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Abstract: In a previous series of papers relating to the Combined Gravitational Action (CGA), we have 

exclusively studied orbital motion without spin. In the present paper we apply CGA to any self-rotating 

material body, i.e., an axially spinning massive object, which itself may be locally seen as a gravito-

rotational source because it is capable of generating the gravito-rotational (field) acceleration, which 

seems to be unknown to previously existing theories of gravity. The consequences of such an acceleration 

are very interesting, particularly for Compact Stellar Objects and Sun.  
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1. Introduction 

1.1. A brief summary of the CGA 

 

      We feel that we are obliged to give a careful physical justification to the creation of the 

Combined Gravitational Action (CGA) as a refinement and a generalization of the Newton's 

gravity theory. The key idea in the CGA-formalism is the physical fact of taking into account the 

relative motion of the test(secondary)body which is under the gravitational influence of the 

primary one. Historically, the idea itself is not new since Laplace [1], Lorentz [2], Poincaré [3,4] 

and Oppenheim [5] have already thought of adjusting the Newton's law of gravitation by adding 

a certain velocity-dependent-term, but unfortunately their effort could not explain, e.g., the 

remaining secular perihelion advance rate of Mercury discovered by Le Verrier in 1859. We 

have previously shown in a series of articles [6,7,8,9,10] that the CGA as an alternative gravity 

theory is very capable of investigating, explaining and predicting, in its proper framework, some 

old and new gravitational phenomena. Conceptually, the CGA is basically founded on the 

concept of the combined gravitational potential energy (CGPE) which is actually a new form of 

velocity-dependent-GPE defined by the expression 
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where GMmk  ; G  being Newton’s gravitational constant; M and m  are the masses of the 

gravitational source A and the moving test-body B ; 
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to the inertial reference frame of source A ; and w  is a specific kinematical parameter having the 

physical dimensions of a constant velocity defined by  
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where c  is the light speed in local vacuum and escv  is the escape velocity at the surface of the 

gravitational source A.  

 

       In the CGA-context, the velocity-dependent-GPE (1) is simply called CGPE because it is, in 

fact, a combination of the static-GPE 1)(  rkrV  and the dynamic-GPE 21 )/()( wrk,rW vv  . 

The main difference between the CGPE (1) as a generalization of classical GPE and the 

previously well-known velocity-dependent-GPEs is clearly situated in the originality and 

simplicity of Eq.(1), which may be rewritten in the form  21 )/(1)( w, rrkrrUU     , with 

dtdrrv /  . The originality of CGPE is reflected by the fact that the CGPE is explicitly 

depending on r  and v  but also is implicitly depending on w  since the latter is, by definition, ‒ a 

specific kinematical parameter having the physical dimensions of a constant velocity ‒ .The 

implicit dependence of CGPE on w  is expressed in terms of ‘inside the vicinity of A’ and 
‘outside the vicinity of A’ in (2). Furthermore, the CGPE may be reduced to the static-GPE when 

wv <<  or 0v . Thus the main physical reason for the choice of the expression (1) for the 

CGPE lies in its consequence as a generalization of the static-GPE.  

      Now, let us show when and how we could apply the CGA. As we know, the Newton's 

gravitational theory is a very good depiction of gravity for many situations of practical, 

astronomical and cosmological interest.  However, it is currently well established that the 

Newton's theory is only an approximate description of the law of gravity. As early as the middle 

of the nineteenth century, observations of the Mercury's orbit revealed a discrepancy with the 

prediction of Newton's gravity theory. In fact, this famous discrepancy was historically the first 

evidence of the limit of validity of Newtonian gravity theory. This disagreement between theory 

and observations was resolved by taking into account the CGA-effects inside and outside the 

solar system [6,7,8,9], which are known as the crucial tests support the general relativity theory 

(GRT).   

     On the whole, the criterion that we should use to decide whether to employ Newton's gravity 

or CGA is the magnitude of a dimensionless physical quantity called the "CGA-correction 

factor" : 
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which is actually derived from (1) and (2) for the case when  the test-body B is evolving inside 

the vicinity of the gravitational source A. The same dimensionless physical quantity (3) exists in 

GRT and for this reason we have already shown in Ref.[10] the existence of an important 

similarity between the CGA-equations of motion and those of GRT. Moreover, it is worthwhile 

to note that the smaller this factor (3), the bitter is Newtonian gravity theory as an 
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approximation. As an  illustration, we have e.g., for the system {Earth, Moon}: 
1110ȗ  and for 

the system {Sun, Earth}: 
810ȗ  .      

 

       Hence, starting from the CGPE and using only the very familiar tools of classical 

gravitomechanics and the Euler-Lagrange equations, we have established the CGA-formalism 

[6,7,8,9,10] .The main consequence of CGA is the dynamic gravitational field (DGF),Λ , which 

is phenomenologically an induced field that is more precisely a sort of gravitational induction 

due to the relative motion of material body inside the vicinity of the gravitational source 

[6,7,8,9,10]. In general, the magnitude of DGF is of the form 
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      Eq.(4) means that DGF may play a double role, that is to say, when perceived/interpreted as 

an extra-gravitational acceleration, 0Λ  , or an extra-gravitational deceleration, 0Λ , (see Ref. 

[8] for a detailed discussion).  

 

     In the papers [6,7,8,9,10] we have exclusively focused our interest on the orbital motion and 

gravitational two-body problem. In the present paper, we shall apply CGA to any self-rotating 

(spinning) material body, i.e., axially rotating massive object that itself may be locally seen as a 

gravito-rotational source since it is capable of generating the gravito-rotational (field) 

acceleration λ , which seems to be unknown to previous theories of gravity.  

 

2. Concept of the Gravito-rotational Acceleration  

 

      Phenomenologically, the concept of the gravito-rotational acceleration  (GRA), λ , is very 

similar to DGF, that is if Λ  is mainly induced by the relative motion of the massive test body in 

the vicinity of the principal gravitational source, the GRA is intrinsically generated by any 

massive body in a state of rotational motion, independently of the principal gravitational source, 

which itself may be characterized by its proper GRA during its axial-rotation, and therefore the 

GRA is, in fact, a combination of gravity and rotation. 

 

3. Expression of GRA's magnitude 

 

       In order to derive an explicit expression for GRA's magnitude, let us first rewrite Eq.(4) for 

the case when 0Λ  , that is   

                                                               

2

2
Λ 








w

v

r

GM
  ,                                                           (5)  

 

and consider a massive body of mass M and radius R , which is intrinsically in a state of  axial-

rotation in its proper reference frame at rotational velocity of magnitude Rv Ωrot   
independently of the presence of any other gravitational source. Therefore, according to the 

concept of GRA, in such a case, the rotating/spinning massive body should be locally seen as a 
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gravito-rotational source when λ λΛ  as Rr  , rotvv   and cw , thus (5) becomes 

after substitution 
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Since 1π2Ω  P , where P is the rotational period, hence we get after substitution into (6), the 

expected expression of GRA's magnitude 
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     It is clear from Eq.(7), λ  depends exclusively on the mass and rotational period, therefore, 

mathematically may be treated as a function of the form  PM ,λλ . Moreover, the structure of 

Eq.(7) allows us to affirm that for any astrophysical massive object, the magnitude of λ  should 

be infinitesimally small for slowly rotating massive stellar objects and enormous for rapidly 

rotating ones. Furthermore, in order to confirm our assertion numerically, we have selected 

seven well-known (binary) pulsars and calculated their GRAs' magnitudes, and compared them 

with the magnitude of the Sun’s GRA. The values are listed in Table 1. 

 

                                                                                  

                                        OBJECT                                              P                            M                                         λ                                REF.                                                         

                       Sun + PRS                             s                           ΘM                        -2sm                                               

          

                     Sun                           2.164320
6

10                1                      1.244823
-8

10      
               

                  
                   

            

                     B 1913+16                5.903000
-2

10               1.4410  
                 

2.409380
7

10  
          

       a  
             

               

                       B 1534+12                  3.790000
-2

10                 1.3400                5.435171
7

10                  b,c 
    

                                       

                       B 2127+11C               3.053000
-2

10                 1.3600                8.501044
7

10                  d                      

                       B 1257+12                  6.200000
-3

10                 1.4000                2.121932
9

10                   e                      

                       J 0737-3039               2.280000
-2

10                 1.3381                1.500000
8

10                   f                                

                       B 1937+21                 1.557800
-3

10                  1.4000                3.364000
10

10                  g                      

                       J 1748-2446ad          1.395000
-3

10                  1.4000                4.194982
10

10                  h     

   

   Table 1: The values of GRA's magnitude for seven well-known (binary) pulsars compared with that of the Sun. 

 

   Ref.: a) Taylor and Weisberg [11]; b) Arzoumanian  [12]; c) Wolszcan [13]; d) Deich and Kulkarni [14]; 

   e) Konacki and Wolszcan [15]; f) Kramer and Wex [16]; g) Takahashi et al. [17]; 

   h) Hessels et al. [18]. 

   Note: To calculate these values, we have used 
21311

skgm1067384.6
G , 

1
sm299792458
c  ,       

         kg109891.1
30

Θ M
 
and sidereal rotation period at equator d05.25Θ P .  
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       Analysis of Table1 gives us the following results: 1) The magnitude of the Sun’s GRA, 
28

Θ sm10244823.1λ  , is extremely  weak  that’s why its effect on the solar system is 

unobservable, but perhaps it is only the Sun’s immediate vicinity that should be affected by it. 

Since GRA is explicitly independent of the radius of the rotating massive object thus the extreme 

weakness of the magnitude of the Sun’s GRA is mainly due to the huge value of the rotational 

period, s10164320.2 6

Θ P , compared with those of the pulsars. 2) In spite of the fact that the 

pulsars' masses are nearly equal, the pulsars' rotational periods show a neat inequality between 

them. Also, the different values of GRA's magnitude for each celestial object show us how 

sensitive GRA is to variation in rotational period.  

 

4. Mutual dependence between the Mass and the Rotational Period 

 

      Since GRA's magnitude may be treated as a function of the form  PM ,λλ  hence we can 

show more clearly the existence of the mutual dependence between the mass and rotational 

period of the same rotating body via GRA's magnitude. For this purpose, we deduce from Eq.(7) 

the following expression 

                                                                      λ1

2
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P

M
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      Obviously, Eq.(8) shows us the expected mutual dependence between the mass and rotational 

period via GRA's magnitude. Moreover, because the rotational period is an intrinsic physical 

quantity, here, according to Eq.(8), the  spin of any massive celestial body should vary with mass 

independently of cosmic time. 

 

5. Link between GRA and Rotational Acceleration 

 

        Now, returning to Eq.(7) and showing that GRA's magnitude and the rotational acceleration  

 

                                                                     Ra 2

rot Ω ,                                                             (9) 

 

are in fact proportional, rotλ a , and the constant of proportionality is precisely the compactness 

factor RcGMε 2/
 

that characterizes any massive celestial body. To this end, it suffices to 

multiply and divide by the radius R  the right hand side of Eq.(7) to get the expected expression 

 

                                                                                     rotλ aε .                                                             (10) 

 

       According to the expression (10), GRA is at the same time an old and a new natural physical 

quantity that should play a crucial role, especially for compact stellar objects, e.g., the rotating 

neutron stars and pulsars for which the compactness ε  has a large value compared to that of 

normal stellar objects. By way of illustration, the Sun’s compactness has the value 
6

Θ 10123679.2 ε . 
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6. Consequences of GRA 

 

      In what follows we will show that, in the CGA-context , the transitional state, dynamical 

stability and instability of a uniformly rotating neutron star (NS) depend on the ‘antagonism’ 
between centrifugal force and gravitational force, or in energetic terms, between rotational 

kinetic energy (RKE) and gravitational binding energy (GBE). 

 

       Usually the physics of NS considers that the source of the emitted energy is essentially the 

RKE, however, such a consideration should immediately imply that, at least in the medium term, 

the GBE should absolutely dominate the RKE and as a result the NS should be prematurely in a 

state of gravitational collapse. Hence, as we will see, the main source of the emitted energy is not 

the RKE but the gravito-rotational energy (GRE), a sort of new physical quantity which is a 

direct consequence of GRA.  

 

       Let us now determine the conditions of transitional state, dynamical stability and instability 

that may be characterized any NS at least in the medium term. With this aim , we assume a 

uniformly rotating NS as a homogeneous rigid spherical body of mass M, radius R and angular 

velocity 1π2Ω  P , where P is the rotational period. The NS's RKE and GBE are, respectively, 

defined by the well-known formulae:  

  

  
                                                                       

2

rot 2
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and 
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where  52 /2MRI    is the moment of inertia of NS under consideration. Hence, the total energy 

is 

                                                                       
g

EEW  rot ,                                                      (13) 

which presents the following conditions: 

 

a) 0W , NS is in a state of dynamical stability,         

b) 0W , NS is in a state of transition, 

c) 0>W , NS is in a state of dynamical instability. 

                                                                           

It is worth noting that the three suggested conditions a), b) and c) are taken in the medium term 

because NS may be suddenly in a state of dynamical perturbation or in a state of transition from 

stability to instability and vice versa. 

7. Critical Rotational Period 

 

      Knowing the critical rotational period (CRP) of NS is very important because CRP should be 

treated as a parameter of reference on which the temporal evolution of NS depends. Furthermore, 

since the change from stability to instability and vice versa should pass obligatorily via the 
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transitional state, therefore, an expression for the CRP may be deduced from the transitional state 

(b), so after performing  a simple algebraic calculation, we get the following expected expression 

 

                                                                     
GM

R
RπP

3
2c  .                                                         (14) 

 

We can numerically evaluate the CRP by taking, through this paper, the standard NS mass and 

radius, namely,  MM 1.4  and km10R , thus by substituting these values into (14), we find 

 

                                                  
ms2661.010660963.2 4

c  P ,                                          (15) 

which is a tiny fraction of the smallest yet observed rotational period, ms3950.1P , of PRS 

J1748-2446ab [13]. Further, according to (15), the critical value of GRA's magnitude for a 

standard NS should be 

                                                                   212

c ms10153.1λ  .                                                    (16) 

 

8. Gravito-rotational Energy 

 

      Now we approach the most important consequence of GRA, that is, the gravito-rotational 

energy (GRE), which should qualitatively and quantitatively characterize any massive rotating 

body. As we will see, GRE is quantitatively very comparable to the amount of RKE, particularly 

for NS and pulsars. Since GRE is a direct consequence of GRA, hence GRE should be 

proportional to GRA's magnitude, i.e.,
 

λE  or equivalently 

 

                                                                        ȜȘE  .                                                             (17)  

 

Let us determine the constant of the proportionality Ș  by using dimensional analysis as follows: 

 

                                                       [ Ș ] =
]λ[
][E

=
2

22

TL

TLM




= LM .    

 

we can remark that the dimensional quantity LM  has the physical dimensions of the product of 

mass and length, therefore, for our case Ș  should take the form RIMRȘ 25 /  and by 

substituting into (17), we find the required expression for GRE 

 

                                                                     R

IȜ
2
5E  .                                                            (18) 

 

      In order to show that the amount of GRE E is quantitatively very comparable to that of 

RKE, particularly for the compact stellar objects, we can use Table 1. The numerical values of 

rotE  and E are listed in Table 2.  
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                                       OBJECT                                                        rotE                                                 E                                                                                                             

                                Sun + PRS                                     J                                               (J)                                             

 

                             Sun                                     2.3900
35

10                           2.5401
30

10      
               

                  
                   

            

                             B 1913+16                          6.4948
41

10                           6.9180
41

10  
          

                     
             

               

                                B 1534+12                             1.4651
42

10                              1.4500
42

10                                
    

                                   

                                B 2127+11C                          2.2915
42

10                              2.3010
42

10                                                    

                                B 1257+12                            5.7200
43

10                               5.9140
43

10                                                      

                                J 0737-3039                          4.0426
42

10                              4.0000
42

10                                                                

                                B 1937+21                            9.0604
44

10                               9.3680
44

10                                                     

                               J 1748-2446ad                      1.1300
45

10                               1.1680
45

10                                     

   

                     Table 2: Comparison of the numerical values of rotE  and E  for the Sun and seven well 

                      known (binary) pulsars.  

                      Note: To calculate  the Sun's rotE  and E , we have used the relation 059.0
2/ MRI  .  

                       

      Analysis of Table 2: The numerical values listed in Table 2 show us, excepting the Sun’s 

values, that all the values of rotE  and E are very comparable for the seven (binary) pulsars. This 

fact is mainly due, at the same time, to the rotational period and the compactness ε . To illustrate 

this fact, let us return to the expression (18) which may be written as follows: 

 

                                                                   
rotEε5E  .                                                            (19) 

 And as 15 ε  for the NSs hence that's why rotEE  as it is well illustrated in Table 2. From all 

this we arrive at the following result: In the CGA-context, the RKE cannot be considered as the 

main source of the emitted energy for rotating neutron stars and pulsars because ‒in energetic 

terms‒ its own role is to balance, approximately, the GBE, at least in the medium term. 

Therefore, the veritable principal source of the emitted energy should undoubtedly be GRE, as 

illustrated by the GRE numerical values listed in Table 2, which are quantitatively very 

comparable to those of RKE for pulsars. Moreover, if we take into account the critical value of 

GRA's magnitude (16), we get the following critical value for GRE  

 

                                                  
erg103.210J10210.3 5346

c E .                                        (20) 

 

9. Rotating Magnetars      
 

       Rotating magnetized neutron stars (magnetars) are also important compact stellar objects. 

That's why it is possible, in the CGA-context, to exploit GRE as an energetic reservoir for 

rotating magnetars by assuming that there is a certain physical mechanism that can convert all or 

at least a significant part of GRE into an extreme internal magnetic energy:  
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                                                               E 32RBEB
(erg),                                                   (21)                            

 

which could, of course, produce an extreme internal magnetic field strength  

 

                                                                        3 RB E   (G).                                                     (22) 

      

The observed surface (external) dipole magnetic field strength 0B  would be lower than the 

internal field strength B defined by (22). Besides the internal magnetic field there is the critical 

internal magnetic field whose strength may be evaluated according to (20) and (22) as follows: 

 

                                                                3

cc

 RB E  (G).                                                      (23)  

  

As an illustration, let us evaluate the strength of internal magnetic field of radio pulsar B 

1931+24. We have according to Ref.[19] the following parameters:
 

s813.0P  and 

G103 12

0 B . By taking, as usual,  MM 1.4
 

and km10R , we find for GRE 

erg10440.3 46E , and after substitution into (22), we obtain 

 

                                                              G101.855 14B .                                                        (24)                                             

 

       Now, let us evaluate the critical strength of internal magnetic field of pulsar B 1931+24. We 

have according to (23), the following  value 

 

                                                             
G105.666 17

c B .                                                       (25)                                                                                                      

 

10. The Sun 

 

      Contrary to the compact stellar objects like, e.g., white dwarfs, neutron stars and pulsars, 

the Sun is a main-sequence star, and thus generates its energy by nuclear fusion of hydrogen 

nuclei into helium, and it is characterized by the following evident proprieties: 

  

-The Sun's interior is in hydrostatic equilibrium. 

- Nuclear fusion (reactions) is the main energetic source of the Sun. 

-Energy is carried away from the Sun's core by radiative diffusion and convection. 

-The Sun's interior can be probed by helioseismology. 
-The Sun's magnetic field is, at the same time, the engine and energy source driving all 

phenomena collectively defining solar activity. 

 

     Since the nuclear fusion is the principal source of the Sun's energy, so how does the Sun 

strike a perfect balance between the explosive forces of fusion and the implosive forces of self 

gravity? 

 

     The perfect balance be between fusion and gravity ‒or in energetic terms, between 
fusion energy and gravitational binding energy‒ is mainly due to the fact that the Sun 

possesses a property which serves as an auto-regulation mechanism for the fusion 
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reaction. When the force due to pressure exactly balances the force due to gravity, a system is 

in hydrostatic equilibrium. The Sun's hydrostatic equilibrium is stable. The balance is achieved 

by auto-regulation: a slight decrease in fusion energy would result in contraction that would heat 

up the core and increase fusion rate, and vice versa. 

  

    Thus, phenomenologically, the  reason that the Sun neither expands nor collapses is that the 

two forces keep the balance. In the distant future, when this balance is disturbed because most of 

the hydrogen is used up, the Sun will expand. This will be the end of the solar system as we 

know it.  

 

10.1. Central Magnetic Field 

 

Since half-century, the stellar magnetism of massive stars was and is modeled according to the 

fossil-field theory  and core dynamo theory. However, these two conceptual explanations are not 

the last word. Why? Because: the principal weakness of the fossil-field theory has been the 

absence of filed configurations stable enough to survive in a star over its lifetime. In other words, 

the fossil magnetic field, as a primordial magnetic field should disintegrate, decrease and vanish 

rapidly due, among other thing, to Ohmic decay and magnetic energy dissipation. The dynamo 

theory has difficulty explaining high field strengths and the lack of a correlation with rotation. 

However, if we assume that the Sun's (global) internal dynamic stability is essentially ensured by 

the internal differential rotation, and the fossil (magnetic) theory and the core dynamo theory are 

not the unique source of the Sun's internal/external magnetic fields, thus there is another source 

which is the central magnetic field (CMF). The mechanism of the partial or total transformation 

of GRE into magnetic energy generating the CMF which subsequently diffused throughout the 

Sun. This CMF is supposed to be sufficiently large-scale such that its decay time is at least 

comparable with the Sun's age [19] but adequately concentrated to the center that it should not 

distort the observed (almost spherical) shape of the Sun [20] and also it should not violate the 

virial theorem [21].   

 

     Thus CMF should be the principal source of the Sun's internal magnetic fields (IMFs). But the 

natural question is: How can CMF generate IMFs? It is due to the contribution of (partial and 

progressive) radial magnetic diffusion and the local mechanism of regeneration and 

amplification that lead to local IMFs. Accordingly, the regeneration and amplification of IMFs is 

purely local occurrence. For that reason, the observed (10% of) massive stars with very strong 

surface fields should be characterized by a very high amount of the GRE than the others (90% 

with no detectable fields). The same considerations should be theoretically applicable equally to 

Ap stars, magnetic white dwarfs and some highly magnetized neutron stars known as magnetars. 

This establishes the CMF as the natural, unifying explanation for the stellar magnetism. 

Historically speaking, the hypothesis of CMF in the Sun had been proposed in 1973 by Chitre, 

Ezer and Stothers [22] to explain the low solar neutrino flux measured by Davis [23]. 

 

     Concerning the Sun's IMF, in 1989,  Dziembowski and Good had already developed an 

important helioseismological model from which they determined the quadrupole toroidal 

magnetic field near the base of the Sun's convection zone [24]. Basing exclusively on the 

oscillation data of Libbrech [25] which yield information about the IMF strength between 0.6 
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and 0.8 of the Sun's radius; they found that the strength of this IMF is G102 6 . However, In 

their seminal article entitled “Solar Neutrino and a Central Magnetic Field in the Sunˮ Chitre, 

Ezer and Stothers found the value of G109  for the strength of the Sun's CMF ‒under certain 
considerations proper to their hypothesis [22]. Again, the two results reinforce in some way our 

initial claim, i.e., the CMF should be the principal source of the Sun's IMFs.  

 

10.2. Theoretical average strengths of the Sun's CMF  

 

      Finally, let us focus our attention on the formula (22). At first glance, the verification of this 

formula seems to be experimentally and/or observationally out of any expectation. Luckily, the 

situation is not practically so complicated since we have the Sun that may serve as a veritable 

celestial laboratory enabling us to understand physical processes that take place inside the Sun as 

well as in other similar stellar bodies and also to test some new gravity theories. Now, let us 

evaluate the strengths of the Sun's CMF by applying the formula (22). However, in order to be 

sufficiently close to the reality, we are naturally obliged to suppose that the theoretical average 

strengths of the CMF should be a function of radius. Consequently, the formula (22) may be 

rewritten as follows 

                                                              IRRBB Ȝ
2

52  .                                                   (26)                                                   

 

Furthermore, the well-known solar internal structure allows us to investigate numerically the 

behavior/features (rapidly increasing and/or slowly decreasing) of the Sun's CMF by evaluating, 

on average, the strengths of CMF in different layers inside the core. Explicitly, we have to 

evaluate the theoretical average strengths of CMF in the radial region Θ2.0 RRr 
g (i.e., the 

core, where 2

Θ
 cGMr

g
 is the Sun's gravitational radius) and its theoretical maximum strength 

should be evaluated at the Sun's gravitational radius.  

 

‒Theoretical maximum strength of the Sun's CMF: Formula (26) permits us to evaluate the 

theoretical maximum strength of the Sun's CMF at the Sun's gravitational radius, 

cm10477.1 5
g

r , and we get after a direct numerical application  

 

                                                       G101.6 13

ΘΘ
2

max 2

5   IrrBB Ȝ
gg

.                              (27)                              

 

      
Quantitatively and qualitatively, the theoretical maximum value, G101.6 13

max B , of the 

Sun's CMF strength gives us an idea about the origin, localization and distribution of the Sun's 

IMF. That is, as it was already mentioned explicitly, the IMF is just a local manifestation of a 

small portion of the CMF via the progressive radial magnetic diffusion and the local mechanism 

of regeneration and amplification.  

 

‒ Numerical investigation of the Sun's CMF strengths: In order to illustrate numerically the 

behavior/features of the Sun's CMF strengths as a function of radius, it is heuristically judged 

important to split the interval Θ2.0 RRr 
g  in two subintervals, namely, 100/1 

g
rR  and 
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20.0/01.0 Θ  RR . In the context of the present work, we call the first subinterval ދcritical core 

regionތ in which there is a strong centrally concentrated MF. The values of the Sun's CMF 

strengths are listed in Tables 3,4,5 and 6 for the first and second subinterval, respectively. 

 

 

 Table 3 Table 4 

                                                                              

                     
g

rR/                    RB                                                                                       g
rR/                           RB                                                                          

                                                (G)                                                                                              (G) 

 

                   1                6.100
13

10                                                      55                 2.015
10

10                                

                   5                2.438
12

10
                                                     

60                 1.693
10

10                      
               

                  
     

                 15                2.710
11

10                                                      65                 1.443
10

10                      
               

                  
     

                   20                 1.524
11

10                                                            70                   1.244
10

10              
    

                                       

                   25                 9.754
10

10                                                            75                   1.083
10

10             

                   30                 6.774
10

10                                                             80                   9.526
9

10                

                   35                 4.976
10

10                                                             85                   8.438
9

10                                

                   40                 3.810
10

10                                                             90                   7.526
9

10                            

                   45                 3.010
10

10                                                             95                   6.755
9

10                

                   50                 2.438
10

10                                                           100                   6.100
9

10                

                      

                           

       Numerical values of  the Sun's CMF strengths are listen for 100/1 
g

rR , where cm10477.1
5

g
r

 

       
is the Sun's gravitational radius. 

       Note: To calculate B ≡ B(R), we have used the formula (26), and the Sun's ΘȜ and ΘI .   

 

 

                        Tables 5 Tables 6
 

                                                                                    

                     RR/                   RB                                                                                       RR/                         RB                                                                          

                                                 (G)                                                                                              (G) 

 

                  0.01             2.750
6

10                                                      0.11               2.272
4

10                                

                  0.02             6.873
5

10
                                                    

 0.12               1.910
4

10                      
               

                  
      

                  0.03             3.055
5

10                                                      0.13               1.626
4

10                      
               

                  
      

                   0.04               1.718
5

10                                                            0.14                 1.402
4

10              
    

                                       

                   0.05               1.100
5

10                                                            0.15                 1.222
4

10             

                   0.06               7.637
4

10                                                            0.16                 1.074
4

10                
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                   0.07              5.611
4

10                                                            0.17                 9.513
3

10                                

                   0.08              4.296
4

10                                                            0.18                 8.486
3

10                            

                   0.09              3.394
4

10                                                            0.19                 7.616
3

10                

                   0.10              2.750
4

10                                                            0.20                 6.873
3

10                

                      

                          

    Numerical values of  the Sun's CMF strengths are listen for 20.0/01.0 Θ  RR , where cm1095508.6
10R

 

    
is the Sun's radius. 

 

‒ Analysis of Tables 3,4,5 and 6: As the reader can easily remark it, the Sun's CMF strengths 

decreasing very slowly on the subintervals 100/1 
g

rR  and 20.0/01.0 Θ  RR , this means the  

radial magnetic diffusion from inside to outside the core should be, as it was already mentioned, 

at the same time partial and progressive. Statistically, the value of G1010  seems to be the most 

predominant one since it is displayed uniformly. Hence, this feature allows us to suggest that, 

theoretically, the average strength of the Sun's CMF should be of the order of G1010 , which is 

only ten times the value found by Chitre, Ezer and Stothers [22].  

 

11. Concept of the Stellar Magnetic Permeability 

 

     The concept of the stellar magnetic permeability is mainly inspired by the fact that since in 

Nature, any material is physically characterized by its proper magnetic permeability, thus it is 

quite logical to postulate the existence of the magnetic permeability for the stellar material. In 

this sense, we defined the stellar magnetic permeability as follows: 

 

The stellar magnetic permeability is the measure of the ability of a stellar material to support the 

formation of a magnetic field within itself. 

 

     Therefore, the stellar magnetic permeability is the degree of magnetization that a stellar 

material obtains in response to an applied magnetic field. Since, in general, the stellar objects are 

characterized by an internal magnetic field  and an external magnetic field, hence, in the context 

of the present work, the stellar  magnetic permeability ȝ  is physico-mathematically defined by 

the expression                                                                     

                                                                         
ext

int
0

B

Bȝȝ  ,                                                        (28)                        

     

where 0ȝ  is the magnetic permeability of free space; intB  and extB  are, respectively, the strengths 

of internal and external magnetic field.‒ Conceptually, the stellar magnetic permeability should 
play an important role in stellar evolution.   

 

 

 

 

https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Magnetization
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12. Conclusion   

 

      Basing on our gravity model, Combined Gravitational Action, we have derived an explicit 

expression for the concept of gravito-rotational acceleration (GRA), which is unknown to 

previously established gravity theories. The most significant result of GRA is the gravito-

rotational energy (GRE), which should qualitatively and quantitatively characterize any massive 

rotating body. Furthermore, GRE is exploited as an energetic reservoir, particularly for neutron 

stars and pulsars.  Also, the hypothesis of the Sun's central magnetic field is revisited, 

investigated and exploited.  
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