can’t  be  used  to

represent  any  entity,  to  model  any

phenomena, or to make any calculations!

Definition 5 (Class of a Riemannian Metric):

Let  φ  be  a  Riemannian  metric  in  the  n

variables  x1,  …,  xn.  If  σ  is  sufficiently  large

then n + σ functions y1, …, yn + σ of the xi can

be chosen such that,

φ = (dy1)2 + … + (dyn + σ)2.

Let  m  be  the  smallest  possible  value  for  σ

such that,

( )
2

1
0

−
≤≤

nn
m .

Then m is called the class of the Riemannian

metric φ. [91]

Theorem  2:  Metrics  of  zero  class  (of  any

number of variables n) are characterised by

the  necessary  and  sufficient  condition  that

their  Riemann-Christoffel  curvature  tensor

vanishes identically. [91]

In General Relativity the Riemann-Christoffel

curvature tensor does not vanish identically

[24]. 

Theorem 3:  Metrics φ of class zero have no

non-zero  differential  invariants.  Metrics  of
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non-zero class have no first order differential

invariants. The  invariants  greater  than  one

are  the  invariants  of  φ,  the  Riemann-

Christoffel curvature tensor, and its covariant

derivatives. [91]

Now Einstein’s pseudotensor tα
σ is defined as

[24, 32],

β
νσ

α
µβ

µνβ
νλ

λ
µβ

µνα
σ

α
σ δκ ΓΓ−ΓΓ= ggt

2

1

wherein  κ  is  a  constant  and  δα
σ  is  the

Kronecker-delta.  Contract  Einstein’s

pseudotensor  by setting  σ =  α to  yield  the

invariant t = tα
α, thus,

β
να

α
µβ

µνβ
νλ

λ
µβ

µνα
α

α
α δκκ ΓΓ−ΓΓ== ggtt

2

1

Since  the  
α
βσΓ  are  functions  only  of  the

components  of  the metric  tensor  and their

first derivatives,  t is seen to be a first-order

intrinsic differential invariant [91, 92], i.e. it is

an  invariant  that  depends  solely  upon  the

components  of  the metric  tensor  and their

first derivatives. However, by Theorem 3 this

is  impossible.  Hence,  by  reductio  ad

absurdum,  Einstein’s  pseudotensor  is  a

meaningless  concoction  of  mathematical

symbols, and therefore, contrary to Einstein,

the astrophysical scientists, and Mr. ‘t Hooft,

it can’t be used to make any calculations, to

represent any physical quantity, or to model

any  physical  phenomena,  such  as  Einstein’s

ghostly gravitational waves. 

The  Landau-Lifshitz  [93]  pseudotensor  is

often used in place of Einstein’s; however, it

suffers  from  precisely  the  same  defects  as

Einstein’s  and  it  is  therefore  also  a

meaningless  concoction  of  mathematical

symbols.  All  the  so-called  gravitational

‘pseudotensors’ share fatal defects. 

Einstein  and  the  astrophysical  scientists

nonetheless permit his pseudotensor, and do

calculations with it, as does Mr. ‘t  Hooft [1]

who says,

“…and  there’s  nothing  wrong  with  a

definition  of  energy,  stress  and  momentum

that’s  frame  dependent,  as  long  as  energy

and momentum are conserved.”

The conservation of energy and momentum

Mr. ‘t Hooft refers to is that usual for a closed

system, as determined by experiments. 

From  Einstein’s  equation  (52)  the  total

energy-momentum E, of his gravitational field

and its material sources, is,

 E   = (tσ
μ + Tσ

μ)                    (47)

This  is  still  not  a  tensor  expression,  so

Einstein cannot take a tensor divergence. He

then  takes  the  ordinary  divergence  to  get

[24], 

( )
0=

∂

+∂

α

σ
µ

σ
µ

x

Tt
                   (48)

and proclaims the usual conservation laws of

energy and momentum for a closed system,

“Thus  it  results  from our  field  equations  of

gravitation that the laws of conservation of

momentum and energy are satisfied.” [24]

Compare  now  equation  (42)  with  the

equivalent forms, 









−−= µ

ν
µ

ν
µ

ν κ TgTR
2

1
              (49)

     







−−= µ

ν
µ

ν
µ

ν
κ

RgRT
2

11
           (50)

Thus by (49), according to Einstein, if  Tμ
ν = 0

then Rμ
v = 0. But by (50), if Rμ

v = 0 then Tμ
v = 0.

In  other  words,  Rμ
v and  Tμ

v must  vanish

identically – if there are no material sources
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then  there  is  no gravitational  field,  and  no

universe.  Bearing this in mind, and in view of

(40)  and  (41),  consideration  of  the

conservation of energy and momentum, and

tensor  relations,  Einstein’s  field  equations

must take the following form [92, 94],

0=+ µ
ν

µ
ν

κ
T

G
                    (51)

Comparing this  to expression (47) it  is clear

that the Gμ
ν/κ actually constitute the energy-

momentum  components  of  Einstein’s

gravitational  field,  which  is  rather  natural

since  the  Einstein  tensor  Gμ
ν describes  the

curvature  of  Einstein’s  spacetime  (i.e.  his

gravitational  field),  and  that  (51)  also

constitutes  the  total  energy-momentum  of

Einstein’s  gravitational  field and its  material

sources.  Unlike  (47),  expression  (51)  is  a

tensor  expression. The  tensor  (covariant

derivative) divergence of the left side of (51)

is  zero  and  therefore  constitutes  a

conservation  law  for  Einstein’s  gravitational

field and its material sources Tμ
ν. 

However, the total energy-momentum of (51)

is  always  zero,  the  Guv/κ  and  the  Tuv must

vanish identically (i.e. when  Tuv = 0,  Guv = 0,

and vice-versa, producing the identity 0 = 0),

and  gravitational  energy  can’t  be  localised

[92].  Moreover,  since  the  total  energy-

momentum  is  always  zero  the  usual

conservation laws for energy and momentum

for a closed system can’t be satisfied. General

Relativity is therefore in conflict  with a vast

array of experiments on a fundamental level. 

The so-called ‘cosmological constant’ can be

easily included as follows,

( )
0=+

+ µ
ν

µ
ν

µ
ν

κ

λ
T

gG
             (52)

In  this  case  the  energy-momentum

components  of  Einstein’s  gravitational  field

are given by (Gμ
ν +  λgμ

ν)/κ.  The  Gμ
ν,  gμ

ν, and

Tμ
ν must  all  vanish  identically,  and  all  the

same  consequences  ensue  just  as  for

equation  (51).  Thus,  if  there  is  no  material

source,  not  only  is  there  no  gravitational

field, there is no universe, and Einstein’s field

equations  violate  the  usual  conservation  of

energy and momentum for a closed system

and are thereby in conflict with a vast array of

experiments. 

Recall  that Mr. ‘t  Hooft [1] splits the metric

tensor  into  two  parts,  a  flat  ‘background’

spacetime  and  a  dynamical  spacetime,  as

follows,

gμν = go
μν + g1

μν                    (53)

This procedure is the so-called ‘linearisation’

of  Einstein’s  field  equations.  With  this

procedure Mr. ‘t Hooft [1] says,

“The  dynamical  part,  g1
μν,  is  defined  to

include  all  the  ripples  of  whatever

gravitational wave one wishes to describe.”

The  linearisation  procedure  leads  to  the

following alleged gravitational wave equation

in empty spacetime,

□
2g1

μν = 0                        (54)

where the d’Alembertian operator is defined,

□
2= ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 – c-2∂2/∂t2

and where  c is  the speed of light  in  vacuo.

Quite  often,  as  in  the  case  of  Hilbert’s

solution (1), c is set to unity, in which case the

d’Alembertian operator is, 

□
2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 – ∂2/∂t2

From expression  (54)  it  is  claimed that  the

speed  of  propagation  of  Einstein’s

gravitational  waves  is  the  speed  of  light  in
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vacuo. For instance, according to Foster and

Nightingale [95],

“… we  see  that  gravitational  radiation

propagates  through  empty  spacetime  with

the speed of light.” 

However, the speed of propagation of these

alleged  gravitational  waves  is  coordinate

dependent  and  therefore  not  unique  (see

Appendix  H).  For  instance,  concerning

equation (54), Eddington [83] noted that,

“…  the  deviations  of  the  gravitational

potentials are propagated as waves with unit

velocity, i.e. the velocity of light. But it must

be  remembered  that  this  representation  of

the propagation, though always permissible,

is  not  unique.  ...  All  the  coordinate-systems

differ  from  Galilean  coordinates  by  small

quantities of the first order. The potentials gμν

pertain not only to the gravitational influence

which  is  objective  reality,  but  also  to  the

coordinate-system which we select arbitrarily.

We can ‘propagate’ coordinate-changes with

the  speed  of  thought,  and  these  may  be

mixed  up  at  will  with  the  more  dilatory

propagation discussed above. There does not

seem  to  be  any  way  of  distinguishing  a

physical  and  a  conventional  part  in  the

changes of the gμν. 

“The statement that  in the relativity  theory

gravitational waves are propagated with the

speed  of  light  has,  I  believe,  been  based

entirely upon the foregoing investigation; but

it  will  be seen that  it  is  only  true in a very

conventional sense. If coordinates are chosen

so as to satisfy a certain condition which has

no  very  clear  geometrical  importance,  the

speed is that of light; if the coordinates are

slightly  different  the  speed  is  altogether

different from that of light. The result stands

or falls by the choice of coordinates and, so

far  as  can  be  judged,  the  coordinates  here

used were  purposely  introduced in  order  to

obtain the  simplification  which  results  from

representing  the  propagation  as  occurring

with the speed of  light.  The argument  thus

follows a vicious circle.”

Recall  that  Einstein’s  pseudotensor

represents  the  energy-momentum  of  his

gravitational field alone.  Mr. ‘t Hooft [1] says,

“Actually,  one can define the energy density

in different ways, since one has the freedom

to add pure gradients to the energy density,

without  affecting  the  total  integral,  which

represents  the  total  energy,  which  is

conserved. Allowing this, one might consider

the Einstein tensor Gμν itself  to serve as the

gravitational  part  of  the  stress-energy-

momentum  tensor,  but  there  would  be

problems with such a choice.

“The  definition  using  a  background  metric

(which  produces  only  terms  that  are

quadratic  in  the  first  derivatives)  is  much

better,  and  there’s  nothing  wrong  with  a

definition  of  energy,  stress  and  momentum

that’s  frame  dependent,  as  long  as  energy

and  momentum  are  conserved.  In  short,  if

one wants only first derivatives, either frame

dependence  or  background  metric

dependence are inevitable.

“…In spite of DC calling it ‘utter madness’, this

procedure works just perfectly. L and C shout

that this stress-energy-momentum tensor is a

‘pseudotensor’.”

However,  all  attempts  to  account  for  the

energy-momentum of Einstein’s gravitational

field, and hence his ‘gravitational waves’,  by

means  of  a  pseudotensor  are  futile.

Consequently, General Relativity violates the

usual conservation of energy and momentum

for  a  closed  system  as  determined  by

experiments.  Equation (51)  is  the form that

Einstein’s  field  equations  must  take.

Consequently,  the  search  for  Einstein’s

gravitational waves has from the outset been

a search for that which does not exist. It is no
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wonder that no such waves have ever been

detected. 

XI. Functional analysis

Mr. ‘t Hooft [1] says of the five scientists he

vilifies,

“These  self  proclaimed  scientists  in  turn

blame  me  of  ‘not  understanding  functional

analysis’.”

Mr. ‘t Hooft has offered no evidence for this

allegation either. All we have is his word for it.

I don’t know whether or not any of the other

four  scientists  Mr.  ‘t  Hooft  vilifies  on  his

webpage  has  made  this  accusation  against

him, but  certainly  I  have never  done so.  In

our  email  exchange  I  have  accused  him  of

other things, but strangely he has not cared

to  mention  them,  whereas  I  hide  nothing

[62].

In his final email, copied to me in 2008 but

addressed to another, Mr. ‘t Hooft wrote,

“O, yes, excerpts from my mail will probably

emerge on some weblogs,  (sic) drawn out of

context and ornamented with comments.”

I refer readers again to [62] for confirmation

of  Mr.  ‘t  Hooft’s  context  and  to  the

contextualization of my ‘ornaments’. 

DEDICATION

In memory of my brother,

Paul Raymond Crothers

12th May 1960 – 25th December 2008

and my Uncle,

Gary Christopher Crothers 

3rd June 1935 – 10th November 2013

APPENDIX A – GAUSSIAN CURVATURE

Gaussian curvature is an intrinsic geometric property of a surface. As such it is independent of any

embedding space. All black hole spacetime metrics contain a surface from which various invariants

and geometric identities can be deduced by purely mathematical means. The Kerr-Newman form

subsumes the Kerr, Reissner-Nordström, and Schwarzschild forms. The Gaussian curvature of the

surface in the Kerr-Newman metric therefore subsumes the Gaussian curvatures of the surfaces in

the  subordinate  forms  too.  The  Gaussian  curvature  reveals  the  type  of  surface  and  uniquely

identifies the terms that appear in its general form. The Gaussian curvature demonstrates that no

so-called  black  hole  metric  can  in  fact  be  extended  to  produce  a  black  hole.  The  Gaussian

curvature of the surface in the Kerr-Newman metrical ground-form and its subordinate metrics is

determined as follows. The Kerr-Newman metric in Boyer-Lindquist coordinates is,

( )
+

∆−+
−

−∆
−= ϕ

ρ

θ

ρ

θ
ddt

ara
dt

a
ds

2

222
2

2

22
2 sin2sin
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( )

+
∆−+

+ 22

2

22222

sin
sin

ϕθ
ρ

θ
d

aar

                                                                                                           222
2

θρ
ρ

ddr +
∆

+

222 2 qamrr ++−=∆         θρ 2222 cosar +=

0 ≤ r

(A1)

If r = constant ≠ 0 and t = constant, (A1) reduces to,

( ) 22

2

22222
222 sin

sin
ϕθ

ρ

θ
θρ d

aar
dds

∆−+
+=

222 2 qamrr ++−=∆         θρ 2222 cosar +=

(A2)

Metric (A2) is a particular form of equation (5) of the First Fundamental Quadratic Form for a

surface. The components of the metric tensor of (A2) are,

( )
θ

ρ

θ
ρ 2

2

22222

22

2

11 sin
sin∆−+

==
aar

gg                                    (A3)

To facilitate the calculation of the Gaussian curvature of the surface described by (A2), make the

following substitutions,

( )

θβ

βθρ

θϕθ

2

2211

2222

2222221

sin
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==

=+==

∆−+===

ghg

h

f
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aarfxx

                      (A4)

Accordingly,

θθ
θ

θθ
θ
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a

h
a

f
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∂

∂
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∂

∂

( ) ( )θθ
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2

2
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∂
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∂
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∂
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From equations (12),
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bearing in mind the symmetry 
α
γβ

α
βγ Γ=Γ .

According to (A3) the metric tensor is diagonal and so from equations (12),
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Using expressions (A7), expression (A6) reduces to,
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From (A7),
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Putting (A9) into (A8) gives,
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Now,
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From (A3) and (A4) the determinant g of the metric tensor is,

θθβ 22

2211 sinsin fhggg ===                                        (A12)

The Gaussian curvature K is,

www.sjcrothers.plasmaresources.com/index.html 47



θ2

12121212

sinf

R

g

R
K ==                                                  (A13)

Putting (A11) into (A13) yields,
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After simplifying terms, (A14) becomes, 
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It is clearly evident from (A15) that the Gaussian curvature is not a positive constant and so the

surface  (A2)  is  not  a  spherical  surface.  Thus,  the  Kerr-Newman  metric  (A1)  is  not  spherically

symmetric. 

By virtue of (A15) the quantity  r in the Kerr-Newman metric is neither the radius nor a distance

therein, as it  is  defined by (A15) owing to the intrinsic geometry of the metric (A2).  Since the

intrinsic geometry of  a surface is  independent of any embedding space the quantity  r in  (A2)

retains its identity when (A2) is embedded in the Kerr-Newman spacetime (A1). 

Note that if the alleged angular momentum is zero, i.e. a = 0, then by (A4) and (A5), 
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and so (A15) reduces to,
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The  Kerr-Newman  metric  (A1)  then  reduces  to  the  Reissner-Nordström  metric  for  an  alleged

charged non-rotating body, including the corresponding ‘black hole’, since the charge is not zero

(i.e.  q ≠ 0). By (A16) the Reissner-Nordström metric is spherically symmetric, and the quantity  r

therein is neither the radius nor a distance. 

If both a and q are zero, the Kerr-Newman metric (A1) reduces to Hilbert’s metric and the Gaussian

curvature of the surface therein is again given by (A16), and so r therein is neither the radius nor a

distance in Hilbert’s metric. 

Since the metric of (A1) is a generalisation of Schwarzschild’s metric, it is in turn a certain element

of an infinite set of equivalent metrics, but for an incorrect range on r. It has been shown [71 - 79]

that  the  correct  form  of  the  Kerr-Newman  solution,  although  also  physically  meaningless,  is

obtained from,
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Here r0 and n are entirely arbitrary. Since Rc(r0) = ξ for all r0 for all n, none can be extended. If a = 0

and  q = 0, then (A17) reduces to the Schwarzschild form, equations (32), none of which can be

extended. The expressions (A17) generate an infinite set of equivalent metrics which cannot be

extended. 

When θ = 0 and θ = π

From (A4), (A5), when θ = 0 and θ = π, 
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                                                            (A18)

Then (A15) reduces to,
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                                                         (A19)

Putting expressions (A18) into (A19) yields,
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Then from (A17),
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and so with (A20)
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By (A21) the minimum value of Rc is Rc(r0) = ξ. Thus at θ = 0 and at θ = π the maximum of K is the

invariant,
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When θ = π/2

From (A4), (A5), when θ = π/2,

( ) 0022222 =
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∂
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Then (A15) reduces to,
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or,
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and so,
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Then from (A17),
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and so with (A27),
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By (A28) the minimum value of Rc is Rc(r0) = ξ. Thus at θ = π/2 the maximum of K is the invariant,
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Note that if a = 0 then (A22) and (A29) reduce to,

www.sjcrothers.plasmaresources.com/index.html 51



2

1

cR
K =                                                                      (A31)

for a spherical surface, and the associated invariant at Rc(r0) is, 

2

1

ξ
=K                                                                     (A32)

where ξ is given by (A17). For a = 0, q ≠ 0 then (A32) is,

2

2
2

42

1












−+

=

q

K

αα                                                        (A33)

which is an invariant for the Reissner-Nordström form. If both a = 0 and q = 0 then this reduces to,

2

1

α
=K                                                                       (A34)

which is an invariant for the Schwarzschild form.

 

Note  that  in  all  cases  the  Gaussian  curvature  of  the  surface  in  the  spatial  section  is  finite

everywhere. 

There is no black hole 

By (A17) the minimum value for Δ is,

θ22

min sina=∆                                                           (A35)

which occurs when r = r0, irrespective of the values of r0 and n. Δmin = 0 only when θ = 0 and when

θ = π, in which cases (A17), and hence (A1), are undefined. 

Similarly, the minimum value of ρ2 is, 

θξρ 2222

min cosa+=                                                         (A36)

which occurs when r = r0, irrespective of the values of r0 and n. Since ξ is always greater than zero,

ρ2 can never be zero. 
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Since (A1) is generated from (A17) in the case of r0 = ξ, n = 1, r > r0, it cannot be extended, and ρ2

can never be zero. This is amplified by the case of r0 = 0, n = 2 in (A17). Then,

( ) 2
1

22 ξ+= rRc
                                                             (A37)

which is defined for all real values of r and can never be zero. If (A1) can be extended then so must

(A17), and hence the case of (A37). But the case (A37) cannot be extended because the square of a

real number is never less than zero. Thus (A1) cannot be extended either. 

There is only ever one singularity in every equivalent metric generated by (A17), and this can only

occur at r = r0, whether or not a = 0 or q = 0 or both are zero.

Thus, there is no event horizon and no static limit, and hence no black hole, associated with (A1),

or any other of the metrics generated by (A17), all of which are equivalent.

There is no event horizon associated with any output from (A17), whether or not a and q are zero

or not. Thus, there is no black hole in any case. 

 

According to (A17),  Rc =  Rc(r,  θ), since  ξ  depends on the value of  θ. Hence h,  f,  β and Δ are also

functions of (r, θ). To incorporate all permissible values of θ, the connexion coefficient Γ1
11 must be

generalised to,
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                                                        (A38)

Equation (A14) then becomes,
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(A39)

APPENDIX B – RIEMANNIAN CURVATURE

Riemannian  (or  sectional)  curvature  generalises  to  dimensions  higher  than  2  the  Gaussian

curvature of a surface. Consequently, in the case of a surface the Riemannian curvature reduces to

Gaussian curvature. The Riemannian curvature of the Kerr-Newman form subsumes that for the

Kerr, Reissner-Nordström, and Schwarzschild forms, and can be determined for the spatial sections
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thereof and for the whole ‘4-dimensional’ metrics respectively. In this Appendix consideration will

only be given to the Schwarzschild and Reissner-Nordström forms. Calculations for the Kerr and

Kerr-Newman forms follow similar lines. Once again, the Riemannian curvature demonstrates yet

again that none of the so-called black hole metrics can be extended to produce a black hole.

The Riemannian curvature KS at any point in a metric space of dimensions n > 2 depends upon the

Riemann-Christoffel curvature tensor of the first kind Rijkl, the components of the metric tensor gik,

and two arbitrary n-dimensional linearly independent contravariant direction vectors Ui and Vi, as

follows:

qrpsqsprpqrssrqp

pqrs

lkji

ijkl

S ggggG
VUVUG

VUVUR
K −==

Definition 6: If the Riemannian curvature at any point is independent of direction vectors at that

point then the point is called an isotropic point. 

It follows from (A13) and Definition 6 that all points of a surface are isotropic. 

Riemannian curvature of the spatial section of the Schwarzschild form

The spatial section of the Schwarzschild form is, from expressions (32),
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The metric tensor is diagonal,
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The components of the metric tensor are,
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The components of the Riemann-Christoffel curvature tensor of the second kind are determined

by,
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Since (B2)  is  diagonal,  the Christoffel  symbols  of  the second kind can be calculated using the

following relations,
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Make the following assignments,

ϕθ === 321
xxRx c

There are 15 Christoffel symbols of the second kind to be considered. Calculation determines that

there are only 7 non-zero such terms,
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The number of components of the Riemann-Christoffel curvature tensor that are not identically

zero is n2(n2 – 1)/12, where n is the number of dimensions of the metric space, which in this case is

3. Thus there are 9(9 – 1)/12 = 6 components to consider. Calculation determines that there are

only 3 non-zero components of the Riemann-Christoffel curvature tensor of the second kind,

ccc R
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=                       (B7)

The components of the Riemann-Christoffel curvature tensor of the first kind, Rijkl, are determined

by,
r

jklirijkl RgR =                                                                   (B8)
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Putting expressions (B3) and (B7) into (B8) yields,
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Let i
U   and i

V  be two arbitrary linearly independent contravariant direction vectors. Then for the

problem at hand the Riemannian curvature Ks is given by,
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Since the metric tensor is diagonal the non-zero Gijkl are calculated by,
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The non-zero Gijkl are calculated,
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Putting (B9) and (B12) into (B10) yields,
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Now Rc(r0) = α nr ∀∀ 0 , in which case (B13) is,

22

1

α
−=sK                                                                    (B14)

which is  entirely independent of the direction vectors i
U  and i

V , and independent of θ. Thus r0

produces an isotropic point. This reaffirms that the Schwarzschild form cannot be extended. 

Comparing (B14) with (A34) gives,

2

K
K S −=                                                                     (B15)

Thus, at  r =  r0 the Riemannian curvature of the spatial section of the Schwarzschild form is the

negative  of  half  the  Gaussian  curvature  of  the spherical  surface  in  the  spatial  section  of  the

Schwarzschild form. (B15) is another curvature invariant for the Schwarzschild form. 

(B13) depends on θ. When θ = 0 and θ = π, (B13) becomes (B14). When θ = π/2, (B13) becomes,
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This reaffirms that the Schwarzschild form cannot be extended.

Riemannian curvature of the spatial section of the Reissner-Nordström form

If a = 0 in expressions (A17), the Reissner-Nordström form is obtained, thus,
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The spatial section is,
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The metric tensor is diagonal,
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The components of the metric tensor are,
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Make the following assignments,

ϕθ === 321
xxRx c

There are 15 Riemann-Christoffel symbols of the second kind to consider. Calculation determines

that there are only 7 non-zero such terms,
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There  are  6  components  of  the  Riemann-Christoffel  curvature  tensor  to  consider.  Calculation

determines that there are only 3 non-zero such terms,
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There are only 3 non-zero Gijkl,
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The Riemannian curvature KS is,
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Note that if  q = 0, (B20) reduces to (B13) for the spatial section of the Schwarzschild form. Also

note that for (B20) Rc(r0) = ξ, where ξ is given by (B16), in which case the Riemannian curvature is,
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                                                              (B21)

which is entirely independent of the direction vectors i
U and i

V , and of θ. Thus, r = r0 produces an

isotropic point. This reaffirms that the Reissner-Nordström form cannot be extended. 

Taking ξ from (B16) the Riemannian curvature is,
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Once again, if q = 0, then (B21) reduces to (B14) for the spatial section of the Schwarzschild form,

as easily seen from (B21b). (B21) is a curvature invariant for the Reissner-Nordström form.  

(B20) depends on θ. When θ = 0 and θ = π, (B20) becomes,
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(B21c) produces isotropic points. When θ = π/2, (B20) becomes,
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At r = ro the Riemannian curvature is again,
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Riemannian curvature of the Schwarzschild form

The Schwarzschild form is,
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The metric tensor is diagonal,
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The components of the metric tensor are,
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Make the following assignments,

ϕθ ==== 3210
xxRxtx c

There are 28 Christoffel symbols of the second kind to consider. Calculation shows that there are

only 9 non-zero such terms,
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Since the dimension of the space is 4 there are 16(16-1)/12 = 20 components of the Riemann-

Christoffel  curvature  tensor  to  consider.  Calculation determines that  are  only  6 non-zero  such

terms,
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Since the metric tensor is diagonal there are only 6 non-zero components of the Gijkl,
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The Riemannian curvature for the Schwarzschild form is therefore,
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                                                                                                            (B25)

By (B22), Rc(r0) = α irrespective of the values of r0 and n, in which case (B25) reduces to,

22

1

α
=SK                                                                      (B26)

Thus,  (B26)  is  entirely  independent  of  the  direction vectors i
U and  i

V ,  and of  θ.  Thus,  r =  r0

produces an isotropic point, which again shows that the Schwarzschild form cannot be extended.

Comparing (B26) to (A34) gives,

2

K
K S =                                                                      (B27)

Hence, at r = r0 the Riemannian curvature of the Schwarzschild form is half the Gaussian curvature

of the spherical surface in the spatial section of the Schwarzschild form. 

(B26) is the negative of (B14): at r = r0 the Riemannian curvature of the Schwarzschild form is the

negative of the Riemannian curvature of the spatial section thereof. (B27) is another curvature

invariant for the Schwarzschild form. 

(B25) depends on θ. When θ = 0 and θ = π, (B25) becomes,
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When θ = π/2, (B25) becomes,
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Riemannian curvature of the Reissner-Nordström form

The Reissner-Nordström form is,
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The metric tensor is diagonal,
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The components of the metric tensor are,
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            (B30)

Make the following assignments,

ϕθ ==== 3210
xxRxtx c

There are 28 Christoffel symbols of the second kind to consider. Calculation shows that there are

only 9 non-zero such terms,
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There are  20 components of  the Riemann-Christoffel  curvature tensor  to consider.  Calculation

shows that there are only 6 non-zero such terms,
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Since the metric is diagonal the only non-zero Gijkl are,
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The Riemannian curvature for the Reissner-Nordström form is,
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Rc(r0) = ξ irrespective of the values of r0 and n, in which case (B31) reduces to,
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where ξ is given by (B31). (B32) is entirely independent of the direction vectors i
U and i

V , and of

θ. Thus,  r =  r0 produces an isotropic point, which again shows that the Reissner-Nordström form

cannot be extended. By (B31), (B32) is,
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Comparing (B32)  with (B21)  it  is  noted that  at  r =  r0 (B32)  is  the negative of  the Riemannian

curvature of  the spatial  section of the Reissner-Nordström form.  Note also that  if  q =  0, then

expressions (B31) and (B32) reduce to those for the Schwarzschild form, expressions (B25) and

(B26) respectively. (B32) is an invariant for the Reissner-Nordström form. 

(B31) depends upon θ. When θ = 0 and θ = π, (B31) becomes,
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When θ = π/2, (B31) becomes,
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(B31c)

Similar results can be obtained for (A1), reaffirming that (A1) cannot be extended, in accordance

with (A17).

APPENDIX C – THE ACCELERATION INVARIANT

Doughty [81] obtained the following expression for the acceleration  β  of a point along a radial

geodesic for the static spherically symmetric metrics,
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Since the Hilbert and Reissner-Nordström metrics are particular cases of respective infinite sets of

equivalent solutions generated by expressions (A17) when a = 0, expression (C1) becomes,
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In (C2),
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Then by (B16),
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Consequently, the acceleration is given by,
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Since q2 < α2/4, (C4) becomes, 
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In all cases, whether or not q = 0, ∞→⇒→ β0rr , which constitutes an invariant condition, and

therefore reaffirms that the Schwarzschild and Reissner-Nordström forms cannot be extended, and

hence do not to produce black holes.

Expression (C1) appears at first glance to be a first-order intrinsic differential invariant since it is

superficially composed of only the components of the metric tensor and their first derivatives. This

is however, not so, because expression (C1) applies only to the radial direction, i.e. to the motion

of a point along a radial geodesic. In other words, (C1) involves a direction vector. Consequently,

although  (C1)  is  a  first-order  differential  invariant,  it  is  not  intrinsic.  First-order  differential

invariants  exist,  but  first-order  intrinsic  differential  invariants  do  not  exist  [91,  92].  That  (C1)

involves a direction vector is amplified by the Killing vector. Let  Xa be a first-order tensor (i.e. a

covariant vector). Then for it to be a Killing vector it must satisfy Killing’s equations,

0;; =+ abba XX                                                              (C6)

where Xa;b denotes the covariant derivative of Xa. 

The condition for hypersurface orthogonality is [38, 45],

0];[ =cba XX                                                                  (C7)

Conditions (C6) and (C7) determine a unique timelike Killing vector that fixes the direction of time

[44]. By means of this Killing vector the four-velocity vi is,

a

a

a
a

XX

X
v =                                                               (C8)

The absolute derivative of the four-velocity along its own direction gives the four-acceleration βa ,

du

Dv
a

a =β                                                                 (C9)

The norm of the four-acceleration is,

a

a βββ −=                                                           (C10)

Applying (C6) through (C10) to the Reissner-Nordström form from (A17) yields (C5),
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Consequently,  expression  (C1)  is  not  intrinsic;  it  is  a  first-order  differential  invariant  which  is

constructed with the metric and an associated direction vector, as the limitation of (C1) to motion

of a point along a radial geodesic implies. Recall that first-order intrinsic differential invariants do

not exist [91, 92]. 

When q = 0 (C5) reduces to,

c

c
R

R
α

α
β

−

=

12 2                                                               (C11)

which can of course be calculated directly from (C1) for the Schwarzschild form (32) from (A17). In

all cases ∞→⇒→ β0rr , which constitutes an invariant condition, and therefore reaffirms once

again that the Schwarzschild and Reissner-Nordström forms cannot be extended and therefore

cannot produce black holes. 

APPENDIX D – ISOTROPIC COORDINATE FORMS

Let Qn and Mn be two metric spaces of dimension n with metrics gik and ĝik respectively. Let Qn and

Mn be described by the same set of coordinates (variables) xi. The spaces with their metrics can be

represented by the notation (Qn,  gik) and (Mn,  ĝik). If the two metrics are related by means of a

smooth positive valued function ſ2 of the xi such that ĝik = ſ2gik then the correspondence between

Qn and Mn is called conformal and the metric spaces are called conformal spaces. Thus ſ2 maps Qn

into Mn, denoted by,

ſ2 : ( ) ( )
iknikn gMgQ ˆ,, →                                                         (D1)

If  gik is  the Euclidean metric  then  Mn is  said to be  conformally  flat.  Conformal  maps preserve

angles, such as those between two arbitrary linearly independent vectors Uq and Vq of dimension n

in  Qn.  However,  conformal  maps  do  not  necessarily  preserve  curvatures;  in  other  words,  the

Riemannian  curvature,  for  instance,  at  some  point  Pq in  Qn determined  with  two  linearly

independent vectors Uq and Vq, is generally not the same at the corresponding point Pm in Mn with

corresponding  vectors  U’m and  V’m.  The  magnitudes  of  the  said  corresponding  vectors  are

proportional to Uq and Vq respectively, due to the conformal map or transformation, but the angle

between  them  does  not  change.  Furthermore,  the  components  of  the  Riemann-Christoffel

curvature  tensor  at  some  point  Pq in  Qn do  not  generally  have  the  same  values  as  the

corresponding components of the Riemann-Christoffel curvature tensor at the corresponding point

Pm in Mn. Dimension n = 1 is trivial and dimension n = 2 metric spaces are conformal to any other. 
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Every particular  metric  of  the metric  ground-form (7)  for  3-dimensional  spherically  symmetric

metric  spaces  can  be  conformally  represented  in  Euclidean  3-space.  This  simply  means  that

expression (7) can be replaced by the following equivalent general metric ground-form,

( )[ ]2222222 sin)( ϕθθρρρ dddHds ++=                                         (D2)

because

( ) ( ) ( )[ ]222222222222 sin)(sin ϕθθρρρϕθθ dddHddkdkkA ++=++                (D3)

means that

( ) ( ) ( ) ( )
k

dk
kA

d
dkkAdHkH ===

ρ

ρ
ρρρρ                      (D4)

If A(k) is known, then from the last of these three relations ρ can be determined as a function of k,

and if  k is in turn a function of say  r then  ρ  is determined as a function of  r. Then by the first

relation, H is determined as a function of r. Thus both metrics can be rendered in terms of the very

same xi. Note that the variables in the right side metric of (D3) are,

ϕθρ === 321 ˆˆˆ xxx                                           (D5)

The variables in the left side metric of (D3) are,

ϕθ === 321 xxkx                                           (D6)

Thus, 
3322 ˆˆ xxxx ==                                                       (D7)

Then by the last expression in (D4) 1
x̂  can be determined as a function of x1. Thus, both metrics

can be expressed in terms of the very same variables xi. Note that (D1) is also a positive-definite

quadratic form, as it must, and that (D3) satisfies the necessary and sufficient conformal condition,

ĝik = ſ2gik                                                                   (D8)

The part in the square brackets of (D2) and (D3) is just the metric for Euclidean 3-space in spherical

coordinates and so (D2) is said to be a conformal representation with Euclidean 3-space of the

metric on the left side of (D3), and so the left side of (D3) is said to be ‘conformally flat’. 

This essentially constitutes the so-called ‘isotropic coordinates’ for the Schwarzschild form. 

Theorem 4: A Riemann space is flat if and only if its Riemannian curvature is zero at all points.

Recall from Appendix B that the Riemannian curvature is a generalisation to dimensions n > 2 of

the Gaussian curvature of a surface (n = 2). If the Gaussian curvature of a surface is zero it is a flat
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surface  (i.e.  it  is  the  plane  surface).  The  Riemannian  curvature  for  Euclidean  3-space  is  zero

everywhere, and so, likewise, this space is flat, by Theorem 4. 

The isotropic Schwarzschild form

The astrophysical scientists render Hilbert’s solution (2) in isotropic coordinates by setting [17, 38,

83, 84, 95],
2
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Using (D3) Hilbert’s metric (2) in isotropic coordinates is, 
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wherein  222
zyx ++=ρ , owing to which (D10) is sometimes written as [83, 97],
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Note that the spatial section of (D10) has precisely the metric form of (D2), where
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I  have shown elsewhere [79] that the infinite set of equivalent isotropic Schwarzschild forms is

generated by (using c = 1),
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ρ=√( x�x0)
2+( y� y0)

2+(z�z0)
2+√ x0

2+ y0

2+z0

2=ρ '+ρ0

wherein  ρ0 and  n are  entirely  arbitrary  constants.  Accordingly,  the  transformation  from  the

Schwarzschild form (32) to isotropic coordinates is by means of,
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where h is given by (D12) and Rc by (32), or (A17) when a = 0 and q = 0.

Since (D12) is equivalent to expressions (32) (and (A17) when a = q = 0), the curvature invariants

for (D12) must correspond to curvature invariants for (32), but are not necessarily the same. To see

that (D12) produces corresponding curvature invariants first consider the spatial section of (D12),

given by, 
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This is a positive-definite quadratic form, as it must. The radius Rp for (D14) is given by [79],
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Now according to (D14),
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4
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in which case the radius (D15) is precisely zero, as it must. 

Gaussian curvature of the surface in the spatial section of the isotropic Schwarzschild form

The surface in the spatial section of (D12) and (D14) is described by,
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Since metrics of dimension 2 are conformal to any other, and in accordance with Appendix A, the

Gaussian curvature K̂ of (D17) is given by,
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This is a positive constant for any given admissible value for h and so (D17), by Definition 2 (see

section VI), is a spherical surface. 

By (D16), at h(ρ0) (D18) takes the value,

2

1ˆ
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which is the very same invariant given by (A34) for the Schwarzschild form (32). Indeed, by (D13),
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which holds for all arbitrary ρ0 for all arbitrary r0 for all arbitrary n.  Thus, 
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                                            (isotropic Schwarzschild form)        (Schwarzschild form)

By  (D19)  or  (D21)  every  metric  in  the  infinite  set  of  equivalent  metrics  generated  by  (D12)

produces the same invariant Gaussian curvature (D19), as they must, and this invariant is precisely

the same as for the Schwarzschild form (A34), which is in its turn an invariant produced by every

metric in the infinite set generated by (A17) when a = 0 and q = 0 in the latter.

Riemannian curvature of the spatial section of the isotropic Schwarzschild form  

Just as the Gaussian curvature of the surface in the spatial section of the isotropic Schwarzschild

form produces a corresponding curvature invariant to that of the Schwarzschild form, so must the

Riemannian curvature of the spatial section (see Appendix B). The spatial section of the isotropic

Schwarzschild form is,
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The metric tensor is diagonal, 
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The components of the metric tensor are,
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Since (D23) is diagonal equations (12) can be applied for determination of the Christoffel symbols

of  the  second  kind.  There  are  15  Christoffel  symbols  of  the  second  kind  to  be  considered.

Calculation determines that there are only 7 non-zero such terms, viz, 
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Since n = 3 there are 6 terms of the Riemann-Christoffel curvature tensor to be considered (see

Appendix B). Calculation determines that there are only 3 non-zero such terms, viz, 
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Since  the  metric  tensor  is  diagonal  the  only  non-zero  Gijkl  terms  in  the  denominator  for  the

Riemannian curvature are, 
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The Riemannian curvature SK̂  is then given by,
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ℜ∈0, ρρ   +ℜ∈n                                                          (D28)

In (D28) the ijklŴ are determined by the linearly independent direction vectors i
Û  and i

V̂  which

correspond to iU  and iV  in the Schwarzschild form, due to the conformal mapping of the spatial

section of the Schwarzschild form.

When ρ = ρ0, h = α/4, for all ρ0 for all n, and the Riemannian curvature becomes,

( )
( ) θαθα

θαθ
2

2323

42

13131212

2

2

2323

22

13131212

sinˆsinˆˆ16

sinˆsinˆˆ8ˆ
WWW

WWW
KS

++

++−
=                                   (D29)

Note that D(29) differs from (B14) due only to the terms in 2323Ŵ [i.e. if not for the 2323Ŵ terms the

Riemannian curvature would be -1/(2α2)  as  for  the spatial  section of  the Schwarzschild  form].

Moreover, (D28) depends upon θ and so at θ = 0 and θ = π (D28) reduces to,
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which is independent of the direction vectors i
Û  and i

V̂ . Hence, (D29b) produces isotropic points.

Moreover, when ρ = ρ0 in (D29b) the exact value for the spatial section of the Schwarzschild form

[expression (B14)] results. 

When θ = π/2, the Riemannian curvature is,
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In this case, when ρ = ρ0, the Riemannian curvature becomes,
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Thus, 
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This attests yet again that the isotropic Schwarzschild form cannot be extended.

Riemannian curvature of the isotropic Schwarzschild form

From (D12) the metric tensor for the isotropic Schwarzschild form is diagonal,
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The components of the metric tensor are,
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Consequently equations (12) for determination of the Christoffel symbols of the second kind can

be applied. There are 28 Christoffel symbols of the second kind to consider. Calculation determines

that there are only 9 non-zero such terms, viz, 
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There are 20 Riemann-Christoffel curvature tensor terms to consider. Calculation determines that

there are only 6 non-zero such terms, viz, 
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Since  the  metric  tensor  is  diagonal  the  only  non-zero  Gijkl   terms  in  the  denominator  for  the

Riemannian curvature are, 
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The Riemannian curvature is therefore,
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In (D36) the ijklŴ are determined by the linearly independent vectors iÛ  and iV̂  which correspond

to i
U  and i

V  in the Schwarzschild form due to the conformal mapping of the spatial section of

the Schwarzschild form.

When ρ = ρ0, h = α/4, for all ρ0 and for all n, and the Riemannian curvature becomes,
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Note that D(37) differs from (B27)  due only to the terms in 2323Ŵ (i.e. if not for the 2323Ŵ terms the

Riemannian curvature would be 1/(2α2) as for the Schwarzschild form). Moreover, (D37) depends

upon  θ  and so at  θ = 0 and  θ =  π (D37) reduces to the exact value for the Schwarzschild form

[expression (B27)]. Note also that (D37) is the negative of (D27) just as (B27) is the negative of

(B15). 

When θ = π/2 the Riemannian curvature is,
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Thus, the correspondence between the isotropic Schwarzschild form and the Schwarzschild form

is,
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The acceleration invariant for the isotropic Schwarzschild form

Applying Doughty’s [81] expression (C1) for the acceleration β of a point along a radial geodesic in

(D12) gives,

( ) ( )αα
β

−+
=

hh

h

44

128
3

2

                                                         (D39)

It follows from (D36) and (D39) that,
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Thus, (D40) is an invariant for the isotropic Schwarzschild form just as for the Schwarzschild form

[see (C5)].  

The isotropic Reissner-Nordström form

The Reissner-Nordström solution is,
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The astrophysical  scientists  render the Reissner-Nordström solution in  isotropic  coordinates by

setting,
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Using (D42) the Reissner-Nordström metric in isotropic coordinates is, 
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wherein  222
zyx ++=ρ , owing to which (D43) is sometimes written as,
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Note that the spatial section of (D43) has precisely the metric form of (D2), where
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I now adduce the generator of the infinite set of equivalent isotropic Reissner-Nordström forms

(using c = 1),
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wherein  ρ0 and  n are  entirely  arbitrary  constants.  Accordingly,  the  transformation  from  the

Reissner-Nordström form (B25) to isotropic coordinates is by means of,
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where h is the function of ρ given by (D45) and Rc by (A17) when a = 0 in the latter. The radius Rp

for (D41) is,
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Note that (D47) is zero at ρ = ρ0, n∀∀ 0ρ , as it must.

The acceleration invariant for the isotropic Reissner-Nordström form

Applying Doughty’s [81] expression (C1) for the acceleration β of a point along a radial geodesic in

(D45) gives,

( )( ) ( )( )[ ]
( ) ( ) ( )22222

2222

4162424

4416162424648

qhqhqh

hqhhqhqhh

+−−+++

++−−−+++
=

ααα

αααα
β                     (D48)

It follows from (D45) and (D48) that,
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Thus, (D49) is an invariant for the isotropic Reissner-Nordström form, in similar fashion as for the

Schwarzschild  form  (C5),  the  Reissner-Nordström  form,  and  the  isotropic  Schwarzschild  form

(D39). Note that if q = 0 then expression (D49) reduces to that for the acceleration of a point along

a radial geodesic in the isotropic Schwarzschild form [see (D39)]. 

Gaussian curvature of the surface in the spatial section of the isotropic Reissner-Nordström form

The surface in the spatial section of (D45) is described by,
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Since metrics of dimension 2 are conformal to any other, and in accordance with Appendix A, the

Gaussian curvature K̂  of (D50) is given by,
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This is a positive constant for any given admissible value for h and so (D50), by Definition 2 (see

section VI), is a spherical surface. 

By (D45), at h(ρ0) (D51) takes the value,
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(D52) corresponds to (A33) for the Reissner-Nordström form. Indeed, by (D45) and (D46),
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which is just (B17), and holds for all arbitrary ρ0 for all arbitrary r0 for all arbitrary n. Thus,
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                  (isotropic Reissner-Nordstrom förm)                                   (Reissner-Nordström form)

By  (D52)  or  (D54)  every  metric  in  the  infinite  set  of  equivalent  metrics  generated  by  (D45)

produces  the  same  invariant  Gaussian  curvature  (D52),  as  they  must,  and  this  invariant

corresponds  to  that  for  the  Reissner-Nordstrom form (A33),  which  is  in  its  turn  an  invariant

produced by every metric in the infinite set generated by (A17) when a = 0 in the latter.

Riemannian curvature of the spatial section of the isotropic Reissner-Nordström form

Since (D45) is equivalent to expressions (A17) when a = 0, the curvature invariants for (D45) must

correspond to curvature invariants for (A17) when a = 0, but are not necessarily the same. To see

that (D45) produces corresponding curvature invariants first consider the spatial section of (D45),

given by,  
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This is a positive-definite quadratic form, as it must for spherical symmetry. The metric tensor is

diagonal,
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The components of the metric tensor are,
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Make the following assignments,

ϕθ === 321 xxhx                                           (D58)

Since (D56) is diagonal,  the Christoffel symbols of the second kind can be calculated using the

relations  (B6).  There  are  15  Christoffel  symbols  of  the  second  kind  to  consider.  Calculation

determines that there are only 7 non-zero such terms, viz,
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There  are  6  components  of  the  Riemann-Christoffel  curvature  tensor  to  consider.  Calculation

determines that there are only 3 non-zero such terms, viz, 
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Since the metric is diagonal the only non-zero Gijkl are,
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The Riemannian curvature K̂ is given by,
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wherein the ikjlR̂  and the ijklĜ  are given by expressions (D60) and (D61) respectively. In (D62) the

ijklŴ are determined by the linearly independent vectors iÛ  and iV̂  which correspond to i
U  and

i
V  in the spatial section of the Reissner-Nordström form, due to the conformal mapping thereof. If

q = 0, (D62), by means of (D60) and (D61), reduces to (D28) for the spatial section of the isotropic

Schwarzschild form. 

When ρ = ρ0, 44 22
qh −== αω  for (D62), for all ρ0 and for all n, and the Riemannian curvature

becomes,
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If q = 0 then (D63) reduces to expression (D29) for the spatial section of the isotropic Schwarzschild

form. 

 Eq.(D62) depends upon θ and so at θ = 0 and θ = π (D62) reduces to,
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(D64) is independent of the direction vectors i
Û and i

V̂ and so θ = 0 and θ = π produce isotropic

points. When ρ = ρ0 (D64) reduces to, 
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which is precisely expression (B14) for the spatial section of the Schwarzschild form, and for the

spatial section of the isotropic Schwarzschild form when θ = 0 and θ = π. Thus the spatial sections

of the isotropic Schwarzschild form and the Reissner-Nordström form have the very same isotropic

Riemannian curvature when ρ = ρ0 and θ = 0 or θ = π, irrespective of the values of ρo and n, and

this  value  is  that  for  the  spatial  section  of  the  Schwarzschild  form  when  ρ  =  ρ0,  which  is

independent of θ in the latter form. 

Thus, the correspondence between the spatial section of the Reissner-Nordström form and the

spatial section of the isotropic Reissner-Nordström form is, 
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(spatial section isotropic Reissner-Nordström form)
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www.sjcrothers.plasmaresources.com/index.html 86



Riemannian curvature of the isotropic Reissner-Nordström form

The isotropic Reissner-Nordström form is given by (D45). To facilitate the calculations rewrite (D45)

in the following simplified form:
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The metric tensor is diagonal,
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(D68)

The components of the metric tensor are,
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(D69)

Make the following assignments,

ϕθ ==== 3210 xxhxtx                                  (D70)

There are 28 Riemann-Christoffel symbols of the second kind to consider. Calculation determines

that there are only 9 non-zero such terms,
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(D71)

There are  20 components of  the Riemann-Christoffel  curvature tensor  to consider.  Calculation

determines that there are only 6 non-zero such terms,
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Since the metric is diagonal the only non-zero Gijkl are,
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The Riemannian curvature K̂ is given by,

( ) ( )
( ) ( ) 23232323

2

131312121212

2

03030202020201010101

23232323

2

131312121212

2

03030202020201010101

ˆˆsinˆˆˆsinˆˆˆˆˆ

ˆˆsinˆˆˆsinˆˆˆˆˆ
ˆ

WGWWGWWGWG

WRWWRWWRWR
K S

+++++

+++++
=

θθ

θθ

lk

lk

ji

ji

ijkl
VV

UU

VV

UU
W

ˆˆ

ˆˆ

ˆˆ

ˆˆ
ˆ =

[ ] nnn
h

1

0 ωρρ +−=

22

22

4
4

4
α

α
ω <

−
= q

q

    ℜ∈0, ρρ   +ℜ∈n                                                               (D74)

wherein the ikjlR̂  and the ijklĜ  are given by expressions (D72) and (D73) respectively. In (D74) the

ijklŴ are determined by the linearly independent vectors iÛ  and iV̂  which correspond to i
U  and

i
V  in the Reissner-Nordström form, due to the conformal mapping of the spatial section thereof. If

q = 0, (D74), by means of (D72) and (D73), reduces to (D36) for the isotropic Schwarzschild form. 

When ρ = ρ0, 44 22
qh −== αω  for (D74), for all ρ0 and for all n, and the Riemannian curvature

becomes,

( )
( ) ( ) ( )

( )
( )

( )
( )

( )
θ

α

αα
θ

α

αα

θ
αα

θ
α

ααα

2

23232224

4

2
2

22

2

131312123222

4

2
2

22

2

2323

2
22

2

1313121222

2222

sinˆ

44

44

sinˆˆ

44

44

sinˆ
4

4
sinˆˆ

4

444

ˆ

W
q

qq

WW
q

qq

W
q

WW
q

qq

KS

−





 −+−

++
−





 −+−

+−
−+

−

−+−

=
    (D75)

www.sjcrothers.plasmaresources.com/index.html 89



(D74) depends upon θ and so at θ = 0 and θ = π (D74) reduces to,
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wherein the ikjlR̂  and the ijklĜ  are still given by expressions (D72) and (D73) respectively. At r = ro

(D76) reduces to,
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which  is  the  same as  the  isotropic  Riemannian  curvature  invariant  for  the  ordinary  Reissner-

Nordström equivalence class; and ro is an isotropic point (the only isotropic point). This reaffirms

that Reissner-Nordström spacetime cannot be extended to produce a black hole.

If q = 0 then (D75) reduces to that for the isotropic Schwarzschild form (D37), and hence to (B27).

At θ = π/2 the Riemannian curvature is,
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                                                      (D77)

www.sjcrothers.plasmaresources.com/index.html 90



wherein the remainder of the  ikjlR̂  and the  ijklĜ  are still  given by expressions (D72) and (D73)

respectively. Once again, if  q = 0 then (D74) reduces to that for the isotropic Schwarzschild form

(D).

Thus,  the  correspondence  between  the  Reissner-Nordström  form  and  the  isotropic  Reissner-

Nordström form is, 
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(isotropic Reissner-Nordström form)
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(D78)

Black holes are also inconsistent with the isotropic forms

Curiously, the proponents of black holes do not use Hilbert’s solution in isotropic form to describe

their associated black holes. The reason is simple; in (D10), they incorrectly call the quantity ρ the

“radial coordinate” [17, 21, 96], the “radius variable” [84], “the radius” [97], and the “distance r1

from the origin” [83], and thereby, for (D10) to observe Hilbert’s 0 ≤ r, it requires according to (D9)

that,

ρ≤−
22c

Gm
                                                                 (D79)

However,  by (D9) through to (D14),  ρ is neither the radius nor a distance in (D10), just as  r is

neither the radius nor a distance in Hilbert’s solution.  Treating  ρ as the radius or a distance in

(D10) leads to inconsistencies with the notions of black holes obtained from Hilbert’s solution. To

amplify this rewrite (D10) thus,
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                                                                (D80)     

When ρ =  Gm/2c2 the coefficient of  dt2 vanishes, but the metric is not singular. When  ρ = 0 the

coefficient  of  dt2 is  1  and  the  coefficient  of  the  spatial  section  is  singular,  but  there  is  no
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corresponding value for r in (D9) and hence no corresponding value in Hilbert’s solution. When ρ =

-Gm/2c2 the coefficient of  dt2 is singular, the coefficient of the spatial section vanishes, and the

value of r in (D9) is 0. This again reveals the veracity of (D12) which alone is consistent. In other

words, (D12) cannot be extended, which is natural since the Schwarzschild equivalence class Eqs.

(32) cannot be extended. 

Similarly black holes are not consistent with the isotropic Reissner-Nordström form, of course.

APPENDIX E – THE KRETSCHMANN SCALAR

The  Kretschmann  scalar  is  also  known  as  the  Riemann  tensor  scalar  curvature  invariant.  The

Kretschmann scalar for the Kerr-Newman form has been obtained by Henry [98]. Hence,
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wherein [71-79], 

( ) nnn

c rrR
1

0 ξ+−=         ℜ∈0, ρρ   +ℜ∈n     

4
cos

42

2
22222

2 α
θ

αα
ξ <+−−+= qaaq

(E2)

By means of (E2), at r = r0 (E1) has the value,
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wherein ξ is given by (E2). Thus, the Kretschmann scalar is again finite when r = r0, irrespective of

the values of r0 and n. Note that (E1) and hence (E3) depend upon θ. When θ = 0 and when θ = π,
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wherein the corresponding value of ξ is given by (E2). When θ = π/2 (E3) reduces to,
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wherein the corresponding value of  ξ  is again given by (E2). Note that (E5) does not contain the

‘angular momentum’ term a and that (E5) is precisely that for the Reissner-Nordström form (see

Section VII).

Expression (E3) reduces to the Kerr form when q = 0, thus,
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wherein the corresponding value of ξ is again given by (E2). This too depends upon the value of θ.

When θ = 0 and when θ = π, (E6) becomes,
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When θ = π/2 (E6) reduces to (using (E2) for the value of ξ),

4

12

α
=f                                                                     (E8)

which is precisely the scalar invariant for the Schwarzschild form. Similarly, when both q = 0 and a

= 0 (E1) reduces to the scalar invariant for the Schwarzschild form.

The Kretschmann scalar is finite in every case and so there are in fact no curvature singularities

anywhere, contrary to the claims routinely made by proponents of black holes. 
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The Kretschmann scalar for the isotropic Schwarzschild and Reissner-Nordstrom forms

Since a conformal transformation does not preserve the values of the components of the Riemann

curvature tensor the isotropic form need not necessarily produce the very same Kretschmann

scalar  as  for  the  standard  forms,  but  must  produce  a  corresponding  value  that  is  invariant,

independent of  the values  of  ρ0 and n,  as is  also the case  for the Riemannian curvature (see

Appendices B and D).

Consider a metric of the following general form,
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where g00, g11 and g22  and are functions of only k. Denote derivatives as follows,
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In terms of the components of the metric tensor of (E9) and their derivatives, the only non-zero

Rijkl are calculated to be,
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The corresponding non-zero Rijkl are calculated to be,
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Then,  taking into  account  the symmetries  of  the suffixes of  the Riemann-Christoffel  curvature

tensor, the Kretschmann scalar f = RijklR
ijkl is given by,

( )2323

2323

1313

1313

1212

1212

0303

0303

0202

0202

0101

01014 RRRRRRRRRRRRf +++++=              (E13)

Putting (E11) and (E12) into (E13) yields,
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The isotropic Schwarzschild form has the form of (E9), and in particular the form,
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where A, B, C are all > 0 (except at ρ = ρ0) and are all functions only of h, where,
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Then by (D32) and (E15),
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and (E14) takes the following form [80] where the derivatives are with respect to h,
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The Kretschmann scalar is thereby calculated from (E18) at,
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At ρ = ρ0, h = α/4 for all ρ0 and for all n. Thus the Kretschmann scalar is then,

4

12

α
=f                                                                       (E20)

which is the very same finite value as that for the Schwarzschild form. 

The isotropic Reissner-Nordstrom form also has the form of (E15). Its Kretschmann scalar is 

thereby calculated from (E18) at,
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At ρ = ρ0, 44 22
qh −== αξ  for all ρ0 and for all n. Thus the Kretschmann scalar is then,
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which is finite. If q = 0 then (E22) reduces to (E20) for the isotropic Schwarzschild form.

APPENDIX F – GEODESIC COMPLETENESS

A geodesic is a line in some space. In Euclidean space the geodesics are simply straight lines. This is

because the Riemannian curvature of Euclidean space is zero. If the Riemannian curvature is not

zero throughout the entire space, the space is not Euclidean and the geodesics are curved lines

rather than straight lines.  If  a geodesic terminates at  some point in the space it  is  said to be

incomplete,  and  the  manifold  or  space  in  which  it  abodes  is  also  said  to  be  geodesically

incomplete.  If  no  geodesic  in  some  manifold  is  incomplete  then  the  manifold  is  said  to  be

geodesically complete. More specifically, according to O’Neill [35],

Consider now Hilbert’s solution (2) (see section V). In 1931, Hagihara [99] proved that all geodesics

therein that do not run into the boundary at r = 2Gm/c2 are complete. Owing to (A17) this is also

the case at r = r0 for all the solutions generated thereby. Owing to (D12) and (D45) this is also the

case at ρ = ρ0 for the isotropic forms. The geodesics terminate at the origin; the point from which

the radius emanates; Rp = 0. In other words, Hagihara effectively proved that all geodesics that do

not run into the origin Rp = 0 are complete. This once again attests that none of these spaces can

be ‘extended’ to produce a black hole (also see [44]). 

APPENDIX G – SPACETIME 'DIMENSIONS'

In Newtonian physics the Universe is four dimensional: three distance dimensions (x, y, z) and one

time dimension t. 'Positions' or 'locations' at some given time can be denoted by values of the 4-

tuple  (x,  y,  z,  t). But  time  t does  not  have  the  same  units  of  measure  as  the  x  ,  y  and  z.

Consequently, values of  t cannot be added to values of  x,  y,  z  in any way. In Newtonian physics,

speed is the distance an object moves in a time t, at a constant rate. If distance s=√ x
2+ y

2+ z
2

is covered in a time t, the speed v is given by,

v=
s

t
=√ x

2+ y
2+z

2

t
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“A semi-Riemannian manifold M for which every maximal geodesic is defined 

on the entire real line is said to be geodesically complete – or merely 

complete. Note that if even a single point p is removed from a complete 

manifold M then M – p is no longer complete, since geodesics that formerly 

went through p are now obliged to stop.”



Clearly, vt is not a new and independent 'dimension' that extends space to four dimensions (vt, x,

y, z).

Einstein and his followers, however, maintain that the Universe is a four-dimensional continuum

called 'spacetime'. Consider the spacetime metric of Special Relativity:

ds
2=c

2
dt

2�dx
2�dy

2�dz
2

                                                   (G1)

In this expression the speed of light c is most often set to unity (c = 1). This gives,

ds
2=dt

2�dx
2�dy

2�dz
2

                                                     (G2)

In either case it is claimed that time t is a fourth dimension on the same footing as the x, y, z. The

4-tuple (x, y, z, t) they call an 'event'. However, time t is measured in time units, such as seconds,

days, or years, whereas spatial distances are measured in spatial distance units, such as metres,

yards, or miles.  This is hidden in (G2) as (G1) shows. The term cdt is a speed multiplied by a time,

to yield a spatial distance. Time t is clearly not on the same footing as x, y, z, because it does not

have the same units as the latter. Now the speed of light (said to be a constant) is the spatial

distance light travels in any time interval, divided by that time interval: speed = distance/time. The

spatial distance σ that light travels in a time interval tc = Δt is given by,

σ2=∆ x
2+∆ y

2+∆ z
2

                                                        (G3)

by means of the Theorem of Pythagoras. The speed of light c is therefore,

c=σ
t c

=√∆ x
2+∆ y

2+∆ z
2

∆ t
                                                   (G4)

Thus,  c  is itself dependent on the  x,  y,  z,  and  t, and is therefore not an independent quantity.

Consequently  cdt is  not  an  independent  quantity  either.  Therefore,  cdt is  not  a  new  and

independent dimension. The x,  y,  z, and  t  are independent of one another, but  t  is not a spatial

distance.  It  cannot  therefore  be  added  to  the  x,  y,  z,  or  their  squares.  The  alleged  'fourth

dimension' cdt is no more a fourth dimension than xy/z or x2/z or yz/x or (x2+ y
2+z

2 )/ y , and

such,  even  though  the latter  four  quantities  also  have  the units  of  spatial  distance.   In  pure

mathematics one can write a four-dimensional element of geometric distance,

ds
2=dx1

2+dx2

2+dx3

2+dx4

2
                                                       (G5)

where  the  x1,  x2,  x3,  x4 are  all  independent  coordinates.   The  four-dimensional  'spacetime'

continuum is not of such a form. It is a fallacy, because it is self-referential via the speed of light c.

The act of treating  cdt as if it is an independent coordinate does not make it  an independent

coordinate.
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APPENDIX H: THE LINEARISATION GAME AND GRAVITATIONAL WAVES

Einstein’s gravitational waves are extracted from his linearisation of his nonlinear field equations.

Accordingly the metric tensor is written as,

µνµνµν η hg +=                                                              (H.1)

 

where the µνh << 1 and µνη  represents the Galilean values (1,-1,-1,-1).  In the linearisation game

the µνh  slightly perturb the flat Minkowski spacetime µνµν η=g  from its flatness, and so suffixes

are  raised  and  lowered  on  the  µνh by  the  µνη .  Here  the  µνh and  their  first  derivatives

σµν
σ

µν ,/ hxh ≡∂∂ , and  higher  derivatives,  are small,  and  all   products of them are neglected.

Since  the  µνη  are  constants,  the  derivatives  of  Eq.(A.1)  are  σµνσµν ,, hg = .  The  validity  of  the

linearisation game is merely taken on trust because it leads to the desired result. 

The selection of a specific coordinate system in order to ensure that gravitational waves propagate

at the presupposed speed of light  c=2.998x108m/s is exposed by the approximation of the Ricci

tensor µνR , in accordance with Eq.(A.1). The Ricci tensor can be first written in the following form

by a contraction on the Riemann-Christoffel curvature tensor ρµνσR , as follows,

( ) 





ΓΓ−ΓΓ++−−= β

µσβρν
β
µνβρσσρµννρµσσµνρµνσρ

σρ
µν ,,,,

2

1
gggggR                    (H.2)

Since the last two terms of Eq.(H.2) are products of the components of the metric tensor µνg  and

their first derivatives, by the linearisation game they are neglected, so that the Ricci tensor reduces

to,

( )





+−−= σρµννρµσσµνρµνσρ

σρ
µν ,,,,

2

1
gggggR                                      (H.3)

which can be broken into two parts,

( )νρµσσµνρµνσρ
σρ

σρµν
σρ

µν ,,,,
2

1

2

1
ggggggR −−+=                                   (H.4)

If  the coordinates  α
x are chosen so that the second part of Eq.(H.4) vanishes, the Ricci  tensor

reduces further as follows,

σρ

µνσρ
σρµν

σρ
µν

xx

g
gggR

∂∂

∂
==

2

,
2

1

2

1
                                             (H.5)

( ) 0,,, =−− νρµσσµνρµνσρ
σρ

gggg                                                 (H.6)

According to Eq.(H.1), βµνβµν ,, hg =  and so on for higher derivatives.    
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Hence,

σρ

µνσρ
σρµν

σρ
µν ηη

xx

h
hR

∂∂

∂
==

2

,
2

1

2

1
                                               (H.5b)

( ) 0,,, =−− νρµσσµνρµνσρ
σρη hhh                                                    (H.6b)

(remembering that suffixes on the kernel  h are raised and lowered by  µνη  according to tensor

type).  Contracting Eq.(H.5b) yields the Ricci scalar,

ρσ

σρ

ρσ

µνσρνµ
µν

νµ ηηηη
xx

h

xx

h
RR

∂∂

∂
=

∂∂

∂
==

22

2

1

2

1
                                       (H.7)

Einstein’s field equations (without cosmological constant) are,

µνµνµν κTRgR −=−
2

1
                                                            (H.8)

In terms of µνh  these become, using Eq.(H.5b) and Eq.(H.7),

µνµνρσ

σρ

σρ

µνσρ κηηη T
xx

h

xx

h
2

2

1 22

−=
∂∂

∂
−

∂∂

∂
                                           (H.8b)

The d’Almbertian operator is defined by,

□ νµ

µνη
xx ∂

∂

∂

∂
−≡                                                                    (H.9)

Recalling  that  µνη represents  the Galilean values  and that  hence  0=µνη when  μ  ≠  ν, Eq.(H.9)

gives,

□ 2

2

2

2

2

2

22

2

2

2

2

2 11

tctczyx ∂

∂
−∇=

∂

∂
−

∂

∂
+

∂

∂
+

∂

∂
=                                            (h.10)

where ∇ is the differential operator del (or nabla), defined as,

zyx ∂

∂

∂

∂

∂

∂
≡∇ ,, .

Taking the dot product of del with itself gives the Laplacian operator 2∇ ,

2

2

2

2

2

2
2

zyx ∂

∂
+

∂

∂
+

∂

∂
=∇ .
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Setting x0=ct, x1=x, x2=y, x3=z, Eq.(H.8b) can be written as,

□ µνµνµν κδ Thh 2
2

1
−=








−                                                        (H.11)

These are the linearised field equations.  They are subject to the condition (H.6b), which can be

condensed to the following condition [83],

0
2

1
=








−

∂

∂
hh

x

α
µ

α
µα

δ                                                          (H.6c)

Using Eq.(H.9), Eq.(H.5b) can be written as,

□ µνµν Rh 2=                                                               (H.12)

For empty space this becomes,

□ 0=µνh                                                                   (H.13)

which by Eq.(A.10) describes a wave propagating at the speed of light in vacuo. 

However,  the  crucial  point  of  the  foregoing  mathematical  development  is  that  Einstein's

gravitational  waves  do  not  have  a  unique  speed  of  propagation.  The  speed  of  the  waves  is

coordinate dependent,  as the condition at  Eq.(H.6) attests.  It  is the constraint at Eq.(H.6) that

selects a set of coordinates to produce the propagation speed  c. A different set of coordinates

yields a  different speed of  propagation, as  Eq.(H.3)  does  not  have  to  be  constrained by Eq.

(H.6).    Einstein   deliberately   chose  a   set  of   coordinates  that  yields  the desired  speed of

propagation at that of light in vacuum (i.e. c = 2.998x108 m/s) in order to satisfy the presupposition

that propagation is at speed c. There is no a priori reason why this particular set of coordinates is

better than any other. The sole purpose for the choice is to obtain the desired and presupposed

result.  
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