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Abstract: In a previous series of papers relating to the Combined Gravitational Action (CGA), we have 

exclusively studied orbital motion without spin. In the present paper we apply CGA to any self-rotating 

material body, i.e., an axially spinning massive object, which itself may be locally seen as a 

gravitorotational source because it is capable of generating the gravitorotational acceleration field, which 

seems to be unknown to previously existing theories of gravity. The consequences of such an acceleration 

field are very interesting, particularly for Sun and Compact Stellar Objects.  
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1. Introduction 

1.1. A brief summary of the CGA 

 

      We feel that we are obliged to give a careful physical justification to the creation of the 

Combined Gravitational Action (CGA) as a refinement and a generalization of the Newton's 

gravity theory. The key idea in the CGA-formalism is the physical fact of taking into account the 

relative motion of the test(secondary)body which is under the gravitational influence of the 

primary one. Historically, the idea itself is not new since Laplace [1], Lorentz [2], Poincaré [3,4] 

and Oppenheim [5] have already thought of adjusting the Newton's law of gravitation by adding 

a certain velocity-dependent-term, but unfortunately their effort could not explain, e.g., the 

remaining secular perihelion advance rate of Mercury discovered by Le Verrier in 1859. We 

have previously shown in a series of articles [6,7,8,9,10] that the CGA as an alternative gravity 

theory is very capable of investigating, explaining and predicting, in its proper framework, some 

old and new gravitational phenomena. Conceptually, the CGA is basically founded on the 

concept of the combined gravitational potential energy (CGPE) which is actually a new form of 

velocity-dependent-GPE defined by the expression 
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where GMmk  ; G  being Newton’s gravitational constant; M and m  are the masses of the 

gravitational source A and the moving test-body B ; 
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to the inertial reference frame of source A ; and w  is a specific kinematical parameter having the 

physical dimensions of a constant velocity defined by  
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where 0c  is the light speed in local vacuum and escv  is the escape velocity at the surface of the 

gravitational source A.  

 

       In the CGA-context, the velocity-dependent-GPE (1) is simply called CGPE because it is, in 

fact, a combination of the static-GPE 1)(  rkrV  and the dynamic-GPE 21 )/()( wrk,rW vv  . 

The main difference between the CGPE (1) as a generalization of classical GPE and the 

previously well-known velocity-dependent-GPEs is clearly situated in the originality and 

simplicity of Eq.(1), which may be rewritten in the form  21 )/(1)( w, rrkrrUU     , with 

dtdrrv /  . The originality of CGPE is reflected by the fact that the CGPE is explicitly 

depending on r  and v  but also is implicitly depending on w  since the latter is, by definition, ‒ a 

specific kinematical parameter having the physical dimensions of a constant velocity ‒ .The 

implicit dependence of CGPE on w  is expressed in terms of ‘inside the vicinity of A’ and 
‘outside the vicinity of A’ in (2). Furthermore, the CGPE may be reduced to the static-GPE when 

wv <<  or 0v . Thus the main physical reason for the choice of the expression (1) for the 

CGPE lies in its consequence as a generalization of the static-GPE.  

      Now, let us show when and how we could apply the CGA. As we know, the Newton's 

gravitational theory is a very good depiction of gravity for many situations of practical, 

astronomical and cosmological interest.  However, it is currently well established that the 

Newton's theory is only an approximate description of the law of gravity. As early as the middle 

of the nineteenth century, observations of the Mercury's orbit revealed a discrepancy with the 

prediction of Newton's gravity theory. In fact, this famous discrepancy was historically the first 

evidence of the limit of validity of Newtonian gravity theory. This disagreement between theory 

and observations was resolved by taking into account the CGA-effects inside and outside the 

solar system [6,7,8,9], which are known as the crucial tests support the general relativity theory 

(GRT).   

     On the whole, the criterion that we should use to decide whether to employ Newton's gravity 

or CGA is the magnitude of a dimensionless physical quantity called the "CGA-correction 

factor" : 
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which is actually derived from (1) and (2) for the case when  the test-body B is evolving inside 

the vicinity of the gravitational source A. The same dimensionless physical quantity (3) exists in 

GRT and for this reason we have already shown in Ref.[10] the existence of an important 

similarity between the CGA-equations of motion and those of GRT. Moreover, it is worthwhile 

to note that the smaller this factor (3), the bitter is Newtonian gravity theory as an 
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approximation. As an  illustration, we have e.g., for the system {Earth, Moon}: 
1110ȗ  and for 

the system {Sun, Earth}: 
810ȗ  .      

 

       Hence, starting from the CGPE and using only the very familiar tools of classical 

gravitomechanics and the Euler-Lagrange equations, we have established the CGA-formalism 

[6,7,8,9,10] .The main consequence of CGA is the dynamic gravitational field (DGF),Λ , which 

is phenomenologically an induced field that is more precisely a sort of gravitational induction 

due to the relative motion of material body inside the vicinity of the gravitational source 

[6,7,8,9,10]. In general, the magnitude of DGF is of the form 
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      Eq.(3) means that DGF may play a double role, that is to say, when perceived/interpreted as 

an extra-gravitational acceleration, 0Λ  , or an extra-gravitational deceleration, 0Λ , (see Ref. 

[8] for a detailed discussion).  

 

     In the papers [6,7,8,9,10] we have exclusively focused our interest on the orbital motion and 

gravitational two-body problem. In the present paper, we shall apply CGA to any self-rotating 

(spinning) material body, i.e., axially rotating massive object that itself may be locally seen as a 

gravitorotational source since it is capable of generating the gravitorotational acceleration field 

λ , which seems to be unknown to previous theories of gravity.  

 

2. Concept of the Gravitorotational Acceleration Field 

 

      Phenomenologically speaking, the concept of the gravitorotational acceleration field 

(GRAF), λ , is very similar to DGF, that is if Λ  is mainly induced by the relative motion of the 

massive test body in the vicinity of the principal gravitational source, the GRAF is intrinsically 

generated by any massive body in a state of rotational motion, independently of the principal 

gravitational source, which itself may be characterized by its proper GRAF during its axial-

rotation, and therefore the gravitorotational acceleration field is, in fact, a combination of gravity 

and rotation. 

 

3. Expression of GRAF 

 

       In order to derive an explicit expression for GRAF, let us first rewrite Eq.(3) for the case 

when 0Λ  , that is   
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and consider a massive body of mass M and radius R , which is intrinsically in a state of  axial-

rotation in its proper reference frame at rotational velocity of magnitude Rv Ωrot   
independently of the presence of any other gravitational source. Therefore, according to the 
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concept of GRAF, in such a case, the rotating/spinning massive body should be locally seen as a 

gravitorotational source when λ λΛ  as Rr  , rotvv   and 0cw  , thus (4) becomes 

after substitution 
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Since 1π2Ω  P , where P is the rotational period, hence we get after substitution into (5), the 

expected expression of GRAF 
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     It is clear from Eq.(6), GRAF λ  depends exclusively on the mass and rotational period, 

therefore, mathematically may be treated as a function of the form  PM ,λλ . Moreover, the 

structure of Eq.(6) allows us to affirm that for any astrophysical massive object, the magnitude of 

λ  should be infinitesimally small for slowly rotating massive stellar objects and enormous for 

rapidly rotating ones. Furthermore, in order to confirm our assertion numerically, we have 

selected seven well-known (binary) pulsars and calculated their GRAFs, and compared them 

with the Sun’s GRAF. The values are listed in Table 1. 

 

                                                                                  

                                        OBJECT                                              P                            M                                         λ                                REF.                                                         

                       Sun + PRS                             s                          sunM                       -2sm                                               

          

                     Sun                           2.164320
6

10                1                      1.244823
-8

10      
               

                  
                   

            

                     B 1913+16                5.903000
-2

10               1.4410  
                 

2.409380
7

10  
          

       a  
             

               

                       B 1534+12                  3.790000
-2

10                 1.3400                5.435171
7

10                  b,c 
    

                                       

                       B 2127+11C               3.053000
-2

10                 1.3600                8.501044
7

10                  d                      

                       B 1257+12                  6.200000
-3

10                 1.4000                2.121932
9

10                   e                      

                       J 0737-3039               2.280000
-2

10                 1.3381                1.500000
8

10                   f                                

                       B 1937+21                 1.557800
-3

10                  1.4000                3.364000
10

10                  g                      

                       J 1748-2446ad          1.395000
-3

10                  1.4000                4.194982
10

10                  h     

   

     Table 1: The values of GRAF for seven well-known (binary) pulsars compared with the Sun’s GRAF value. 

     Ref.: a) Taylor and Weisberg [11]; b) Arzoumanian  [12]; c) Wolszcan [13]; d) Deich and Kulkarni [14]; 

     e) Konacki and Wolszcan [15]; f) Kramer and Wex [16]; g) Takahashi et al. [17]; 

    h) Hessels et al. [18]. 

     Note: To calculate these values, we have used 
21311

skgm1067384.6
G  ,

1

0 sm299792458
c  ,       

           kg109891.1
30

sun M
 
and sidereal rotation period at equator d05.25sun P .  

 

       Analysis of Table1 gives us the following results: 1) The magnitude of the Sun’s GRAF, 
28

sun sm10244823.1λ  , is extremely  weak  that’s why its effect on the solar system is 
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unobservable, but perhaps it is only the Sun’s immediate vicinity that should be affected by it. 

Since GRAF is explicitly independent of the radius of the rotating massive object, the extreme 

weakness of the Sun’s GRAF is mainly due to the huge value of the rotational period, 

s10164320.2 6

sun P , compared with those of the pulsars. 2) In spite of the fact that the pulsars' 

masses are nearly equal, the pulsars' rotational periods show a neat inequality between them. 

Also, the different values of GRAF for each celestial object show us how sensitive GRAF is to 

variation in rotational period.  

 

4. Mutual dependence between the Mass and the Rotational Period 

 

      Since GRAF may be treated as a function of the form  PM ,λλ  hence we can show more 

clearly the existence of the mutual dependence between the mass and rotational period of the 

same rotating body via GRAF. For this purpose, we deduce from Eq.(6) the following expression 
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      Obviously, Eq.(7) shows us the expected mutual dependence between the mass and rotational 

period via GRAF. Moreover, because the rotational period is an intrinsic physical quantity, here, 

according to Eq.(7), the  spin of any massive celestial body should vary with mass independently 

of cosmic time. 

 

5. Link between GRAF and Rotational Acceleration 

 

        Now, returning to Eq.(6) and showing that GRAF and the rotational acceleration  

 

                                                                     Ra
2

rot Ω ,                                                             (8) 

 

are in fact proportional, rotλ a , and the constant of proportionality is precisely the compactness 

factor RcGMε 2

0/
 

that characterizes any massive celestial body. To this end, it suffices to 

multiply and divide by the radius R  the right hand side of Eq.(6) to get the expected expression 

 

                                                                                     rotλ aε .                                                               (9) 

 

       According to the expression (9), GRAF is at the same time an old and a new natural physical 

quantity that should play a crucial role, especially for compact stellar objects, e.g., the rotating 

neutron stars and pulsars for which the compactness ε  has a large value compared to that of 

normal stellar objects. By way of illustration, the Sun’s compactness has the value 
6

sun 10123679.2 ε . 

 

 

 

 



6 

 

6. Consequences of GRAF 

 

      In what follows we will show that, in the CGA-context , the transitional state, dynamical 

stability and instability of a uniformly rotating neutron star (NS) depend on the ‘antagonism’ 
between centrifugal force and gravitational force, or in energetic terms, between rotational 

kinetic energy (RKE) and gravitational binding energy (GBE). 

 

       Usually the physics of NS considers that the source of the emitted energy is essentially the 

RKE, however, such a consideration should immediately imply that, at least in the medium term, 

the GBE should absolutely dominate the RKE and as a result the NS should be prematurely in a 

state of gravitational collapse. Hence, as we will see, the main source of the emitted energy is not 

the RKE but the gravitorotational energy (GRE), a sort of new physical quantity which is a direct 

consequence of GRAF.  

 

       Let us now determine the conditions of transitional state, dynamical stability and instability 

that may be characterized any NS at least in the medium term. With this aim , we assume a 

uniformly rotating NS as a homogeneous rigid spherical body of mass M, radius R and rotational 

velocity 1π2Ω  P , where P is the rotational period. It is RKE and GBE that are, respectively, 

defined by the well-known formulae:   

   

                                                                        
2/Ω2
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where  52 /2
MRI    is the moment of inertia of NS under consideration. Hence, the total energy 

is 

                                                                       Grot EEW  ,                                                     (12) 

which presents the following conditions: 

 

a) 0W , NS is in a state of dynamical stability,         

b) 0W , NS is in a state of transition, 

c) 0>W , NS is in a state of dynamical instability. 

                                                                           

It is worth noting that the three suggested conditions a), b) and c) are taken in the medium term 

because NS may be suddenly in a state of dynamical perturbation or in a state of transition from 

stability to instability and vice versa. 

7. Critical Rotational Period 

 

      Knowing the critical rotational period (CRP) of NS is very important because CRP should be 

treated as a parameter of reference on which the temporal evolution of NS depends. Furthermore, 

since the change from stability to instability and vice versa should pass obligatorily via the 
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transitional state, we therefore, from the transitional state (b), deduce an expression for the CRP, 

thus after performing a simple algebraic calculation, we get the following expected expression 

                                                                     
GM

R
RπP

3
2c  .                                                         (13) 

 

We can numerically evaluate the CRP by taking, through this paper, the standard NS mass and 

radius, namely, sun1.4MM   and km10R , thus by substituting these values into (13), we find 

 

                                                    
ms2661.010660963.2 4

c  
P ,                                          (14) 

which is a tiny fraction of the smallest yet observed rotational period, ms3950.1P , of PRS 

J1748-2446ab [13]. Further, according to (14), the critical value of GRAF for a standard NS 

should be 

                                                                     212

c ms10153.1λ  .                                                  (15) 

 

8. Gravitorotational Energy 

 

      Now we approach the most important consequence of GRAF, that is, the gravitorotational 

energy (GRE), which should qualitatively and quantitatively characterize any massive rotating 

body. As we will see, GRE is quantitatively very comparable to the amount of RKE, particularly 

for NS and pulsars. Since GRE is a direct consequence of GRAF, hence GRE should be 

proportional to GRAF, i.e.,
 

λE  or equivalently 

 

                                                                        ȜȘE  .                                                             (16)  

 

Let us determine the constant of the proportionality Ș  by using dimensional analysis as follows: 

 

                                                       [ Ș ] =
]λ[
][E

=
2

22

TL

TLM




= LM .    

 

we can remark that the dimensional quantity LM  has the physical dimensions of the product of 

mass and length, therefore, for our case Ș  should take the form RIMRȘ 25 /  and by 

substituting into (16), we find the required expression for GRE 

 

                                                                     R

Iλ
2

5
E  .                                                            (17) 

 

      In order to show that the amount of GRE E is quantitatively very comparable to that of 

RKE, particularly for the compact stellar objects, we can use Table 1. The numerical values of 

rotE  and E are listed in Table 2.  
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                                       OBJECT                                                        rotE                                                 E                                                                                                             

                                Sun + PRS                                     J                                               (J)                                             

 

                             Sun                                     1.3655
36

10                           1.7221
31

10      
               

                  
                   

            

                             B 1913+16                          6.4948
41

10                           6.9180
41

10  
          

                     
             

               

                                B 1534+12                             1.4651
42

10                              1.4500
42

10                                
    

                                   

                                B 2127+11C                          2.2915
42

10                              2.3010
42

10                                                    

                                B 1257+12                            5.7200
43

10                               5.9140
43

10                                                      

                                J 0737-3039                          4.0426
42

10                              4.0000
42

10                                                                

                                B 1937+21                            9.0604
44

10                               9.3680
44

10                                                     

                               J 1748-2446ad                      1.1300
45

10                               1.1680
45

10                                     

   

                        Table 2: Comparison of the numerical values of rotE  and E  for the Sun and seven well 

                         known (binary) pulsars.  

 

      Analysis of Table 2: The numerical values listed in Table 2 show us, excepting the Sun’s 

values, that all the values of rotE  and E are very comparable for the seven (binary) pulsars. This 

fact is mainly due, at the same time, to the rotational period and the compactness ε . To illustrate 

this fact, let us return to the expression (17) which may be written as follows: 

 

                                                                   
rotEε5E  .                                                            (18) 

 And as 15 ε  for the NSs hence that's why rotEE  as it is well illustrated in Table 2. From all 

this we arrive at the following result: In the CGA-context, the RKE cannot be considered as the 

main source of the emitted energy for rotating neutron stars and pulsars because ‒in energetic 

terms‒ its own role is to balance, approximately, the GBE, at least in the medium term. 

Therefore, the veritable principal source of the emitted energy should undoubtedly be GRE, as 

illustrated by the GRE numerical values listed in Table 2, which are quantitatively very 

comparable to those of RKE for pulsars. Moreover, if we take into account the critical value of 

GRAF (15), we get the following critical value for GRE  

 

                                                  
erg103.210J10210.3 5346

c E .                                        (19) 

 

9. Rotating Magnetars      
 

       Rotating magnetized neutron stars (magnetars) are also important compact stellar objects. 

That's why it is possible, in the CGA-context, to exploit GRE as an energetic reservoir for 

rotating magnetars by assuming that there is a certain physical mechanism that can convert all or 

at least a significant part of GRE into an extreme internal magnetic energy: 

        

                                                                 E 32
RBEB

,                                                         (20) 
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which could, of course, produce an extreme internal magnetic field strength  

 

                                                                         3 RB E     (T).                                                   (21) 

      

The observed surface (external) dipole magnetic field strength 0B  would be lower than the 

internal field strength B defined by (21). Besides the internal magnetic field there is the critical 

internal magnetic field whose strength may be evaluated according to (19) and (21) as follows: 

 

                                                                     3

cc

 RB E .                                                        (22)  

  

As an illustration, let us evaluate the strength of internal magnetic field of radio pulsar B 

1931+24. We have according to Ref. [19] the following parameters:
 

s813.0P  and 

G103 12

0 B . By taking, as usual, sun1.4MM   
and km10R , we find for GRE 

J10440.3 39E , and after substitution into (21), we obtain 

 

                                                       G105.865T105.865 1713 B .                                     (23)                                             

 

       Now, let us evaluate the critical strength of internal magnetic field. We have according to 

(22), the following  value 

                                                        
G101.80T101.80 2117

c B .                                       (24)                                                                        

 

 10. Extreme strength of the Sun's Internal Magnetic Field      

 

      Finally, let us focus our attention on the formula (21). At first glance, the verification of this 

formula seems to be experimentally and/or observationally out of any expectation. Luckily, the 

situation is not practically so complicated since we have the Sun that may serve as a veritable 

celestial laboratory enabling us to understand physical processes that take place inside the Sun as 

well as in other similar stellar bodies and also to test some new gravity theories. In this sense, we 

chose the Sun as a test-body to perform the empirical verification of the formula (21).  

 

     In their seminal article entitled "The Toroidal Magnetic Field Inside the Sun" [20], 

Dziembowski and Good developed a helioseismological model from which they determined the 

quadrupole toroidal magnetic field near the base of the Sun's convection zone. Basing 

exclusively on the oscillation data of Libbrech [21] which yield information about the internal 

magnetic field strength between 0.6 and 0.8 of the Sun's radius; they found that the strength of 

this internal field is G102 6 . Consequently, in order to be sufficiently close to the reality, we 

are obliged to suppose, according to the formula (21), the internal magnetic field strength  B  to 

be a function of radius R, i.e., B ≡ B(R) this deliberation allows us to select a set of idealized 

values for the radius R. The B's values are listed in Table 3.   
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                                               R                                B                                              B                                                                                                                               

                                         )( sunR                            )(T                                 )(G                                                                      

 

                                      0.50                        6.400
2

10                     6.400
6

10      
               

                  
                   

            

                                      0.55                        5.547
2

10                     5.547
6

10  
          

                     
             

               

                                          0.60                          4.868
2

10                        4.868
6

10                                
    

                                       

                                          0.65                          4.317
2

10                        4.317
6

10                                                    

                                          0.70                          3.863
2

10                        3.863
6

10                                                      

                                          0.75                          3.483
2

10                        3.483
6

10                                                                

                                          0.80                          3.162
2

10                        3.162
6

10                                                     

                                          0.85                          2.887
2

10                        2.887
6

10                       

                                          0.90                          2.650
2

10                        2.650
6

10       

                                          0.95                          2.443
2

10                        2.443
6

10         

                                          1.00                          2.262
2

10                        2.262
6

10                       

   

                          Table 3: Numerical values of  the internal magnetic field strength of the Sun  

                          are listed for sunsun 50.01 RRR  , where km695508sun R . 

                          Note: To calculate B ≡ B(R), we have used the Sun's GRE J101.7221
31E  

                      from Table 2.   

 

 

      Analysis of Table 3: As the reader can remark it easily, in spite of the fact that Dziembowski 

and Good [20] used their proper paradigm and Libbrech's data [21] to find the value G102 6  for 

the internal (toroidal) magnetic field strength of the Sun; our numerical values listed in Table 3 

are on average comparable to the above value since the leading term 'mega Gauss' is displayed 

uniformly. Therefore, not only the formula (21) is correct in the present context, but also the 

extreme internal magnetic field strength of the Sun should be of the order of some mega Gauss. 

This also means that the magnetic field strength at the Sun’s surface (3000 G) represents only a 

small fraction of the internal magnetic field strength. In passing, we can say that the formula (21) 

may be heuristically used as a basic tool to investigate the internal heliomagnetism and its 

connection with helioseismology. 

 

11. Concept of the Stellar Magnetic Permeability 

 

     The concept of the stellar magnetic permeability is mainly inspired by the fact that since in 

the Nature, any material is physically characterized by its proper magnetic permeability, thus it is 

quite logical to postulate the existence of the magnetic permeability for the stellar material. In 

this sense, we defined the stellar magnetic permeability as follows: 
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The stellar magnetic permeability is the measure of the ability of a stellar material to support the 

formation of a magnetic field within itself. 

 

     Therefore, the stellar magnetic permeability is the degree of magnetization that a stellar 

material obtains in response to an applied magnetic field. Since, in general, the stellar objects are 

characterized by an internal magnetic field  and an external magnetic field, hence, in the context 

of the present work, the stellar  magnetic permeability ȝ  is physico-mathematically defined by 

the expression 

                                                                      
ext

int
0

B

Bȝȝ  ,                                                           (25) 

 

where 17

0 Hm104 ȝ  is the magnetic permeability of free space; intB  and extB  are, 

respectively, the strengths of internal and external magnetic field.‒ Conceptually, the stellar 
magnetic permeability should play an important role in stellar evolution.   

 

12. Conclusion   

 

      Basing on our gravity model, Combined Gravitational Action, we have derived an explicit 

expression for the concept of gravitorotational acceleration field (GRAF), which is unknown to 

previously established gravity theories. The most significant result of GRAF is the 

gravitorotational energy (GRE), which should qualitatively and quantitatively characterize any 

massive rotating body. Furthermore, GRE is exploited as an energetic reservoir, particularly for 

neutron stars and pulsars.   
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