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ABSTRACT. There was an attempt to formalize an appearance of main relation properties in 
contrast to the usual one. There was paid an attention only for natural relations. In fact, such 
relations as “better than” are not observed here since the notion of “good” is still not defined. 
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1. Introduction 
 

Usually there are noticed the main properties of relations such as some appearances of 
reflexivity, symmetry and transitivity. But often their origin is not too plain to see. Perhaps it 
is due to their acquisition – they are rather obtained by using of some empiric observations. 
Meanwhile, it seems that they may be obtained as a result of discourses in general theory. So, 
here was initiated an attempt to proceed it. 

To get transitivity condition definition of subset notion was used 

𝐴 ⊂ 𝐵 ↔ {𝑥: 𝑥 ∈ 𝐴 ⇒ 𝑥 ∈ 𝐵}.                                             (1.1) 

It is important here that there is single-valued correspondence between directions of implica-
tion and of inclusion one. 

 

2. Semantic invariance 
 

It is clear that there is nothing standing in the way for set and their elements to be no-
tated by using assignment them some attributes names, numbers etc. and, e.g., writings 𝑋1 and 
𝑋2 may be represented as 

�𝑋1 = {〈𝑥, 1〉} = {〈𝑥, 1〉: 𝑥 ∈ 𝑋 ⋀1 ∈ ℕ}
𝑋2 = {〈𝑥, 1〉} = {〈𝑥, 2〉: 𝑥 ∈ 𝑋 ⋀1 ∈ ℕ}�. 
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Direct sum of these sets forms a set family and summands themselves were found enumerated 
by some index set 𝐼 = {𝑖}. Here the index set is 𝐼 = {1,2} ⊂ ℕ, that is index set is a subset of 
natural numbers set, but it could be some another one. Similar expression determines Carte-
sian product of two sets 

𝑋 × 𝑌 = {〈𝑥,𝑦〉: 𝑥 ∈ 𝑋⋀𝑦 ∈ 𝑌}. 

Comparison between the expressions lets determine set family formally as 

𝑿𝐼 = ∐ 𝑋𝑖𝑖∈𝐼 = 𝑋 × 𝐼 ≠ ∅ ↤ 𝐼 ≠ ∅.                                      (2.1) 

Usage of fat italic means here the notation of set family. So, direct sum appears here as the 
co-product. And it needs to get an agreement of what set is written the first (indexed or index-
ing1

∐ 𝑋𝑖𝑖∉∅ = 𝑋 × ∅ = ∅.                                                 (2.2) 

). While set family is determined this way, not to be empty, index set cannot be null – 
otherwise family is empty 

Generally, while multiplicands sequence order remains product should not change – it doesn’t 
depend on kind of index set. It is consequence of ZF axiom of substitution. So, this statement 
is an expression of some property that probably may be called semantic invariance. However, 
it needs to find criteria of such invariance. 

To solve this, it needs to write an expression that would unify formulae (2.1) with 
(2.2) one. One can notice that index set is not any special and it can be indexed by initial set – 
result shouldn’t has changed 

𝑿 = 𝑋 × 𝐼 × 𝑋.                                                         (2.3) 

To be convinced that case described by formula (2.3) is unique, it needs to write more general 
expression – while index set indexing by some another set 𝑌 ≠ 𝑋. As a result instead of bina-
ry Cartesian product it leads to ternary expression 𝑿 = 𝑋 × 𝐼 × 𝑌. In order to get it, this ex-
pression should involve union of formulae (2.1) and (2.2); the set 𝐼 should be represented as 
set intersection 𝐽 ⋂𝐾. Set union is not valid to do this because it is empty just when both op-
erands are equal to null. So we may write 

𝑋 × 𝐽 ⋂𝐾 × 𝑌 = 𝑿𝐽 ⋂𝒀𝐾∗ ↤ 𝐼 = 𝐽 ⋂𝐾.                                (2.4) 

Here new symbol 𝒀𝐾∗  was introduced and it is determined by formulae 

�
𝒀𝐾∗ = 𝐾 × 𝑌
𝒀𝑘 = 𝑌 × 𝐾
𝒀𝐾∗ ≆ 𝒀𝐾

�.                                                        (2.5) 

They denote family that appears dual to initial one in sense of multiplicands sequence chang-
ing. The family 𝒀𝑘 is covariant to set 𝑌 and family 𝒀𝐾∗  is contra-variant to it. Index below the 
symbol points out an indexing set. No doubt that both families are equipotential each other. 

                                                           
1 Because disjoint set union is non-commutative as Cartesian product itself, excluding the case of self-indication. 
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However, availability of indices in families’ notation still makes them non-invariant – 
genuine invariant objects shouldn’t contain them. In fact, presence of indices in left part of 
equality (2.4) is stipulated by difference between indexing sets that forms their intersection 

𝑋 × 𝐽 ⋂𝐾 × 𝑌 ≆ 𝑋 × 𝐾⋂ 𝐽 × 𝑌 = 𝑿𝐾 ⋂𝒀𝐽∗.                                 (2.6) 

It is worth to pay an attention that there is “non-commutativity” of indexing sets intersection – 
but generally this is contradiction. One of the ways to avoid the contradiction is to presume 
indexing sets to be disjoint. But such indexing is empty. The other way – presuming indexing 
sets to be coincident – it makes their intersection to be idempotent 

𝑋 × 𝐼 ⋂ 𝐼 × 𝑌 = 𝑿𝐼 ⋂𝒀𝐼∗.                                                (2.7) 

It is not altered by indices replacement – it makes indices to be unnecessary. Obviously, there 
is no other ways to avoid contradiction of non-commutative intersection. Anyway, such invar-
iance is inherent to the case describing by formula (2.3). In new terms it looks like 

�id𝑋 = 𝑋 × 𝐼 ⋂ 𝐼 × 𝑋 = 𝑿𝐼 ⋂𝑿𝐼∗
id𝑌 = 𝑌 × 𝐼 ⋂ 𝐼 × 𝑌 = 𝒀𝐼 ⋂𝒀𝐼∗

�.                                           (2.8) 

These formulae determine set diagonals. Obviously, diagonal is the set of all diagonal ordered 
pairs that may be formed among elements of random (disordered) set. In addition, every set 
may be indexed by itself. So, one can write 

�id𝑋 = 𝑋 × 𝑋⋂𝑋 × 𝑋 = 𝑋3 = 𝑿⋂𝑿∗

id𝑌 = 𝑌 × 𝑌⋂𝑌 × 𝑌 = 𝑌3 = 𝒀⋂𝒀∗
�.                                      (2.9) 

The last ones have quite not indices – it makes them semantically invariant initially. 

 

3. Subsets of Cartesian product 
 

As it widely known, any subset of Cartesian product is called correspondence between 
set-multiplicands. If multiplicands coincides each other, correspondence is called relation that 
is established on a set. So, binary relation is always determined on Cartesian square. 

To satisfy semantic invariance, it is strongly recommended observing them as subsets 
of families and as some result of correspondences multiplication – correspondences composi-
tion. According to discourses that were described above, someone may write 

� 𝛽 ⊆ 𝐴 × 𝐼 = 𝑨
𝛾 ⊆ 𝐼 × 𝐵 = 𝑩∗�. 

Therefore, compositions are 

� 𝜉 = 𝛽 ∘ 𝛾 = {〈𝑥, 𝑦〉: 〈𝑥, 𝑖〉 ∈ 𝛽 ⋀〈𝑖,𝑦〉 ∈ 𝛾}
𝜉+ = 𝛾 ∘ 𝛽 = {〈𝑥,𝑦〉: 〈𝑥, 𝑖〉 ∈ 𝛾 ⋀〈𝑖,𝑦〉 ∈ 𝛽}�.                                 (3.1) 
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One differs from another by sequential order of multiplicands. But it’s too early to talk about 
semantic invariance of such constructions – to realize it there must be a possibility to simplify 
these expressions by elements of indexing sets. But expected phenomena may appear while 
both indexing sets fully coincide 

�
𝜉 = 𝛽 ∘ 𝛾 = {〈𝑥,𝑦〉: 〈𝑥, 𝑖〉 ∈ 𝛽 ⋀〈𝑖,𝑦〉 ∈ 𝛾} ⊆ 𝐴 × 𝐵 = 𝑨
𝜉+ = 𝛾 ∘ 𝛽 = {〈𝑥,𝑦〉: 〈𝑥, 𝑖〉 ∈ 𝛾 ⋀〈𝑖,𝑦〉 ∈ 𝛽} ⊆ 𝐵 × 𝐴 = 𝑨∗

𝐽 = 𝐾 = 𝐼
�.                    (3.2) 

Forming in every multiplicand Cartesian square, there may form their subsets – set di-
agonals. And according to equality (2.8) one may write 

�
id𝐴 = {〈𝑥, 𝑥〉: 𝑥 ∈ 𝐴} = {〈𝑥, 𝑥〉: 〈𝑥, 𝑖〉 ∈ 𝛽 ⋀〈𝑖, 𝑥〉 ∈ 𝛽−1}
id𝐵 = {〈𝑦,𝑦〉:𝑦 ∈ 𝐵} = {〈𝑦,𝑦〉: 〈𝑦, 𝑖〉 ∈ 𝛾 ⋀〈𝑖, 𝑦〉 ∈ 𝛾−1}

𝑥 ≠ 𝑦 ⇒ id𝐴 ≠ id𝐵
�.                   (3.3) 

Symbols 𝛽−1 and 𝛾−1 are introduced here to notate correspondences that are reversal to ini-
tial ones. They are determined in accordance with expressions 

�

𝛽 = {〈𝑥, 𝑖〉: 〈𝑥, 𝑖〉 ∈ 𝛽} ⊆ 𝑨𝐼
𝛽−1 = {〈𝑖, 𝑥〉: 〈𝑥, 𝑖〉 ∈ 𝛽} ⊆ 𝑨𝐼∗
𝛾 = {〈𝑖,𝑦〉: 〈𝑖,𝑦〉 ∈ 𝛾} ⊆ 𝑩𝐼

∗

𝛾−1 = {〈𝑦, 𝑖〉: 〈𝑖,𝑦〉 ∈ 𝛾} ⊆ 𝑩𝐼⎭
⎬

⎫
.                                      (3.4) 

Due to blending of permutated diagonal’s elements there may say that they are wholly coin-
cide with their reverse correspondences 

� id𝐴 = id𝐴−1 = {〈𝑥, 𝑥〉: 〈𝑥, 𝑥〉 ∈ id𝐴}
id𝐵 = id𝐵−1 = {〈𝑦,𝑦〉: 〈𝑦,𝑦〉 ∈ id𝐵}�.                                     (3.5) 

Also, it is easy to show that they are some idempotent among correspondences multiplication 

� id𝐴 = id𝐴 ∘ id𝐴
id𝐵 = id𝐵 ∘ id𝐵

�.                                                    (3.6) 

And even one can suppose that they are identity elements of such multiplication. But there is 
one thing standing on the way of this expectation. One may notice that fair is expression 

�𝛽 ∘ id𝐴 = {〈𝑥,𝑦〉: 〈𝑥,𝑦〉⋀〈𝑦, 𝑦〉} = {〈𝑥,𝑦〉: 〈𝑥,𝑦〉 ∈ 𝛽} = 𝛽
id𝐵 ∘ 𝛽 = {〈𝑥,𝑦〉: 〈𝑥, 𝑥〉 ⋀〈𝑥,𝑦〉} = {〈𝑥,𝑦〉: 〈𝑥,𝑦〉 ∈ 𝛽} = 𝛽�. 

Consequently we have equalities 

𝛽 ∘ id𝐴 = id𝐵 ∘ 𝛽 = 𝛽.                                                 (3.7) 

They are too similar to identities, but they just play roles of right and left ones – their compo-
sitions are not commutative. In addition, identity element is unique – otherwise it will lead to 
contradiction 

� id𝐴 ≠ id𝐵
id𝐴 = id𝐴 ∘ id𝐵 = id𝐵

�. 
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And one can assert that just following implication occurs 

𝐴 ≠ 𝐵 ↦ id𝐴 ≠ id𝐴 ∘ id𝐵 ≠ id𝐵.                                                (3.8) 

Compositions id𝐴 ∘ 𝛽 and 𝛽 ∘ id𝐵 are not defined. So diagonals are quasi-idempotent among 
relation’s multiplication. 

In addition, inside diagonals there may be formed pseudo-invariant fragments of these 
quasi-invariants 

� Id𝐴 ⊇ 𝐴 × 𝐽 ⋂𝐾 × 𝐴 = 𝑨𝐽 ⋂𝑨𝐾∗

id𝐴𝐵 ⊇ 𝐵 × 𝐽 ⋂𝐾 × 𝐵 = 𝑩𝐽 ⋂𝑩𝐾
∗ �.                                      (3.9) 

It is in accordance with the discourse of previous section. 

Also it is easy to show that such single-value equalities occur 

� (𝛽−1)−1 = (𝛽+)+ = 𝛽
(𝛽 ∘ 𝛾)−1 = (𝛽−1 ∘ 𝛾−1)+ = 𝛾−1 ∘ 𝛽−1

�.                                   (3.10) 

Particularly, for inclusion relation there may be written formulae 

� ⊂−1= (⊃−1)+ =⊃
(⊂ 𝛾)−1 = (⊂−1 𝛾−1)−1 = 𝛾−1 ⊃

�.                                        (3.11) 

But to avoid contradictions it needs to make it carefully. 

Generally, it’s not possible to say that even composition 𝛽 ∘ 𝛽−1 is commutative, be-
cause in accordance with definition (3.2) we may write 

�
𝛽 ∘ 𝛽−1 = {〈𝑥, 𝑥〉: 〈𝑥, 𝑗〉 ∈ 𝛽 ⋀〈𝑘, 𝑥〉 ∈ 𝛽−1} ⊆ 𝑨𝐼 = 𝑨𝐽 ⋂𝐴𝐾∗

𝛽−1 ∘ 𝛽 = {〈𝑦,𝑦〉: 〈𝑦,𝑘〉 ∈ 𝛽−1 ⋀〈𝑗,𝑦〉 ∈ 𝛽} ⊆ 𝑩𝐼
∗ = 𝑩𝐽 ⋂𝑩𝐾

∗

id𝐴 ≠ 𝛽 ∘ 𝛽−1 ≠ 𝛽−1 ∘ 𝛽 ≠ id𝐵

�.                   (3.12) 

Even though correspondences formed at the Cartesian square are quite coincide, composition 
of such relation is not obligatorily commutative 

�
𝜌 ∘ 𝜌−1 = {〈𝑥, 𝑥〉: 〈𝑥, 𝑗〉 ∈ 𝜌⋀〈𝑘, 𝑥〉 ∈ 𝜌−1} ⊆ 𝑨𝐼 = 𝑨𝐽 ⋂𝐴𝐾∗

𝜌−1 ∘ 𝜌 = {〈𝑦, 𝑦〉: 〈𝑦,𝑘〉 ∈ 𝜌−1 ⋀〈𝑗,𝑦〉 ∈ 𝜌} ⊆ 𝑨𝐼∗ = 𝑨𝐽 ⋂𝑨𝐾∗

id ≠ 𝜌 ∘ 𝜌−1 ≠ 𝜌−1 ∘ 𝜌 ≠ id
�.                 (3.13) 

Equations (3.7) for relations look like 

𝜌 ∘ id = id ∘ 𝜌 = 𝜌.                                                  (3.14) 

It becomes “almost2

𝜌2 = 𝜌 ∘ 𝜌 = {〈𝑥,𝑦〉: 〈𝑥, 𝑖〉 ∈ 𝜌⋀〈𝑖,𝑦〉 ∈ 𝜌} ⊆ 𝑨.                           (3.15) 

” genuine double-sided identity, its composition becomes commutative. 
There may also be determined squaring of relations. Obviously, it is commutative composi-
tion 

                                                           
2 The sense of it and usage of quotation marks will be clear a little later. 
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It is subset of semantic invariant family, so there is a possibility to expect the same from such 
composition. Generalizing inductively, there may be determined arbitrary powering by using 
formulae 

 �
𝜌 ∘ 𝜌 ∘ … ∘ 𝜌���������

𝑛+1

= 𝜌 ∘ 𝜌 ∘ ⋯∘ 𝜌���������
𝑛

∘ 𝜌

𝜌𝑛+1 = 𝜌𝑛 ∘ 𝜌
�.                                          (3.16) 

There is not such possibility for correspondences in general because similar expression looks 
like 

𝛽 ∘ 𝛽 = {〈𝑥,𝑦〉: 〈𝑥, 𝑖〉 ∈ 𝛽 ⋀〈𝑖,𝑦〉 ∈ 𝛽} ⊆ 𝑨𝐽 ⋂𝑩𝐾
∗ .                        (1.3.17) 

Obviously, they do not satisfy to pointed requirements. 

 

4. Relation’s properties that may exist together 
 

Semantic invariance for expression (1.3.15) leads it to simplifying by index set ele-
ments. Perhaps such relation 𝜏, satisfying this requirement, exists, so, expression (3.15) trans-
fers to implication or inclusion 

�
〈𝑥, 𝑖〉 ∈ 𝜏 ⋀〈𝑖, 𝑦〉 ∈ 𝜏 ⇒ 〈𝑥, 𝑦〉 ∈ 𝜏

𝑥𝜏𝑖 ⋀ 𝑖𝜏𝑦 ⇒ 𝑥𝜏𝑦
{〈𝑥,𝑦〉: 〈𝑥, 𝑖〉 ∈ 𝜏 ⋀〈𝑖,𝑦〉 ∈ 𝜏} ⊆ {〈𝑥,𝑦〉: 〈𝑥,𝑦〉 ∈ 𝜏}

𝜏 ∘ 𝜏 ⊆ 𝜏

�.                           (4.1) 

As it widely known, such relation 𝜏 is called transitive. Direction of implication fully corre-
lates with inclusion’s one. 

Generalizing inductively, there may be seen that arbitrary power of transitive relation 
is transitive too 

𝜏𝑛 ⊆ 𝜏. (4.2) 

However, there are no objective criteria of relation’s appearance to be transitive, all 
the more – it is not obvious that relation which is reversal to transitive one is transitive too. 
But just as it was made for initial relation, transitivity of reversal relation is defined by impli-
cation 

〈𝑦, 𝑖〉 ∈ 𝜏−1 ⋀〈𝑖, 𝑥〉 ∈ 𝜏−1 ⇒ 〈𝑦, 𝑥〉 ∈ 𝜏−1. 

Comparison with implication (4.1) shows that such conversion depends on both conversion of 
initial relation and sequential order changing of conjunction operands – it is possible but it is 
not universal due to non-commutativity of ordered pair forming. Still, behavior of implication 
direction is not quite clear – may be (or may not) it is changing due to such procedure. Never-
theless, there may suppose that in any case reversal relation is transitive if initial one is re-
versible. And it may be written as 
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�
〈𝑥, 𝑖〉 ∈ 𝜎 ⇒ 〈𝑖, 𝑥〉 ∈ 𝜎−1

𝑥𝜎𝑖 ⇒ 𝑖𝜎−1𝑥
𝜎 ⊆ 𝜎−1

�.                                              (4.3) 

Due to idem-potency of set intersection that inclusion may be written as 

𝜎 = 𝜎⋂𝜎 ⊆ 𝜎⋂𝜎−1. 

Because intersection is always a subset of both its operands, it occurs in unique case – equali-
ty 

�
〈𝑥, 𝑖〉 ∈ 𝜎 ⇔ 〈𝑖, 𝑥〉 ∈ 𝜎−1

𝑥𝜎𝑖 ⇔ 𝑖𝜎−1𝑥
𝜎 = 𝜎−1

�.                                               (4.4) 

Naturally, these relations are called symmetrical. But there is a danger to suppose mistakenly 
that the exclusive reason of reversibility is in relation symmetry. 

Also, there may guess that reversal relation is surely transitive if initial one is reflexive 
– it contains diagonal as a subset 

�
〈𝑖, 𝑖〉 ∈ id ⇒ 〈𝑖, 𝑖〉 ∈ 𝜌

𝑖id𝑖 ⇒ 𝑖𝜌𝑖
id ⊆ 𝜌

�.                                                  (4.5) 

The base to think so is accordance with formula (3.11). Conversion of inclusion (4.5) makes a 
result of such procedure pseudo-reflexive – it is included in diagonal itself as a subset 

�
〈𝑖, 𝑖〉 ∈ 𝜌−1 ⇒ 〈𝑖, 𝑖〉 ∈ id

𝑖𝜌−1𝑖 ⇒ 𝑖id𝑖
𝜌−1 ⊆ id

�.                                            (4.6) 

It seems that transitivity of such relation appears automatically 

𝜌−1 ∘ 𝜌−1 ⊆ id ∘ 𝜌−1 = 𝜌−1. 

But such discourses lead to sophism that consists in follows. Reversing reflexive symmetrical 
transitive relations – these are called equivalences, according to equality (4.4) it won’t lead to 
any difference between initial relation and reversal one. But according to last discourse, such 
conversion will lead obligatorily reflexive relation to pseudo-reflexive one3

�
𝜀 ⊇ id
𝜀−1 = 𝜀
𝜀2 ⊆ 𝜀

�.                                                            (4.7) 

. And there is just 
the only way to avoid it – to assume it equal to diagonal. And if such discourse is universal, 
the unique equivalence that may exist is equality. Meanwhile, everyone can be assured empir-
ically in falsity of this statement. It may be described formally. Introducing symbol 𝜀 for 
equivalence, there may write 

Reversing first expression in accordance with formulae (3.11), we get  
                                                           
3 So, it couldn’t be equivalence – it is always reflexive. 
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𝜀−1 ⊆ id. 

Together with the second one it leads to equality between initial relation and reversal one and 
both of them coincide with diagonal 

𝜀−1 = 𝜀 = id. 

And the third one quite coincide with diagonal idem-potency condition 

𝜀2 = 𝜀 = id. 

It is another “confirmation” of a statement that any equivalence is equality. As we didn’t use 
concrete equivalence there may summarize that it has universal character. 

But as usual, principal among circumstances that lead to sophism is failing to take into 
account some link in chain of discourses. It is almost sure that transitive symmetrical relation 
is equivalence – it is reflexive obligatorily. But there was failing to take into account that is 
not relation itself but its intersection with reversal one play huge role – this is inherent reflex-
ive – this finally leads inclusion (4.3) to equality (4.4). It may be written as sequence 

� 𝜎 ⋂𝜎−1 ⊇ id ⊃ ∅
〈𝑥, 𝑗〉 ∈ 𝜎 ⋀〈𝑥,𝑘〉 ∈ 𝜎−1 ⇐ 〈𝑥, 𝑥〉 ∈ id ⇐ 〈𝑗,𝑘〉�.                                (4.8) 

Changing of implication direction may be one of oppositions to symmetrical relations as some 
non-empty relations 𝛼 and 𝛼−1 

�
∅ ≠ 𝛼 ≠ 𝛼−1 ≠ ∅
∅ ⊆ 𝛼⋂𝛼−1 ⊆ id

〈𝑥, 𝑗〉 ∈ 𝛼 ⋀〈𝑥,𝑘〉 ∈ 𝛼−1 ⇒ (𝑗 = 𝑘)
�.                                        (4.9) 

Perhaps, it make possible for relation to be transitive not being reflexive, but probably pseu-
do-reflexive or even – anti-reflexive. The last ones is defined by its empty intersection with 
diagonal 

𝜌⋂ id = ∅.                                                          (4.10) 

In this terms reflexivity looks like 

𝜌⋂ id = id.                                                         (4.11) 

Pseudo-reflexivity is 

𝜌⋂ id = 𝜌.                                                        (4.12) 

Usually relations defining by formulae (4.9) are called anti-symmetrical. If in equality (4.11) 
to assume equality 𝜌 = 𝛼⋂𝛼−1 it leads it into appearance (𝛼⋂𝛼−1)⋂ id = id and recall of 
intersection idem-potency leads to equality 

𝛼⋂𝛼−1 = id.                                                      (4.13) 

This is criterion of anti-symmetric relation reflexivity; and this one makes left inclusion (4.9) 
proper. It’s clear while intersection (4.9) is empty, we deal with disjoint relations 𝛼 and 𝛼−1. 
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As far as neither anti-symmetrical relation nor reversal one is not empty, there may be written 
inclusion ∅ = 𝛼⋂𝛼−1 ⋂ id ⊆ id. Surely, these criteria point out reflexive occurrence are in-
direct but it is not principal – more important thing is reflexive appearance of their intersec-
tion – it plays the main role in their conversion. 

Coincidence of all kind invariances in diagonal compositions was also failed to take 
into account. It may be expressed by equalities 

[id ∘ (id)−1]−1 = [id ∘ (id)−1]+ = id ∘ (id)−1 = id.                     (4.14) 

And if another equivalence 𝜀, which differs from diagonal, is established on a set, the last 
equality here is not fulfilled 

𝜀 ∘ 𝜀−1 = (𝜀 ∘ 𝜀−1)−1 = (𝜀 ∘ 𝜀−1)+ = 𝜀−1 ∘ 𝜀 ⊃ id.                        (4.15) 

To find explicit form of such equivalences there may note that according to formulae (3.10) 
some compositions of anti-symmetric relations are symmetric. Really, there may be written 

�(𝛼 ∘ 𝛼
−1)−1 = (𝛼−1)−1 ∘ 𝛼−1 = 𝛼 ∘ 𝛼−1

(𝛼−1 ∘ 𝛼)−1 = 𝛼−1 ∘ (𝛼−1)−1 = 𝛼−1 ∘ 𝛼
�.                                (4.16) 

As opposed to diagonal composition commutativity of theses ones is probable but is quite not 
inherent. Its reason is that such compositions are not associated with each other by inversion. 
But they are associated by transposition. In general, summarizing, the last equality (4.15) dis-
sociates into two inclusions. They might be written together as 

�
𝛼 ∘ 𝛼−1 ⊃ id
𝛼−1 ∘ 𝛼 ⊂ id

(𝛼 ∘ 𝛼−1)+ = 𝛼−1 ∘ 𝛼
�.                                                 (4.15) 

So, the first composition is reflexive, but the second one is pseudo-reflexive – that’s why it is 
not equivalence. In spite of symmetry it is not transitive 

𝛼−1 ∘ 𝛼 ∘ 𝛼−1 ∘ 𝛼 ⊇ 𝛼−1 ∘ id ∘ 𝛼 = 𝛼−1 ∘ 𝛼. 

Such inclusion direction is not proper to conjunction this expression is contradictive – it does 
not exist, instead of it its negation occurs 

𝛼−1 ∘ 𝛼 ∘ 𝛼−1 ∘ 𝛼 ⊈ 𝛼−1 ∘ id ∘ 𝛼 = 𝛼−1 ∘ 𝛼. 

It may be named as intransitivity – for some relation4

                                                           
4 There may be written for anti-transitivity 

 𝜌 it is defined by negation of implica-
tion (4.1) 

�
〈𝑥, 𝑖〉 ∈ 𝜌 ⋀〈𝑖,𝑦〉 ∈ 𝜌 ⇒ 〈𝑥,𝑦〉 ∉ 𝜌

𝑥𝜌𝑖 ⋀ 𝑖𝜌𝑦 ⇒ 𝑥¬𝜌𝑦
{〈𝑥,𝑦〉: 〈𝑥, 𝑖〉 ∈ 𝜌 ⋀〈𝑖,𝑦〉 ∈ 𝜌} ⊆ {〈𝑥,𝑦〉: 〈𝑥,𝑦〉 ∉ 𝜌}

𝜌 ∘ 𝜌 ⊆ ¬𝜌

�.                                      (4.16*) 

There may be said that it is something akin to be nonempty subset of null. So it rather doesn’t exist. 
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�
〈𝑥, 𝑖〉 ∈ 𝜌⋀〈𝑖,𝑦〉 ∈ 𝜌 ⇏ 〈𝑥,𝑦〉 ∈ 𝜌

𝑥𝜌𝑖 ⋀ 𝑖𝜌𝑦 ⇏ 𝑥𝜌𝑦
{〈𝑥,𝑦〉: 〈𝑥, 𝑖〉 ∈ 𝜌⋀〈𝑖, 𝑦〉 ∈ 𝜌} ⊈ {〈𝑥,𝑦〉: 〈𝑥,𝑦〉 ∈ 𝜌}

𝜌 ∘ 𝜌 ⊈ 𝜌

�.                      (4.16) 

Also it’s easy to show that reflexive composition is genuine equivalence – transitive relation 

𝛼 ∘ (𝛼 ∘ 𝛼−1) ∘ 𝛼−1 ⊆ 𝛼 ∘ id ∘ 𝛼−1 = 𝛼 ∘ 𝛼−1.                               (4.17) 

In contrast to genuine equivalence this pseudo-reflexive symmetrical but non-transitive com-
position, perhaps, there may appropriately call pseudo-equivalence5

By congruence of definitions anti-symmetry is quite not direct negation of symmetry, 
though, reflexivity is not a direct negation of another its appearance. But non-transitivity is 
the negation for transitivity. Perhaps it is due to intersection which is used in their definitions 
– its reversibility is not defined. So, there may suppose existence of some “interstitial” sym-
metry appearance – some relations 𝜇 which are opposite to described ones above – implica-
tions (4.8) and (4.9) 

. At the same time, proba-
bility to be equivalence is not excluded for both compositions. But anyway opposite inclusion 
for these compositions is not possible. 

�〈𝑥, 𝑗〉 ∈ 𝜇 ⋀〈𝑥,𝑘〉 ∈ 𝜇−1 ⇔ (𝑗 ≠ 𝑘)
𝜇⋂𝜇−1 = ∅

�.                                   (4.18) 

As a rule, such relations are called asymmetrical. It is easy to show that they are always anti-
reflexive 

𝜇⋂ id = ∅.                                                         (4.19) 

Really, presence of inequality in the right part of bi-conditional (4.19) allows writing contra-
position to implication (4.3) 

〈𝑥, 𝑖〉 ∈ 𝜇 ⇒ 〈𝑖, 𝑥〉 ∉ 𝜇−1.                                              (4.20) 

It makes asymmetrical relations to be irreversible and it corresponds to inequalities 𝑗 ≠ 𝑘 ≠ 𝑖. 
The left part of definition (4.18) may be written as 

〈𝑥, 𝑖〉 ∈ 𝜇 ⋀〈𝑖, 𝑥〉 ∉ 𝜇−1 ⇒ 〈𝑥, 𝑥〉 ∉ 𝜇 ⋀〈𝑖, 𝑖〉 ∈ id.                            (4.21) 

It corresponds to equality (4.19) for non-empty intersection operands. Hence, “conversion” of 
asymmetrical relations is possible just like a negation of initial one 

𝜇−1 = ¬𝜇.                                                         (4.22) 

Anti-symmetrical relations are free from condition (4.20) – instead of equality (4.22) there 
may be written inequalities 

𝛼 ≠ 𝛼−1 ≠ ¬𝛼.                                                       (4.23) 

                                                           
5 But usually it is more known as tolerance. 
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Therefore reversibility of the last one is possible. And it will be continued in further issue. 

An example of asymmetric relation is an element membership to some disordered set. 
The only possible implication that might be formally written in this case is 

(𝑎 ∈ 𝐴)⋀(𝐴 ∈−1 𝑏) ⇔ (𝑎 ∈ 𝐴)⋀(𝐴 ∉ 𝑏) ⇒ (𝑎 ∉ 𝑏). (4.24) 

That’s why we couldn’t talk about transitivity of asymmetrical relation. In this case the left 
part of inclusion (4.1) should be written as 

〈𝑥, 𝑗〉 ∈ 𝜇 ⋀〈𝑗,𝑦〉 ∈ 𝜇. 

But it’s impossible because elements sequence order changing in these pairs leads to replace-
ment of element 𝑗 by another element 𝑘 ≠ 𝑗. It is necessarily due to irreversibility of asym-
metric relations. 
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