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FOREWORD

The book "The theory of the three-phase electric multipole” represents the
generalization of the electric quadripole theory to the three-phase electric
circuits, wants to maintain both the definitions and formulae obtained in the
theory of the electric quadripole, but in another mathematical symbolism adapted
to the three-phase electric circuits with or without neutral wire.

In the book, the following are determined:

» the matrix form of the fundamental parameters for three-phase
electrical networks in star/triangle;

» the matrix form of the impedance parameters for three phase-
electrical networks in star/triangle;

» the matrix form of the impedance parameters for three-phase electrical
networks function of the symmetrical components of direct, reverse
and homopolar components;

» the matrix form of the Telegrapher's equations for three-phase
electrical networks.

The mathematical model utilized has at the basis the theory of the linear

operators.

The book is a new approach and it is addressed to engineers from

research and design, PhD students, to who wants to perfect in this field.
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1. INTRODUCTION

The theory of the electrical quadripole is a well set theory, with theoretical
results confirmed practically in numerous applications from different domains of
science and technology.

Analogously, the theory of the three-phase electric circuits has its specific
computational means, such as: the method of the neutral displacement, the
method of symmetrical components, the nodal analysis, etc.

The link between the theory of the electrical quadripole and the three phase
electrical circuits’ theory is done only in the chapter referring to the building of the
electrical schemes of direct, reverse and homopolar succession.

In the present paper, we want to generalize the theory of the electrical
quadripole to three phase electrical circuits. This theory will be called ,the theory of
the three phase electrical multipole”.

The main purpose of this paper is to keep unchanged the mathematical
formulae obtained in the case of the electrical quadripole theory and to change
only the mathematical significance of the terms. An approach of the electrical three
phase systems from the perspective of the three phase electrical multipoles
misses in the literature.

By three phase electrical multipole, one will understand an electrical
structure which posses three or four input terminals and three or four output
terminals, fed with a three-phase voltage system. The three phase electrical
multipole has three or four terminals, depending on the three phase electrical
system if it has a neutral wire or not, fig.1a, 1b.

The interaction of the three phase electrical multipole with the exterior is
completely characterized by the three voltages at the access terminals and by the
three electrical currents coming from outside.

A group of three or four access terminals for which the algebraic sum of the
currents is null, no matter which are the potentials of the multipoles’s terminals is

called a port of the three-phase electrical multipole.
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A port with three or four terminals, at which the applied three phase
voltages and the corresponding electrical currents are associated after the

receptors’ rule, is called an input port.
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Figure 1. Symbolic representation for the three-phase electrical multipole:
a) Three-phase electrical multipole without neutral wire;

b) Three-phase electrical multipole with neutral wire;

At the input port, the complex power computed with these values is a

received power.
A port with three or four terminals, at which the three phase voltages and

the corresponding electrical currents are associated after the generators’ rule, is

called an output port.
At the output port, the complex power computed with these values is a

delivered power.

2. EQUATIONS AND PARAMETERS OF THE PASSIVE, LINEAR AND
RECIPROCAL THREE - PHASE MULTIPOLE

A three phase multipole is characterized by three input voltages

U,,U,,U, and three output voltages U,,U,,U'; . The two sets formed by the three

17

elements, will be written as column matrixes:

-

input — output
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Analogously, for the electrical currents, we will have two matrixes, the input current

matrix formed by three elements, (l,l,,l,;) and the output currents matrix

L)

iy

N £
1 1
linput = I I

—~_output — 2 (22)

— 1
I

w

In relations (2.1) and (2.2) it is obvious that the indexes 1, 2, 3 refer to
phases 1, 2 and 3.

From the four variables U, ..., Ugpus Linpee @nd 1,0, » Which characterize

the interaction of the three phase electrical multipole with the exterior, only two of

them are independent from the point of view of the internal structure of the three
phase multipole. Two relations of the form are obtained:

Fl (linput ’ loutput ’ U U )

=input ¥ =output

=0 2.3
S R oI @)

input 1 Zoutput ? Xinput ' ~output

Equations (2.3) are the equations of the three-phase multipole in implicit

form. Supposing that the three-phase multipole is linear and passive, it results that
equations (2.3) are linear and homogenous.

2.1. The fundamental form of the three-phase multipole equations and the
fundamental parameters

In a three phase electrical network, the electromagnetic energy has a
direction of propagation through the leader of three-phase multipole, so that the

fundamental form is considered that expression in which the input quantities
Qinput and anut are expressed linear with the output quantities Qoutput and 1

Zoutput *
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(2.4)

The following coeﬁicientsA,B,Q,@ are called fundamental parameters of the
three-phase multipole. From a mathematical perspective, they are matrixes

(operators) 3x 3.

3. THE CALCULUS OF THE IMPEDANCE OPERATORS FOR A THREE-
PHASE ELECTRIC MULTIPOLE

3.1. Three-phase electric multipole in A connection

3.1.1. The calculus of the impedance operators

In figure 3.1., the three-phase electric multipole in 4 connection is presented.

Figure 3.1. The three-phase electric multipole in A connection

In order to apply Kirchhoff's second law, we consider the prism associated
to the three-phase multipole, defined by the input 1, 2, 3 respectively the output

terminals 1, 2’, 3, figure 3.2.
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On the side surfaces 11'2'2, 22'3'3 and 11’3’3, we consider the exterior

normal vectors: ﬁlZ, ﬁza, ﬁ3l.
Accordingly, to the right handed screw rule, we associate to the direction of

the normal vectors, the direction of the electrical current built on each side surface.

e

v

Figure 3.2. Explanation drawing for applying Kirchhoff's second law in space
For the input ports, the following equations are obtained:

—le + I.lZl +|_12le _|_212 =0
_u23+|_2Z2 +|_23;23_|_3;3 =0 (3.1)
_ual + |_3;3 + |_31Z31 _11;1 =0

Analogously, the equations for the output ports are given:

_Q12+|_I111 _lellz _Lzzz =0
_st + Lzlz _Lzslzs - les =0 (3.2)
_QSl + les - L31131 _L1£1 =0

For a three-phase electrical system, there are obvious equations:

L+1,+1,=0
£+L2+L3 =0
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We apply Kirchhoff’s first law in A, B, C nodes and we obtain:

L=+l -1, =0
=1+, -1, =0 (3.4)
L =1+l =15, =0
For obtaining the equations of the three-phase electrical multipole, as a
function only of the input and output voltages and currents, we will have to
eliminate the currents 1,,,1,;,1,, from equations (3.1) and (3.2).
In order to eliminate these currents, from the above-mentioned system of
equations, we firstly consider, the transfiguration of the triangle with the vertices in
the A, B, C nodes.

Cl,

Iy

Figure 3.3. Explanatory drawing for A4 - Y transfiguration

Let currents 1," ,1," , 1," coming from the nodes A, B, C, figure 3.3.

It is obvious that:

L+ +1" =0 (3.5)

From A -Y transfiguration conditions, the following relations are obtained:

- |_31 + |_12 = |_1"
- |_12 + |_23 = |_2" (3.6)

_I_zs +|_31 = |_3
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The phase diagram from figure 3.4. corresponds to relations (3.6).

Figure 3.4. The currents’ phase diagram at 4- Y transfiguration

In figure 3.5. the currents|,,, |,,, |5, are built, which correspond to the case

where all Z,,, Z,,, Z,, impedances are equal. These currents can be found on

the medians of the triangle.

Fig.3.5. Explanatory drawing for determining the line currents

From the diagram, there can be set the link between the currents we must
determine |,, 1 ,;, |5 and the 1., I_*23, I_;l, Al currents.

There is obtained:
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112 = I_Zz + Al

1l =15+ Al (3.7)
l31 = |_*31 + Al

\

We add the three relations from (3.7) system and we take into account that:

* * *
Iy, #15+15=0

We get that:

Al = (3.8)

We apply Kirchhoff’'s second law on the contour delimited by the A, B, C

nodes, figure 3.1 and we obtain:
|_12;12 + 123;23 + 131;31 =0 (3.9)

The first equation from (3.7) we multiply it with Z,,, the second one with

Z ,;, and the third one with Z ,; ; then we add them and one finds:
o Zo 10 Zos + 132y = o Z o 152 + 152 + AUZ, + 21+ Z,,)
Based on relation (3.9), one obtains:

AI - _ I.;.ZZlZ + |_*23;23 + I.;lZSl (3 10)
- ;lZ + ;23 + ;31

Returning to relations (3.7) and replacing Al from (3.10), we get:

10
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| = (|_12 - I.Zs )_Zzs - (|_31 - I_*12) ;31

I, = (3.11)
ZlZ + ;23 + ;31
From the diagram in figure 3.5, it results that:
I, — Loy = —1,"
{‘fz e (3.12)
I P B
So (3.11) becomes:
-1, Z,+1,"-Z
l,=——"2——= (3.13)
;12 + ;23 + ;31
By cyclic permutations in relation (3.13), one gets:
-1, Z,+1,"-Z
l,, = -3 £=31 ~2 =12 (314)
le + ;23 + ;31
-1"-Z,+1,)"-Z
ly=——2—"—"F (3.15)
ZlZ + ;23 + ZSI
The expressions of |," , 1," , I, currents, can be obtained from figure 3.3.
=1 =1
|_2" = I_z - I_zl (3.16)
|_3" = I_s - |_3'

So (3.13), (3.14), (3.15) relations become:

1"
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,

L= (-1} 2o+ (L -1)- 2]

=t

12 = Zi[_ (I_s -1 )131 + (I_z -1, )112] (3.17)

1= - 1) 2o+ (- 1) 2]

=t

In which:
;t = le + Zza + 131 (3.18)

Relations (3.17) contain the transversal impedances of the multipole, as

well as the input and output currents.
We replace the currents from (3.17) relation into (3.1) and (3.2) relations

and one finds:

Lllz = |_1(;1 + %;Slj - lz(zz + le Zsz - |_1' ;le ;31 + I_z' %Zzs

=t =t

=t

Z Z 2 2
9 st = I_z(;z + 2_23;12) - la(Za + __23131J - I_z Z_%le + |_3 2_8;31 (3-19)

=t =t =t

u, = I_l(;l " ;Z—;j - I_{;s n

=t

I\

1 Z Z 1 1 ; 1 1 ;
st = I_z E_ZSZM _|_3 2_23;31 - I_z Zz +%;1z) + |_3 (;3 +Z_23Z31J(3-20)

=t =t =t =t

U =122, -1, 202, -1 | 2 +%;12J oy [z; +%;mj

=t =t =t =t

As presented in chapter 1, the input and output operators for voltage and

current are introduced:

12
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!23
Uy

Qoutput

(3.21)

Accordingly to the above relations, we form the matrix relation between the

operators:

uinput

A~

|

Qoutput

(

~
~

le

~
~

Zn

=[

(3.22)

By comparing relations (3.19), (3.20) and (3.22), there are obtained the
expressions of the impedance operators of the three-phase electrical

multipole:
Z
Z, + 2—15;31
Zn = 0
Z
- (Zl + _thl _12J
212 =

13

(3.23)

(3.24)

=31
- 123
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(2 Z
_;_15;31 - _;_12;23 0
A Z Z
;21 = 0 _Z_ztg;lz - _Z_ZjZal (3.25)
Z Z
- _;_3;1;12 0 _;_il;za
(
- (le + é ;31) ;2' + %Zza 0
(3.26)

z;+427,

Lt =3
- [Zzl + %lmj

. z
- (Zsl + E_gl Zzs

Z
Z/'+ E—’* Z,

=t

Relations (3.23), (3.24), (3.25) and (3.26) represent the operational form of

the impedance parameters, for a three-phase electrical multipole in 4 connection.

If examined the form of the impedance operators, one can notice that:
(3.27)

which is the necessary reciprocal condition for three phase electrical multipoles
For a three-phase symmetrical multipole we have:

Z1=Z1I,;2=;2I’;3=;3'

Then, replaced in relations (3.23) and (3.26) leads to:
(3.28)
which is the identical condition formally speaking with the condition for a

symmetrical four-port.

14
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The general reciprocal condition (2.56) is fulfilled only if the three-phase

multipole is symmetrical.

D

[O)»

3.1.2. The calculus of the fundamental parameter operators:A, B

In the previous paragraph, we have determined the operator for the
impedance parameters. The operator for the fundamental parameters can be
obtained using the transformation formulae from the operator for the impedance
parameters. In order to better understand how the operator for the fundamental
parameters is determined in the case of a three-phase electrical multipole, we will
use the direct approach, starting form Kirchhoff's laws, starting with fig.3.1.

In node A we apply Kirchhoff’s first law:
|_1 = |_12 - |_31 + |_1' (3.29)

By applying Kirchhoff's second law on loop A1'2’BA, respectively on loop

A1’'3'CA, one gets the following relations:

U, +l,'2/ -1, 2,
l, =—"— Z—l =2 =2 (3.30)
12

1 I 1 Z I_I 1 Z 1
I, = U+, Z_3 L £ (3.31)
31

After replacing (3.30) and (3.31) in (3.29), we obtain after some

manipulations:

|_1 = L_le' 112 + L_st' 0+ Qall (_ 131) +
+1 (2 Yo+ 20 Y+ D)+ (-2, Yu)+ 1 (-2 Y,) (332

15
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Using cyclic permutations of the indexes, one gets the expressions for the

other currents as well:

I_z = le' (_ 112) + uzsl 'izs + st 0+ |_1' (ill l12)+
+ I_zl (_ ;2l izs + Zzl ilz + 1) + |_3' (_ ;3| izs) (3-33)

|_3 = lel 0+ L_st' '(_ ize)"' Qall 'i31 + I_ll (ill i31) +
+1 (-2 Y o)+ 1 (2 Y + 20 Y o +1) (3.34)

From relations (3.32), (3.33) and (3.34), it can be noticed that all have a
common property meaning they represent the input electrical currents for phases
1, 2, 3, as a function of the line voltages at the output and the phase currents at

the output. In conclusion, we can write the operational relation:

I_input = (_:Qoutput,l + Dl_output
in which:
1, I U,
I_input = |_2 ; Loutput = |_2' ; uoutput,l = st (3.35)
|_3 |_3' liSl
R ilz O _131
C_: =\~ 112 Xzs 0 (3.36)
0 _iz3 Y 31
R ;1l 112 + le 131 +1 - ;2I 112 - Zsl 131
D = - ;1| ilZ Zzl izz + Zzl ilz +1 - Zsl izz
- le 131 - Zzl 123 Zsl 131 + Zsl 123 +1

(3.37)

16



The theory of the three-phase electric multipole

MIHAI Gheorghe
For obtaining the mathematical expression for operators A and 3 we will

keep in mind that we must obtain a relation having the form:
(3.38)

uinput | = AL_Joutput,l + El_output

In order to obtain a relation like the one in (3.38), we apply Kirchhoff's

second law on the loop 1AB21:
(3.39)

le = I.lZl + |_12Z12 - 12;2

From the expressions of the electrical currents (3.30), (3.32), (3.33), (3.34)

and relation (3.39), one finds:

le = le (llZ ;1 + ilZZZ + 1) + Qsz (_ izazz ) + isl (_ !31;1) +

+1,[Z(ZY o +Z Y +ZY , + )+ 2]+
+ Lz [12(_ Z1i12 - ;2i23 - ;zilz - 1) - Zz] + Ls [13(_ Z1i31 + ;2i23 )]
(3.40)

Analogously, the following relations result:
uz3 = le (_ 112Z2) + les (lzszz + izals + 1) +

+U (_ YuZ, ) +1 [11 (_ LY+ LY o )] +

+1,[Z,ZY 5 +ZY , +ZY  + 1)+ Z, ]+
(3.41)

+1,0Z2.(-2Y -2 - Z.Y ,-1)-Z,]

st = LilZ (_ \lell) + Qza(_ izzzz) + LiSl (i31;3 + lﬂll + 1) +
+1,[Z.(-ZY 0 -2, -2 Y o - )= Z, ]+ 1,[Z (- ZY o + Z,Y )]+
(3.42)

+1,[Z(ZY u +ZY o+ Z,Y o + 1)+ Z,]

By comparing relations (3.40), (3.41), (3. 42) with relation (3.38), one gets:

17
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le le Ll
Qinput | = Q23 ’ lloutput,l = QZS ’ ~output = LZ (343)
L_J31 Llsl Ls
R llZZl +i12;2 +1 _izszz _i&}lll
A = _im;z lzzlz +i23;3 +1 _l31;3 (3-44)
_112;1 —12313 i3l;3 +131;1 +1
Operator B has the form:
. 511 512 513
5 = 521 522 523 (3.45)
531 532 533
in which B1; , B2 ...B3z components have the expressions:
511 = 11(;1i12 + ZliSl + Zzilz + 1)+ Zl
512 = __ZIZ(;liH + Zzizs + ;2i12 + 1)"‘ ;2 (3.46)
513 = 13 (_ ;1i31 + ;2l23)
521 = 11(_ Zzin + ;3131)
(3.47)

522 = 12 (Zzlza + zzilz + +;3l23 + 1) + Zz
523 = _ls (Zzizs + Zsisl + ;3i23 + 1) + Zs

B, =-Z.,(ZY +ZY ,+ZY +1)+Z,
532 = 12(_ Zslzs + Zliﬂ)

B.y=Z,(ZY +ZY+ZY , +1)+Z,

(3.48)

18
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3.2. Three-phase electric multipole in Y connection
3.2.1. Three-phase electric multipole in Y connection with neutral wire

3.2.1.1. The calculus of impedance operators

In fig. 3.6., the three-phase electrical multipole in Y connection with neutral wire is
presented.

In order to apply Kirchhoff's second law, we consider the fascicle of planes
associated to the electrical multipole defined by the input terminals 1,2,3,0 and

output terminals 1',2",3',0’, as fig.3.7 shows.

Fig.3.6. The three-phase electrical multipole in Y connection with neutral wire

We consider the normal vectors ﬁl, ﬁz, ns on (1,1,0,0), (2,2',0’,0) and
(3,3',0’,0) planes. The direction of the normal is chosen after the right handed
screw rule. The direction of rotation of the right handed screw is the direction of

the electrical currents built on each plane.

19
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1 ]'/n_l
. ok 0
S O\,
3 . E
n

Fig.3.7. Explanation drawing for applying Kirchhoff's second law in space

For the input ports, the following equations can be obtained:

_L_Jl +|_1;1 +|_10;10 _I_N ;N =0
_L_Jz +|_2;2 + I_zolzo _I_N ;N =0 (3.49)
_L_Js +|_3Z3 +|_30;30 _I_N ;N =0

IvZy =AU

Analogously, there are obtained the equations for the output ports:

U+l Z ~1,Zy-1',Z,=0
U,+l',2Z,~14Zy—1',Z =0 (3.50)
U+, 2 ~1yZy—1',Z' =0

IZ, =AU

We have relations between the phase currents and the neutral wire for the

output and input terminals:

L+, +1,+1,=0
e (3.51)
|_1+|_2+|_3+|_N=0

20
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We apply Kirchhoff’s first law for A, B, C nodes and we find:

(3.52)

We substitute (3.51) and (3.52) relations in (3.49) and (3.50) and we get:

U, =1(Z,+Z+Z)+1,Z, +1,Z, - 1', Zy,
U,=0,Z +1,(Z,+Zp+Z)+1,Z,—1',Z, (3.53)
U, =1,Z +1,Z, +1,(Z, +Z, +;N)—|_'3;30

U, =1,Zo+I' (-Z,-Z,,-Z,)-1 2 Zy
Q 2= I.zZzo _I_ 'S I, ( Z Zzo N) (3-54)
L_J'1=|_3;30—|_1; —1,Z,+ 1'3( Z,~Zy- )

As presented in the previous chapter and last paragraph, the input and

output operators for voltage and current are introduced:

U, U,
Qinput = U2 uoutput = !2
U, U,
|_1 I—Il
—input = |_2 Lloutput = —'2 (355)
I Iy

Accordingly to the above relations, we form the matrix relation between the

operators:

21
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A~

I inpu
A (3.56)

A

A~

22 I_output

uinput Zn le
Z, Z

lloutput

By comparing (3.53) and (3.54) relations with (3.56), one can find the

expressions for the impedance operators of the three phase electrical multipole in

Y connection:

(2,424,412, z, z,
le = ZN Zz + Zzo + ;N ;N (3.97)
Zy Zy L+ ZLy+ 2Ly
(-2, 0 0
Z,=| 0 -Z, O (3.58)
0 0 -Z.
(Z, 0 O
Zzl = 0 Zzo 0 (3.99)
0 0 Z.,
R _Zl_;lO_ZN _ZN _ZN
Zzz = - ZN -7 Z_Zzo -7 N - ZN (3.60)
_ZN _ZN _23_130_ZN

From examining the form of the impedance operators, one can observe

that:
7 (3.61)

which represents the necessary condition of reciprocity for the three-phase

electrical multipoles. For a symmetric three-phase electrical multipole

having:Z,=2';24,=2",; Z,=2",; Z, =72, it can be obtained:

22
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2,=-2 (3.62)

Conditions (3.61) and (3.62) are formally identical with the conditions for a
quadripole to be symmetrical and reciprocal.
The general reciprocal condition is fulfilled only if the three-phase multipole

is symmetrical.
3.2.2. Three-phase electric multipole in Y connection without neutral wire
3.2.2.1. The calculus of the impedance operators

In figure 3.8., a three-phase electrical multipole in Y connection without

neutral wire is presented.

Fig. 3.8. A three-phase electrical multipole in Y connection without neutral wire

The three-phase electrical multipole is fed by a three phase voltage system
U,, U,, U, . It can be noticed that the three-phase electrical multipole in Y
connection without neutral wire can be obtained from the three-phase electrical

multipole in 4 connection if there is transfigured the impedance triangle, Z,,, Z,,,

Z ., between nodes A, B, C, fig. 3.1.

23
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Impedances Z,,, Z,, Z, as a function of impedances Z,,, Z,,, Z,, have the

expressions:

( _ZuwZa+ZaZs +ZoZis
=12 —
130
Z,Z Z,Z Z,Z
12, =Entn” _;_30 L (3.63)
=10
7. = 110120 + ;20130 + ;30110
=31 —
ZZO

"

The form of the impedance operator for the three-phase electrical multipole
in Y connection without neutral wire can be obtained from (3.23), (3.24), (3.25) and

(3.26) in which relations (3.50) are replaced.

3.3. Determining the impedance operators function of symmetric

components for a three phase-multipole, in Y connection with neutral wire

In previous paragraphs there have been deduced the expressions of the
impedance operators’ expressions for an electrical multipole fed by an asymmetric
three-phase voltage system. Both the system of the electrical voltages and the one

of the electrical corresponding currents can be decomposed into systems of direct,
reverse and homopolar succession. For the phase voltages U,, U,, U,, there

are obtained the direct, reverse and homopolar components of voltage.
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(

Qh = %(Ql +Q2 +Q3)

U, =%(Ql+agz+azgg) (3.64)

Qc = %(Ql + aZQz + aga)

\

The phase voltages at the input U,, U,, U,, have been calculated in

section 3.2.1.1 as functions of the three phase electrical multipole parameters and

have the following expressions:

U, =1,(Z,+Z+Z)+1,Z, +1,Z, - 1',Z,,
U,=1Z +1,(Z,+Zx+2Z,)+ 1,2y~ 1,2, (3.65)
U=l Zy+1,Z0 +1,(Z+Z0p+Zy)- 1,24

We factorize the input electrical currents |,, |,, |, as a function of the

corresponding symmetrical components |, , I, |.:

I, +
I_z = I_h + azl_d + al_i (3-66)
I, +

First, we replace relations (3.65) in relations (3.64) and then we replace the

result in relation (3.66):

1
U, = 5[(;1 +Z,4Z)+(Z+ 20 +2,)+9Z, 1, +
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+ %[(;1 + aZZZ + aZ3)+ (Zm + azzzo + a;%)]ld N
+ %[(;1 +aZ, + a2;3)+ (Zlo +aZ, + azlso)]l,i B

1 1 1 1
- §(|_1;10 + I_z ;20 + I_slso) (3-67)

Qd = %[(;1 + a;z + a2;3)+ (;10 + a;zo + a2;3o)]1h +
+%[(Z1 +Zz +Zs)+ (;10 +Z20 + ZSO)]ld +
+%[(L +a’Z,+aZ,)+(Zo +a°Zy +aZy)|l -

- %(L1;10 + aLzZzo + a2L3Z30) (3-68)

Ji= %[(Zl + 32;2 + a;3)+ (;10 + aZZZO + aZ?»O)]I—h +
" %[(;1 + alz + 8.2;3)"‘ (;10 + alzo + 3‘2;30)]1d +
+ %[(;1 +Z,+ ;3)4' (;10 + Ly + ;30)hi -

1
—g(lem +a’l,Z, +al',Z,,) (3.69)

It can be noticed that the longitudinal impedances Z,, Z,, Z, and the

transversal impedances Z,,, Z.,, Z,, appear in the above expressions as a

function of operator “a”. After the grouping mode used in relations (3.67) — (3.69),
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we define the symmetrical components of the longitudinal and transversal
impedances.

» The homopolar longitudinal impedance has the expression:

Z.h=%(11+12+13) (3.70)
» The homopolar transversal impedance has the expression:

Z, =%(;m+;20+;30) (3.71)
» The direct longitudinal impedance:

Z, =%(;1+a;2+a2;3) (3.72)
» The direct transversal impedance:

Z. =%(;10 +aZ, +a’Zy,) (3.73)
» Thereverse longitudinal impedance is:

Z, =%(;1+a2;2+a;3) (3.74)
» Thereverse transversal impedance:

zZ, =%(;10 +a’Z,+aZy,) (3.75)

In each right parenthesis from expressions (3.67) — (3.69) we have sums of
the same types of impedances: homopolar, direct and reverse.
We define:

» Total homopolar impedance
Zh = (;m + Zth)+ 3ZN (3-76)

» Total direct impedance:
Z,=(Zu+2d,) (3.77)

» Total reverse impedance:
;i = (;n + ;ti) (3-78)
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Analogously, we compute the expressions as functions of the electrical

currents at the output ports I' |, I',, I' ;.

e Calculus for the expression :

1 1 1 1
- g(l_lllo + |_2 ;20 + |_3;30) (3-79)

From relation (3.67), we factorize the currents I',, I', si I',, as function of the

symmetrical components:

Ll = Lh + Ld + Li
=0+ aZLd +al; (3.80)
La = Lh + aLd + aZLi

We replace relations (3.80) in (3.79) and we obtain:

—%(LLO P12 4 10Z0)=—Zu s —Zoly —Zul,  (381)

e Calculus for the expression:

- %(L;m +al,Z,+a’l,Z,) (3.82)

From relation (3.68), we apply the same algorithm, by replacing relation (3.83) in

relation (3.82), and we obtain:
1 1 1 2n 1 1
- §(|_1Z10 + al_zlzo +a leso) =—Zy I_h —Zy I_d - Ztil_i (3.83)
e Calculus for the expression:

—%(le va’l,Z, +al,Z,)
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From relation (3.70), we obtain:

_Ztil_h _;ti Ld _Zthl_'i (3-84)

The final expression for (3.67), (3.68) and (3.69), as a function of (3.76),
(3.77), (3.78), (3.81), (3.83) and (3.85) become:

U, =(Z, +3Z ), +Z 14 +Zyl, = Z, 1 ~Z 1" =2 ),
Uy=Zyla+Z, 0y + 2,1, =21, ~Z,I',-Z, )", (3.85)
Qi =Zi|_h +;d|_d +;h|_i _;ti_lh_;tdl_ld_;thl_li

Analogously for the output ports we obtain:

_gh=(zh+3ZN)|—lh+Zil_'d+Zd l'i—Zml_h —Zil, =24,
_L_J'd=Zd|_'h+Zhl_ld+Zil_'i_;tdl_h_;thl_d_;thl_i (386)
_Qi =Zi|—'h+zdl—'d+zhl_li_ltil_h —Zyls =2yl

in which:

JEM T gErEeE (3.87)
\Zth = Zth

Z' ==(Z +az ,+a*zZ
<—|d 3 (—l =2 —3) (388)
thd = ;th

Z' =-\Z' +a’Z +aZ
ﬁ_“ 3(—1 =2 —3) (389)
\Zn =le
Z, =2+,
Z,=7Z,+Z, (3.90)
Z =742
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We introduce the operator of the symmetri

output ports:

c components for the input and

U,
Qinput.sim. = ud
U,
U,
uoutput.sim. = !d
U,
J (3.91)
[
I_input.sim = I_d
L
L
I_output.sim = Ld
I
We introduce the matrix relation between operators:
,L\_Jinput.sim — %115 %125 AI_input.s (392)
L_Joutput.sim ;le ;225 I_output.s
From expecting relations (3.85) and (3.86) with (3.92) it results:
Z,+3Zy Z, Z,
Zns = ;d Z, Z (3.93)
Z Zy Z,
N ;th Ztl th
les =- th Zth Zti (3.94)
Zy Zy L,
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A Zth Ztl th
Zps=|24 Za Z, (3.95)
Ztl th Zth

. (zezoz, oz,
Zps=— 2, Z, Z, (3.96)
Z, zZ, Z,

By examining the form of the symmetric impedance operators, there can be

noticed that:

les = _;213

This represents the reciprocal condition.

For a three-phase electrical multipole, with Z,=2', Z,=2', and
Z,=7",, one can obtain the symmetry condition, known from the electrical
quadripoles:

Zns = _Zzzs

4. THREE-PHASE ELECTRIC LINES WITH DISTRIBUTED PARAMETERS

4.1. Telegraphers’ equations for three-phase electric lines

A three-phase electrical line with distributed parameters represents a
generalization of a three-phase electrical line with distributed parameters in which

each phase is coupled with the other phases.

As in the case of the transmission line, we will introduce the following per

unit length parameters for three-phase electrical lines :
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>

Ri, Rz, Rs, the resistance per unit length of the conductors that
make phases 1, 2 and 3.

L;, Ly, Ls the inductance per unit length of the conductors
themselves.

Li2, Los, L31, the inductance per unit length of the couple between
phases.

Ci2, Ca3, Csi, the capacitance per unit length of the coupling
between phases.

G12, G23, G3; the conductance per unit length of the losses between

phases.

In figure 4.1 an infinite small transmission line of length dx, is presented for

which the electrical parameters (Ridx, Lidx, Ljdx, Cjdx, Gjdx with i, j =1, 2, 3) are

considered lumped.

If we consider U,(X), Uy,(X), u,(Xx), respectively i,(X), 1,(X),

i,(X), the electrical voltage and current at the distance x from the beginning of

the transmission line, then at the distance x+dx, these quantities will be

u,(x +dx),u,(x+dx),u, (x+dx),i,(x+dx),i,(x +dx),

(X +dx).

U12(x
G31
Usz1(x
U23

i1(x) Rydx i(x+dx) 1
C12dx 12(x+dX)
d G1od U3 (x+dx)
CadX i2(x+dx)
/ G ) N 52
s B Rodx Ladx
Ca3dX i3(x+dx)
) U23(X+dX)
Cis(x Rydx  Lsdx

Fig.4.1. Infinite small transmission line, used for obtaining Telegrapher’s equations

for a three phase electrical line
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We apply Kirchhoff’'s second law on the contour ”11'2°2":
U,(x)—-u,(x+dx)= Rldx(il+%dx)+lex£(il+idx)+

o, O, o, O . dl,
+L,,dx a—t(l2 +a—xdx )+ L, dx 6_t(|3 +a—3dx ) — R AX(i, +a—dx )—

o,. O o, O ol
—Ldx —(i, + —2dx)—-L.dx —(i dx -L,d I, + —dx

The infinite small terms of second order are neglected and we obtain:

3

22 ot 125_1:_ 326_t
(4.1)

Through circular permutations of the indexes, the other two equations are found:

~Me R, M, Peyy Qe gy g Py Oy O
ox o et ot

ey, Py Pey gy o P Py O

—_ I —_ _ —_
Ox 22 T hn o 2 5t 2 5t 37w o 3 5t 12 5t
(4.2)
_aUSl=R3i3+L336I +L, 6_I +L, a_I_Rlil_Ln%_Lal%_Lzsﬁ
OX ‘ot ot ot ot ot
(4.3)

Considering the currents’ case, by applying Kirchhoff’s first law in A, B, C
nodes, it results that:

—i, + (i, +%dx)+c12dx agtlz +G,u,, —C,dx ou,, G u.dx =0
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And the following equation is obtained:

Ol ou ou
- ?l = GlZU12 + C12 atlz - G31u n C31 atSl
Analogously, the following equations are obtained:
Ol ou ou
- FZ = stu nt Cza —;3 - Glzu 12 C12 atlz
O ou ou
- 73 = G3lu aTt C31 a—tﬂ - stu 23 Czs 5t23

(4.4)

(4.5)

(4.6)

Relations (4.1), (4.2), (4.3), (4.4), (4.5) and (4.6) form a system of equations

with partial derivates for the three-phase electrical lines with distributed

parameters which generalize Telegrapher’s equations for transmission lines. The

system of equations with partial derivates reveal the fact that both electrical

voltage and current are functions of variables x and t, so we will have uj(x ,t)

respectively i,(X,t) (j=1,2,3 and they represent the phases).

For sinusoidal steady state we will look for a solution of the form:

ulZ(X 1)=U,(X )eiwt
U23(X 1) =U,.(X )ej(mt—1200>

Uy (X, 1) = U (x )e’
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i, (x,t)=1,(x)e™
(X, 1) =1,(x)e! " (4.8)

i31(x 1t ) = |_3( X )ej(mt—24o°)

By expressing the voltages and currents in complex, the system of

equations expressed by relations (4.1) -(4.8) becomes:

(du,
dx

du,, . _ |
I d_xzs = jo(L, —L,)l, +[R, + jo(L,, — L)), +[-R, = ja(L, - L,,)],

= [Rl + Ja)( L11 - L12 )]I_l + [_ Rz - Ja)( Lzz - L21 )]I_z + [Ja)( L31 - L32 )]I_s

duU . . .
o ﬁ = [_ Rl + Ja)(Ln - L13 )]I_1+ ](0('.23 - L21)|_2+ [R3+J0)(L33 - L31 )]I_a
(4.9)
(dl, : .
- dx = (Glz + chlz )le + st 0+ (_Gsl - Ja)Csl )ual
dl : .
1~ d;(2 - (_GlZ - Ja)ClZ )ulz + (st + chzg )uza + 0°Q31 (4-10)
dl . :
- d;(3 =0 ulz + (_Gza - ]C()CZS )uza -0+ (G31 + chsl )ual
We derive the group of equations (4.9) in respect to x and we write it using
matrixes:
(d’U,
dx?
_ d Zst —
dx?
_ d 2Q31
dx?

R1+ja)(|—11_|—21) [_Rz_ja)(l—zz_l-zl)] ja)(L31_L32)
Jw( le - L13) [Rz + Ja)( L122 - L23 )] [_ Rl - Ja)( L33 - Lsz )] )
_Rl_ja)(l—n_l—m) ja)(Lz3_L21) R3+ja)(|—33_|—31)
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dl,
dx
| 4k (4.11)
dx '
dl,
dx
(dl,
((jj)|( Glz i jwclz 0 B G3l - ja)C31 ulZ
d;(z = _GIZ - ja)ClZ _st - ijz;a O * u23 (412)
dl, 0 =Gy~ JaC, —Gy — JaCy, Us
dx

In relation (4.11), we note Z,ong the right matrix and with Y;t,ans we note the matrix

in the right side of relation (4.12).

R1+ja)(L11_L21) [_Rz_ja)(l—zz_l—zl)] jw(L31_L32)

Zlong = Ja)( le - L13 ) [Rz + j(()( L122 - L23 )] [_ Rl - Ja)( L33 - Lsz )]
-R, - jo(L,-L.) jo(L,—-L,) R,+jo(L,-L,)
(4.13)
R GlZ + ja)ClZ 0 _Gs1 - ja)CSl
Y was =| =G, — joC, -G, — jaC,, 0 (4.14)
0 _st_ ja)Czs _631_ ja)cu

From relations (4.11) and (4.12) and with notations (4.13) and (4.14), we get:
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A~
A~ A~

21 ~
M = ;Iong itrans Q( X )| (41 5)

dx?

Relation 4.15. represents the complex form of the Telegrapher’s equations of
second order generalized for three phase electrical lines, for voltages on the

line.

In relation (4.15) we introduce the propagation (or transfer) constant :

}/ = ;Iong °itrans

In order to obtain Telegrapher’s equations of second order generalized for three
phase electrical lines, for phase currents, relations (4.9) are (4.10) rewritten using

matrix form:

- % = Zlongf_

X (4.16)
- ﬂ = Y;trans ;|
[ dXx

The second equation from (4.16) is derived and introduced in the first

equation, obtaining:

»

A~

— = Y;trans Zlong I_( X ) (4 1 7)

It can be observed that in (4.16) and (4.17) operators Zlong and Y;Iong are

switched which means that different expressions for voltages and currents will be

obtained.
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4.2. Multipolar equations

The general solution of the equation (4.15) is:
U(x)=e™C,+e"C, (4.18)

In which Ql and QZ are arbitrary constants written as column vector, generally

complex, which are determined using conditions at the ends of the line.

For determining the currentIA_, the general solution (4.18) of the voltage is

introduced in relation (4.9), which is written in matrix form:

——==Z..0 (4.19)

We obtain:

|=—>>

(4.20)

A1 s A s A
| = ;Iong Z(e_VXCl - elx (_:2) (421)
and

Zi? =2, =Y, (4.22)
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The expression given by relation (4.22) is called characteristic admittance operator
of the three-phase electrical line. It is a matrix and it generalizes the characteristic

admittance of the transmission line that is a complex number.

In order to obtain the expression for the characteristic impedance matrix,

relation (4.22) is inverted term by term and the following is obtained:

R _1 2'
L. =y 2 log (4.23)
The general solutions for the electrical voltage and current are:
U(x)=e™C, +e"C,
R A o o (4.24)
i(x)=Y."¢ -e"¢,)

To determine the constants C, and C, that occur in equation (4.24),

voltages and currents are assumed known at the beginning of the line.

For:

X=0,i=LandU =Q1.

~

It is obvious that |,and U ; are three-column array elements.

We obtain:
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In order to determine the constants Ql and (;2, the second relation above

~-l
is multiplied on the left with Y . .

For constants Ql and (iz the following expressions result:

Ql — Ul+22C|l

< o (4.25)
Qz — lll_chl

L 2

(4.26)

Equations (4.26) represent the multipolar equations of a piece of three-phase

electrical line, situated between the input and a section at “x” distance.

If in equations (4.26) there is introduced X = | , there are obtained the equations

at the output as a function of the input quantities:

(4.27)

Equation (4.27) can be written also using matrix form:
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G | [ ehpt =(snjt)- 2. |G 20
Poon ) (=(sh71)-Y.  chpl [T |

It can be observed that the squared matrix 2x2, on the right side of relation (4.28),

is the matrix of the fundamental operators, written with the help of the

characteristic parameters ZC and gc = ZI .

A =chji B =—(shjI 2.
C =-shjl D =chjl

4.3. Refection coefficient

Let’s analyze the general solutions (4.24) not just from the point of view of
the multipolar equations, but also from the point of view of the forward and

backward waves with which we are familiar from the transmission lines.

Referring to relations (4.24), we can write them like this:

U(x)=e”C,+e"C, =U0,(x)+U(x)
A o o R ~ (4.29)
I(x) =Y (e™C,-e"C,) =1, (x) +L(x)

The forward voltage and current waves have the form:

U,(x)=e”C, 30

id ( X ) = Y;ce_ix Ql

And the backward voltage and current waves are:

41



MIHAI Gheorghe The theory of the three-phase electric multipole

Qi(X ) = e_ixéz
~ A R (4.31)
Li(x)= _ice_lxc_:z

Constants Ql and QZ have the expressions (4.25).

From relations (4.30) it can be noticed that the last two terms of the second

relation represent the forward voltage wave (meaning the first relation):

~

i,(x)=Y.U, (4.32)

Analogously for relation (4.31):

=-Y_.U., (4.33)

Relations (4.32) and (4.33), show that in any section of the three phase
electrical line, the forward component of the current is related to the forward
component of the voltage through characteristic admittance operator. The same

thing can be said about the backward components of the current and voltage:

(4.34)

The reflection coefficient ﬁr is defined as a mathematical expression,
which links the forward wave of voltage to the backward wave voltage at the end
of the line (x =1).

In order to determine its expression, let us consider the two voltage waves

at the end of the line. From relations (4.30) and (4.31), we obtain:
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0 _e—f'é _e—zl 01+Zc|l
Us = T
X A :2’\ (4.35)
W aa 0, -7
0, =e"¢, = L= Ll

Because of the matrix character of the quantities, we cannot define the ratio

of the two voltage waves. Not to encounter this problem, we will write that:

U, (4.36)

|X>>

0, =

Where the reflection coefficient must be a matrix, because Qi and Qd are column

matrixes themselves.
From relations (4.35) and (4.36) we obtain:

|N>>
—>

e (U, +

|N>>
|—>
|X>>

e?(0,-2.1,)= 1) (4.37)

For easing the computations and emphasizing the role of the three phase

consumer’s impedance, we will write relation (4.37), as a function of the quantities

~

at the end of the line, meaningQ2 ,f_z,;s. The voltages at the end of the line are

identical with the voltages at the consumer. In previous conditions, relation (4.37)

becomes:
U,-2.1,=K,(U,+Z2.1,) (4.38)

R
= ;s I_output

We introduce condition U, =U in relation (4.38) and

output

obtain: Zs —Zc = &r(

By multiplying on the right with the inverse matrix of the coefficient K, , we

obtain in the end:
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2 N2, +2,)" (4.39)

For transmission lines, the reflection coefficient is generally a complex
quantity, its module being equal to the ratio between the absolute values of the
amplitudes of the forward and backward waves at the end of the line.

For a three-phase line, the reflection coefficient is a matrix because each of
the three voltages and currents are reflected at the end of the line. It is obvious
that in the case of an asymmetric three-phase line with asymmetric load

consumers, each phase will have its own reflection coefficient.

4.4. The input impedance

In paragraph 4.3, relation (4.27), we have set the dependency between the

electrical quantities at the output and the electrical quantities at the input. We

solve the system of equations (4.27) as function of input electrical quantities Q

input

and | ... and we obtain:

llinput = (Chil )Q + (Shil )Zc ’I\_output

output

A . o (4.40)
I_input = (ShZI )ic uoutput + (ChZI )I_output

If in the case of the electrical quadripole, the input impedance is defined as
the ratio between the input voltage and current, in complex representation, in the
case of the three-phase electrical multipole, both voltage and current are column
matrixes which can not be divided algebraically.

We have reached the same problem as in the case of the reflection
coefficient. In this situation, we define the input impedance for a three-phase
electrical line, as a proportional constant between the matrix of the input voltage
and the one of the input current. It is obvious that this constant is a matrix and has

the dimension of impedance:
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(4.41)

A~

U ;mput : I_input

~ input

and |, with the expressions from

We replace in the above relation U U input

relations (4.40) and obtain:
(Ch}’;l )Zsioutput +(Sh2| )Zc’l\_output Zlnput|:(3h7| )Y = output +(Ch7|)|output:|

can be obtained directly from the

Zinput

It can be noticed that the input impedance Z
above relation by multiplying on the right with the inverse of its coefficient

-1

(chFNZ. +(shF)Z.)| (shFY.Z. +(ch})| (442

;lnput -

The open impedance Z,nput , and the short impedance Z,nput . of the three-phase
— 00 and

can be obtained from relation (4.42) for the particular cases Z

Z.—>0.The expressions of these impedances are

(4.43)

»

= (ehjh] (shiv. |

“=input,0

Z s = [(sh j )Zc}(ch 3y (4.44)

Taking into account expressions (4.43) and (4.44), the following expressions are

obtained:
2 A~ R2 -
(chZI );c(chZI ) (4.45)

Zlnput OZmput k

Z s Znpo = (SNF1)Z, (shyl )™ (4.46)

A~
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From expressions (4.45) and (4.46), it can be noticed that in general

operators Z, .., and Z, ., are not switchable. The necessary and sufficient
2

condition to be switchable is that Z, to be switchable with both (Chil)

and(shl).
In this situation there is obtained:

2 2 2 NG
z. . Z =Z. (4.47)

input,OZinput k = “.input .k =.input,0

N>

Relation (4.47) is known in the theory of the electrical quadripole.
Returning to relation (4.43) and (4.44) we compute the expressions:

Al -1 2

Z input ,k ;input,o and Zinput,OZinput,k

For the first relation we obtain:

Z oo = (ShP1)Z.(ch 1) (sh71)Y . (ch31)” (4.48)

Zinput Kk ;input ,0

And for the second:

A-1 2 A A ~ A R ~
Zinput,OZinput,k = (ShZI )ic(ChZI )_l(ShZI );c(ChZI )_1 (449)

It can be noticed that in this case as well, relations (4.48) and (4.49) are

equal only when ZC and ﬁc switch the hyperbolic functions Chil and Shil .

There is obtained:

N 21 2 A A
input ,k ;input,o = ;input,OZinput,k = (ShZI )2[(ChZI ) 1] (450)

N>
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5. CONCLUSIONS

1. The three-phase electric multipole is a spatial electric circuit that is
associated with a polyhedral shape. The external unit normal vector to the

lateral surface is associated with the direction of path of the circuit.

2. The input-output voltages, respectively input-output currents form a column

matrix with six elements, divided into two matrixes with three elements.

3. Between the matrix for input-output voltages and the matrix for input-output

currents is a linear operational relation.

4. The reciprocity and symmetry conditions of three-phase electric multipole
have a similar form to that from quadripole, where the impedance
parameters are substituted by the associated impedance operator

parameters.

5. The electric consumers: mono-phased, bi-phased, three-phased and the
damages can be modulated by transversal impedances Z1,, Z23, Z31, Z1o,
Z20, Z30.
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