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FOREWORD
    

The book ”The theory of the three-phase electric multipole” represents the 

generalization of the electric quadripole theory to the three-phase electric 

circuits, wants to maintain both the definitions and formulae obtained in the 

theory of the electric quadripole, but in another mathematical symbolism adapted 

to the three-phase electric circuits with or without neutral wire.   

In the book, the following are determined: 

 the matrix form of the fundamental parameters for three-phase 

electrical networks in star/triangle;  

 the matrix form of the impedance parameters for three phase- 

electrical networks in star/triangle;  

 the matrix form of the impedance parameters for three-phase electrical 

networks function of the symmetrical components of direct, reverse 

and homopolar components; 

 the matrix form of the Telegrapher’s equations for three-phase 

electrical networks.  

The mathematical model utilized has at the basis the theory of the linear 

operators.  

The book is a new approach and it is addressed to engineers from 

research and design, PhD students, to who wants to perfect in this field.  
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1. INTRODUCTION 
 

 The theory of the electrical quadripole is a well set theory, with theoretical 

results confirmed practically in numerous applications from different domains of 

science and technology.  

 Analogously, the theory of the three-phase electric circuits has its specific 

computational means, such as: the method of the neutral displacement, the 

method of symmetrical components, the nodal analysis, etc.  

 The link between the theory of the electrical quadripole and the three phase 

electrical circuits’ theory is done only in the chapter referring to the building of the 

electrical schemes of direct, reverse and homopolar succession.  

 In the present paper, we want to generalize the theory of the electrical 

quadripole to three phase electrical circuits. This theory will be called „the theory of 

the three phase electrical multipole”.  

 The main purpose of this paper is to keep unchanged the mathematical 

formulae obtained in the case of the electrical quadripole theory and to change 

only the mathematical significance of the terms. An approach of the electrical three 

phase systems from the perspective of the three phase electrical multipoles 

misses in the literature.          

 By three phase electrical multipole, one will understand an electrical 

structure which posses three or four input terminals and three or four output 

terminals, fed with a three-phase voltage system. The three phase electrical 

multipole has three or four terminals, depending on the three phase electrical 

system if it has a neutral wire or not, fig.1a, 1b. 

 The interaction of the three phase electrical multipole with the exterior is 

completely characterized by the three voltages at the access terminals and by the 

three electrical currents coming from outside. 

 A group of three or four access terminals for which the algebraic sum of the 

currents is null, no matter which are the potentials of the multipoles’s terminals is 

called a port of the three-phase electrical multipole. 
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 A port with three or four terminals, at which the applied three phase 

voltages and the corresponding electrical currents are associated after the 

receptors’ rule, is called an input port. 
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Figure 1. Symbolic representation for the three-phase electrical multipole: 

a) Three-phase electrical multipole without neutral wire; 

b) Three-phase electrical multipole with neutral wire; 

   

 At the input port, the complex power computed with these values is a 

received power.   

 A port with three or four terminals, at which the three phase voltages and 

the corresponding electrical currents are associated after the generators’ rule, is 

called an output port. 

 At the output port, the complex power computed with these values is a 

delivered power. 

 

 

2. EQUATIONS AND PARAMETERS OF THE PASSIVE, LINEAR AND 
RECIPROCAL THREE - PHASE MULTIPOLE 

 

 A three phase multipole is characterized by three input voltages 

321 U,U,U and three output voltages 321 'U,U,U '' . The two sets formed by the three 

elements, will be written as column matrixes: 
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Ûinput               
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
'U
'U
'U
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Analogously, for the electrical currents, we will have two matrixes, the input current 

matrix formed by three elements, ( 321 I,I,I ) and the output currents matrix 

( 'I,'I,'I 321 ). 
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 In relations (2.1) and (2.2) it is obvious that the indexes 1, 2, 3 refer to 

phases 1, 2 and 3. 

 From the four variables inputÛ , outputÛ , inputÎ  and ,outputÎ  , which characterize 

the interaction of the three phase electrical multipole with the exterior, only two of 

them are independent from the point of view of the internal structure of the three 

phase multipole. Two relations of the form are obtained: 
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 Equations (2.3) are the equations of the three-phase multipole in implicit 

form. Supposing that the three-phase multipole is linear and passive, it results that 

equations (2.3) are linear and homogenous. 

 
 

2.1. The fundamental form of the three-phase multipole equations and the 
fundamental parameters 

 
 In a three phase electrical network, the electromagnetic energy has a 

direction of propagation through the leader of three-phase multipole, so that the 

fundamental form is considered that expression in which the input quantities  

inputÛ  and inputÎ  are expressed linear with the output quantities outputÛ  and outputÎ : 
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The following coefficients Â̂ ,B̂̂ , Ĉ̂ ,D̂̂  are called fundamental parameters of the 

three-phase multipole. From a mathematical perspective, they are matrixes 

(operators) . 33×
 
 

3. THE CALCULUS OF THE IMPEDANCE OPERATORS FOR A THREE-
PHASE ELECTRIC MULTIPOLE 

 

3.1. Three-phase electric multipole in ∆ connection 

3.1.1. The calculus of the impedance operators 
 

In figure 3.1., the three-phase electric multipole in ∆ connection is presented. 
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Figure 3.1. The three-phase

 
In order to apply Kirchhoff’s se

to the three-phase multipole, defined

terminals 1’, 2’, 3’, figure 3.2. 
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 electric multipole in ∆ connection 

cond law, we consider the prism associated 

 by the input 1, 2, 3 respectively the output 
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On the side surfaces 11’2’2, 22’3’3 and 11’3’3, we consider the exterior 

normal vectors: 12n , 23n , 31n . 

Accordingly, to the right handed screw rule, we associate to the direction of 

the normal vectors, the direction of the electrical current built on each side surface. 
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Figure 3.2. Explanation drawing for applying Kirchhoff’s second law in space 

 

For the input ports, the following equations are obtained: 
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Analogously, the equations for the output ports are given:  
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For a three-phase electrical system, there are obvious equations: 
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We apply Kirchhoff’s first law in A, B, C nodes and we obtain: 
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For obtaining the equations of the three-phase electrical multipole, as a 

function only of the input and output voltages and currents, we will have to 

eliminate the currents 12I , 23I , 31I  from equations  (3.1) and (3.2).  

In order to eliminate these currents, from the above-mentioned system of 

equations, we firstly consider, the transfiguration of the triangle with the vertices in 

the A, B, C nodes. 
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Figure 3.3. Explanatory drawing for ∆ - Y transfiguration 

 

Let currents "I 1 , "I 2 , "I 3  coming from the nodes A, B, C, figure 3.3. 

It is obvious that: 

 

0321 =++ "I"I"I                                       (3.5) 

 

From ∆ -Y transfiguration conditions, the following relations are obtained: 
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The phase diagram from figure 3.4. corresponds to relations (3.6). 
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Figure 3.4. The currents’ phase diagram at ∆- Y transfiguration 

 

In figure 3.5. the currents *I 12 , *I 23 , *I 31  are built, which correspond to the case 

where all 12Z , 23Z , 31Z  impedances are equal. These currents can be found on 

the medians of the triangle.  
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Fig.3.5. Explanatory drawing for determining the line currents 

 

From the diagram, there can be set the link between the currents we must 

determine 12I , 23I , 31I  and the *I 12 , *I 23 , *I 31 , I∆ currents. 

There is obtained: 
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We add the three relations from (3.7) system and we take into account that:  

 
*I 12  + *I 23 + *I 31 = 0 

We get that: 

 

 
3

312312 IIII ++
=∆                                        (3.8) 

 

We apply Kirchhoff’s second law on the contour delimited by the A, B, C 

nodes, figure 3.1 and we obtain: 

 

0313123231212 =++ ZIZIZI                                  (3.9) 

 

The first equation from (3.7) we multiply it with 12Z , the second one with 

23Z  and the third one with 31Z ; then we add them and one finds:  
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Based on relation (3.9), one obtains: 
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Returning to relations (3.7) and replacing I∆  from (3.10), we get: 
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From the diagram in figure 3.5, it results that: 
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So (3.11) becomes: 
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By cyclic permutations in relation (3.13), one gets: 
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The expressions of "I 1 , "I 2 , "I 3  currents, can be obtained from figure 3.3. 
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So (3.13), (3.14), (3.15) relations become: 
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In which:                              

312312 ZZZZ t ++=                                        (3.18) 

 

Relations (3.17) contain the transversal impedances of the multipole, as 

well as the input and output currents.  

We replace the currents from (3.17) relation into (3.1) and (3.2) relations 

and one finds: 

 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−−⎟
⎠

⎞
⎜
⎝

⎛
+−⎟

⎠

⎞
⎜
⎝

⎛
+=

+−⎟
⎠

⎞
⎜
⎝

⎛
+−⎟

⎠

⎞
⎜
⎝

⎛
+=

+−⎟
⎠

⎞
⎜
⎝

⎛
+−⎟

⎠

⎞
⎜
⎝

⎛
+=

23
31

312
31

123
31

3312
31

1131

31
23

312
23

231
23

3312
23

2223

23
12

231
12

123
12

2231
12

1112

Z
Z
Z'IZ

Z
Z'IZ

Z
ZZIZ

Z
ZZIU

Z
Z
Z'IZ

Z
Z'IZ

Z
ZZIZ

Z
ZZIU

Z
Z
Z'IZ

Z
Z'IZ

Z
ZZIZ

Z
ZZIU

tttt

tttt

tttt

    (3.19) 

 

 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎟
⎠

⎞
⎜
⎝

⎛
+−⎟

⎠

⎞
⎜
⎝

⎛
+−−=

⎟
⎠

⎞
⎜
⎝

⎛
++⎟

⎠

⎞
⎜
⎝

⎛
+−−=

⎟
⎠

⎞
⎜
⎝

⎛
++⎟

⎠

⎞
⎜
⎝

⎛
+−−=

23
31

3312
31

1123
31

312
31

131

31
23

3312
223

2231
23

312
23

223

23
12

2231
12

1123
12

231
12

112

Z
Z
Z'Z'IZ

Z
Z'Z'IZ

Z
ZIZ

Z
ZI'U

Z
Z
Z'Z'IZ

Z
Z'Z'IZ

Z
ZIZ

Z
ZI'U

Z
Z
Z'Z'IZ

Z
Z'Z'IZ

Z
ZIZ

Z
ZI'U

tttt

tttt

tttt

(3.20) 

 

As presented in chapter 1, the input and output operators for voltage and 

current are introduced: 
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Accordingly to the above relations, we form the matrix relation between the 

operators:  
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By comparing relations (3.19), (3.20) and (3.22), there are obtained the 

expressions of the impedance operators of the three-phase electrical 

multipole: 
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Relations (3.23), (3.24), (3.25) and (3.26) represent the operational form of 

the impedance parameters, for a three-phase electrical multipole in ∆ connection. 

If examined the form of the impedance operators, one can notice that:  

 

  2112 Ẑ̂Ẑ̂ −=                                             (3.27) 

 

which is the necessary reciprocal condition for three phase electrical multipoles. 

For a three-phase symmetrical multipole we have:  

 

'ZZ 11 = , 'ZZ 22 = , 'ZZ 33 =  

 

Then, replaced in relations (3.23) and (3.26) leads to: 

 

  2211 Ẑ̂Ẑ̂ −=                                            (3.28) 

 

which is the identical condition formally speaking with the condition for a 

symmetrical four-port.  
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The general reciprocal condition (2.56) is fulfilled only if the three-phase 

multipole is symmetrical. 

 

 

3.1.2. The calculus of the fundamental parameter operators: Â̂ , B̂̂ , Ĉ̂ , D̂̂  

 

In the previous paragraph, we have determined the operator for the 

impedance parameters. The operator for the fundamental parameters can be 

obtained using the transformation formulae from the operator for the impedance 

parameters. In order to better understand how the operator for the fundamental 

parameters is determined in the case of a three-phase electrical multipole, we will 

use the direct approach, starting form Kirchhoff’s laws, starting with fig.3.1. 

In node A we apply Kirchhoff’s first law: 
 

'IIII 131121 +−=                                               (3.29) 

 

By applying Kirchhoff’s second law on loop A1’2’BA, respectively on loop 

A1’3’CA, one gets the following relations: 

 

12

221112
12 Z

'Z'I'Z'I'UI −+
=                                           (3.30) 

 

 
31

113331
31 Z

'Z'I'Z'I'UI −+
=                                         (3.31) 

 

After replacing (3.30) and (3.31) in (3.29), we obtain after some 

manipulations: 

 

( ) +−+⋅+= 31312312121 0 Y'U'UY'UI  

( ) ( ) ( )313312223111211 1 Y'Z'IY'Z'IY'ZY'Z'I −+−++++      (3.32) 
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Using cyclic permutations of the indexes, one gets the expressions for the 

other currents as well: 

 

( ) ( ) +−+⋅+⋅+−= 121131232312122 0 Y'Z'I'UY'UY'UI  

( ) ( )23331222322 1 Y'Z'IY'ZY'Z'I −+++−+                       (3.33) 

 

 ( ) ( ) +−+⋅+−⋅+⋅= 311131312323123 0 Y'Z'IY'UY'U'UI  

( ) ( )123331332322 +++−+ Y'ZY'Z'IY'Z'I                     (3.34) 

 

From relations (3.32), (3.33) and (3.34), it can be noticed that all have a 

common property meaning they represent the input electrical currents for phases  

1, 2, 3, as a function of the line voltages at the output and the phase currents at 

the output. In conclusion, we can write the operational relation: 

 

outputl,outputinput ÎD̂̂ÛĈ̂Î +=  

 

in which: 

 

  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3

2

1

I
I
I

Î input ;      
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

'I
'I
'I

Î output

3

2

1

; 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

31

23

12

'U
'U
'U

Û l,output             (3.35) 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−
=

3123

2312

3112

0
0

0

YY
YY

YY
Ĉ̂                                     (3.36) 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++−−
−++−
−−++

=
1

1
1

233313232311

233122232121

313122311121

Y'ZY'ZY'ZY'Z
Y'ZY'ZY'ZY'Z
Y'ZY'ZY'ZY'Z

D̂̂                      

(3.37) 
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For obtaining the mathematical expression for operators Â̂  and B̂̂ , we will 

keep in mind that we must obtain a relation having the form: 

 

 outputl,outputl,input ÎB̂̂ÛÂ̂Û +=                                 (3.38) 

 

In order to obtain a relation like the one in (3.38), we apply Kirchhoff’s 

second law on the loop 1AB21: 

 

2212121112 ZIZIZIU −+=                                 (3.39) 

 

From the expressions of the electrical currents (3.30), (3.32), (3.33), (3.34) 

and relation (3.39), one finds: 

 

( ) ( ) ( ) +−+−+++= 13131223322121121212 1 ZY'UZY'UZYZY'UU  

( )[ ]++++++ 112231112111 1 ZYZYZYZ'Z'I  

( )[ ] ( )[ ]23231133 YZYZ'Z'I +−                            +−−−−−+ 212223212122 1 ZYZYZYZ'Z'I
 (3.40) 

Analogously, the following relations result: 

     

( ) ( ) ++++−= 1323223232121223 ZYZY'UZY'UU
( ) ( )[ ] ++−+−+ 3131221133131 YZYZ'Z'IZY'U  

( )[ ] ++++++ 223312223222 1 ZYZYZYZ'Z'I  

          ( )[ ]323331323233 1 ZYZYZYZ'Z'I −−−−−+                            (3.41) 

 

         ( ) ( ) +−+−= 323231121223 ZY'UZY'UU  ( ) +++ 113133131 ZYZY'U  

( )[ ] +−−−−−+ 131112131311 1 ZYZYZYZ'Z'I ( )[ ] ++− 12123322 YZYZ'Z'I  

( )[ ]331123331333 1 ZYZYZYZ'Z'I +++++                                         (3.42) 

 

By comparing relations (3.40), (3.41), (3. 42) with relation (3.38), one gets: 

 

 17 
 



 
 MIHAI Gheorghe                             The theory of the three-phase electric multipole 
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

31

23

12

U
U
U

Û l,input ;    
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

31

23

12

'U
'U
'U

Û l,output ;     
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3

2

1

'I
'I
'I

Î output            (3.43) 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++−−
−++−
−−++

=
1

1
1

131331323112

331323223212

131223212112

ZYZYZYZY
ZYZYZYZY
ZYZYZYZY

Â̂       (3.44) 

Operator B̂̂  has the form: 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

333231

232221

131211

BBB
BBB
BBB

B̂̂                                       (3.45) 

 

in which B11 , B12 …B33 components have the expressions:  

 

( )
( )

( )⎪⎩

⎪
⎨

⎧

+−=
++++−=

++++=

232311313

2122232121212

1122311121111

1
1

YZYZ'ZB
ZYZYZYZ'ZB

ZYZYZYZ'ZB
                   (3.46) 

 

( )
( )
( )⎪⎩

⎪
⎨

⎧

++++−=
+++++=

+−=

3233313232323

2233122232222

313122121

1
1

ZYZYZYZ'ZB
ZYZYZYZ'ZB

YZYZ'ZB
                     (3.47) 

 

( )
( )
( )⎪⎩

⎪
⎨

⎧

++++=
+−=

++++−=

3311233313333

121233232

1311121313131

1

1

ZYZYZYZ'ZB
YZYZ'ZB

ZYZYZYZ'ZB
                        (3.48) 
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3.2. Three-phase electric multipole in Y connection 
3.2.1. Three-phase electric multipole in Y connection with neutral wire 

3.2.1.1. The calculus of impedance operators 
  

In fig. 3.6., the three-phase electrical multipole in Y connection with neutral wire is 

presented.  

In order to apply Kirchhoff’s second law, we consider the fascicle of planes 

associated to the electrical multipole defined by the input terminals 1,2,3,0 and 

output terminals 1’,2’,3’,0’, as fig.3.7 shows. 

 

A 

3I
 

1 

20Z  

10Z  

3 
 

1U  

3Z
3U  

 20I

2U 2 

′
3I  

 

  NZ0 

′
1Z  ′

1I  

′
1U  

′
NI  

′
NZ  0´ 

B 

30I  

2Z  
3´ 

2´ 
′

3U

′
2I  ′

2Z  
′

3Z  

′
2U

 

 ′10I

 1Z  1I

NI

 1´ 

 

 

 

  

 

 

 

 

Fig.3.6. The three-phase electrical multipole in Y connection with neutral wire  

 

We consider the normal vectors 1n , 2n , 3n  on (1,1’,0’,0), (2,2’,0’,0) and 

(3,3’,0’,0) planes. The direction of the normal is chosen after the right handed 

screw rule. The direction of rotation of the right handed screw is the direction of 

the electrical currents built on each plane. 
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1n  1 

 2n
3 3´ 

2 2´ 

0´ 

1´ 

 3n 0 

 

 

 

 

 

Fig.3.7. Explanation drawing for applying Kirchhoff’s second law in space 

 

For the input ports, the following equations can be obtained: 

 

⎪⎩

⎪
⎨

⎧

=−++−
=−++−
=−++−

0
0
0

3030333

2020222

1010111

NN

NN

NN

ZIZIZIU
ZIZIZIU
ZIZIZIU

                                  (3.49) 

 

UZI NN ∆=  

 

Analogously, there are obtained the equations for the output ports: 

 

⎪
⎩

⎪
⎨

⎧

=−−+
=−−+
=−−+

0
0
0

3030333

2020222

1010111

NN

NN

NN

'Z'IZI'Z'I'U
'Z'IZI'Z'I'U
'Z'IZI'Z'I'U

                                  (3.50) 

 

'U'Z'I NN ∆=  

 

We have relations between the phase currents and the neutral wire for the 

output and input terminals: 

 

⎩
⎨
⎧

=+++
=+++
0
0

321

321

N

N

'I'I'I'I
IIII

                                    (3.51) 
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We apply Kirchhoff’s first law for A, B, C nodes and we find: 

 

⎪
⎩

⎪
⎨

⎧

=−
=−
=−

3033

2022

1011

I'II
I'II
I'II

                                        (3.52) 

 

We substitute (3.51) and (3.52) relations in (3.49) and (3.50) and we get: 

 

( )
( )

( )⎪
⎩

⎪
⎨

⎧

−++++=
−++++=
−++++=

3033033211

2023202212

1013210111

Z'IZZZIZIZIU
Z'IZIZZZIZIU
Z'IZIZIZZZIU

NNN

NNN

NNN

                (3.53) 

 

( )
( )

( )⎪
⎩

⎪
⎨

⎧

−−−+−−=
−−−−+−=
−−−−−+=

NNN

NNN

NNN

ZZ'Z'IZ'IZ'IZI'U
Z'IZZ'Z'IZ'IZI'U
Z'IZ'IZZ'Z'IZI'U

3033213031

3202212022

3210111011

           (3.54) 

 

As presented in the previous chapter and last paragraph, the input and 

output operators for voltage and current are introduced: 

 

         
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3

2

1

U
U
U

Û input         
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3

2

1

'U
'U
'U

Û output  

           
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3

2

1

I
I
I

Î input               
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3

2

1

'I
'I
'I

Û output                      (3.55) 

Accordingly to the above relations, we form the matrix relation between the 

operators: 
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

output

input

output

input

Î

Î

Ẑ̂Ẑ̂
Ẑ̂Ẑ̂

Û

Û

2221

1211                                   (3.56) 

By comparing (3.53) and (3.54) relations with (3.56), one can find the 

expressions for the impedance operators of the three phase electrical multipole in 

Y connection: 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++
++

++
=

NNN

NNN

NNN

ZZZZZ
ZZZZZ
ZZZZZ

Ẑ̂
303

202

101

11         (3.57) 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−
=

30

20

10

12

00
00
00

Z
Z

Z
Ẑ̂                                    (3.58) 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

30

20

10

21

00
00
00

Z
Z

Z
Ẑ̂                                        (3.59) 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−−−
−−−−−
−−−−−

=

NNN

NNN

NNN

'ZZ'ZZZ
Z'ZZ'ZZ
ZZ'ZZ'Z

Ẑ̂
303

202

101

22                   (3.60) 

 

From examining the form of the impedance operators, one can observe 

that: 

  2112 Ẑ̂Ẑ̂ −=                                            (3.61) 

 

which represents the necessary condition of reciprocity for the three-phase 

electrical multipoles. For a symmetric three-phase electrical multipole 

having: 11 'ZZ = ; 22 'ZZ = ; 33 'ZZ = ; NN 'ZZ = , it can be obtained: 
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  2211 'Ẑ̂Ẑ̂ −=                                          (3.62) 

 

Conditions (3.61) and (3.62) are formally identical with the conditions for a 

quadripole to be symmetrical and reciprocal. 

The general reciprocal condition is fulfilled only if the three-phase multipole 

is symmetrical.  

 

 

3.2.2. Three-phase electric multipole in Y connection without neutral wire 
3.2.2.1. The calculus of the impedance operators 

 
In figure 3.8., a three-phase electrical multipole in Y connection without 

neutral wire is presented.  

 

 
 

1 
′

1I  

 10I
A 

2′ 

3 

3Z  

′
2Z  

 

20I  30I  

2I
 

′
2I

′
3Z  

30Z

B 

3I
 

′
3I

C 

3′ 

2 2Z  
 20Z 

′
1Z1Z  

 

10Z   

 

 

 

 

  

 

Fig. 3.8. A three-phase electrical multipole in Y connection without neutral wire  

The three-phase electrical multipole is fed by a three phase voltage system 

12U , 23U , 31U . It can be noticed that the three-phase electrical multipole in Y 

connection without neutral wire can be obtained from the three-phase electrical 

multipole in ∆ connection if there is transfigured the impedance triangle, 12Z , 23Z , 

31Z , between nodes A, B, C, fig. 3.1. 
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Impedances 12Z , 23Z , 31Z  as a function of impedances 10Z , 20Z , 31Z , have the 

expressions: 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

++
=

++
=

++
=

20

103030202010
31

10

103030202010
23

30

103030202010
12

Z
ZZZZZZZ

Z
ZZZZZZZ

Z
ZZZZZZZ

                               (3.63) 

The form of the impedance operator for the three-phase electrical multipole 

in Y connection without neutral wire can be obtained from (3.23), (3.24), (3.25) and 

(3.26) in which relations (3.50) are replaced. 

 

 

3.3. Determining the impedance operators function of symmetric 
components for a three phase-multipole, in Y connection with neutral wire 

  

In previous paragraphs there have been deduced the expressions of the 

impedance operators’ expressions for an electrical multipole fed by an asymmetric 

three-phase voltage system. Both the system of the electrical voltages and the one 

of the electrical corresponding currents can be decomposed into systems of direct, 

reverse and homopolar succession. For the phase voltages 1U , 2U , 3U , there 

are obtained the direct, reverse and homopolar components of voltage.  
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( )

( )

( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

++=

++=

++=

32
2

1

3
2

21

321

3
1
3
1
3
1

UaUaUU

UaUaUU

UUUU

c

d

h

                                           (3.64) 

 

The phase voltages at the input 1U , 2U , 3U , have been calculated in 

section 3.2.1.1 as functions of the three phase electrical multipole parameters and 

have the following expressions: 

 

( )
( )

( )⎪
⎩

⎪
⎨

⎧

−++++=
−++++=
−++++=

3033033213

2023202212

1013210111

Z'IZZZIZIZIU
Z'IZIZZZIZIU
Z'IZIZIZZZIU

NNN

NNN

NNN

                  (3.65) 

 

We factorize the input electrical currents 1I , 2I , 3I  as a function of the 

corresponding symmetrical components hI , dI , iI : 

 

⎪
⎩

⎪
⎨

⎧

++=

++=

++=

idh

idh

idh

IaIaII
IaIaII

IIII

2
3

2
2

1

                                                (3.66) 

 

First, we replace relations (3.65) in relations (3.64) and then we replace the 

result in relation (3.66): 

 

( ) ( )[ ] +++++++= hNh IZZZZZZZU 9
3
1

302010321  
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            ( ) ( )[ ] +++++++ dIZaZaZZaZaZ 3020
2

1032
2

13
1

 

            ( ) ( )[ ] −++++++ iIZaZaZZaZaZ 30
2

20103
2

213
1

 

            ( 3032021013
1 Z'IZ'IZ'I ++− )                                             (3.67) 

 

                 ( ) ( )[ ] ++++++= hd IZaZaZZaZaZU 30
2

20103
2

213
1

 

            ( ) ( )[ ] +++++++ dIZZZZZZ 3020103213
1

 

             ( ) ( )[ ] −++++++ iIZaZaZZaZaZ 3020
2

1032
2

13
1

 

                        ( 303
2

2021013
1 Z'IaZ'IaZ'I ++− )                                         (3.68) 

 

( ) ( )[ ] ++++++= hi IZaZaZZaZaZU 3020
2

1032
2

13
1

 

( ) ( )[ ] +++++++ dIZaZaZZaZaZ 30
2

20103
2

213
1

 

( ) ( )[ ] −++++++ iIZZZZZZ 3020103213
1

 

         ( )303202
2

1013
1 Z'IaZ'IaZ'I ++−                          (3.69) 

 

It can be noticed that the longitudinal impedances 1Z , 2Z , 3Z  and the 

transversal impedances 10Z , 20Z , 30Z , appear in the above expressions as a 

function of operator “a”. After the grouping mode used in relations (3.67) – (3.69), 
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we define the symmetrical components of the longitudinal and transversal 

impedances.  

 The homopolar longitudinal impedance has the expression: 

( 3213
1 ZZZZ l ++=h )                                         (3.70) 

 The homopolar transversal impedance has the expression: 

( 3020103
1 ZZZZ t ++=h )                                     (3.71) 

 The direct longitudinal impedance: 

( 3
2

213
1 ZaZaZZ ld ++= )                                 (3.72) 

 The direct transversal impedance: 

( 30
2

20103
1 ZaZaZZ td ++= )                               (3.73) 

 The reverse longitudinal impedance is: 

( 32
2

13
1 ZaZaZZ li ++= )                                   (3.74) 

 The reverse transversal impedance: 

( 3020
2

103
1 ZaZaZZ ti ++= )                                (3.75) 

In each right parenthesis from expressions (3.67) – (3.69) we have sums of 

the same types of impedances: homopolar, direct and reverse. 

 We define: 

 Total homopolar impedance 

                        ( ) Nthlhh ZZZZ 3++=                                        (3.76) 

 

 Total direct impedance: 

( )thldd dZZZ +=                                                (3.77) 

 

 Total reverse impedance: 

( )tilii ZZZ +=                                                   (3.78) 
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Analogously, we compute the expressions as functions of the electrical 

currents at the output ports 1'I , 2'I , 3'I . 

• Calculus for the expression :  

( 3032021013
1 Z'IZ'IZ'I ++− )                                (3.79) 

 

From relation (3.67), we factorize the currents 1'I , 2'I  şi 3'I , as function of the 

symmetrical components: 

 

⎪
⎩

⎪
⎨

⎧

++=

++=

++=

idh

idh

idh

'Ia'Ia'I'I
'Ia'Ia'I'I

'I'I'I'I

2
3

2
2

1

                                 (3.80) 

 

We replace relations (3.80) in (3.79) and we obtain: 

 

( ) itddtihth 'IZ'IZ'IZZ'IZ'IZ'I −−−=++− 3032021013
1

          (3.81) 

 

• Calculus  for the expression: 

( )303
2

2021013
1 Z'IaZ'IaZ'I ++−                               (3.82) 

 

From relation (3.68), we apply the same algorithm, by replacing relation (3.83) in 

relation (3.82), and we obtain: 

 

( ) itidthhtd 'Iz'IzIzz'Iaz'Iaz'I −−−=++− 303
2

2021013
1

       (3.83) 

 

• Calculus for the expression: 

 

             ( )303202
2

1013
1 Z'IaZ'IaZ'I ++−  
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From relation (3.70), we obtain:  

 

ithdtihti 'IZ'IZIZ −−−                                   (3.84) 

 

The final expression for (3.67), (3.68) and (3.69), as a function of (3.76), 

(3.77), (3.78), (3.81), (3.83) and (3.85) become: 

 

( )

⎪
⎩

⎪
⎨

⎧

−−−++=
−−−++=

−−−+++=

ithdtdhtiihddhii

ithdthhtdiidhhdd

itidhtihthiddihNhh

'IZ'IZ'IZIZIZIZU
'IZ'IZ'IZIZIZIZU

'IZ'IZ'IZIZIZIZZU 3
                (3.85) 

Analogously for the output ports we obtain: 

( )

⎪
⎩

⎪
⎨

⎧

−−−++=−
−−−++=−

−−−+++=−

ithdtdhtiihddhii

ithdthhtdiidhhdd

itidhtihthiddihNhh

IZIZIZ'I'Z'I'Z'I'Z'U
IZIZIZ'I'Z'I'Z'I'Z'U

IZIZIZ'I'Z'I'Z'IZ'Z'U 3
        (3.86) 

in which: 

( )
⎪⎩

⎪
⎨
⎧

=

++=

thth

lh

Z'Z

'Z'Z'Z'Z 3213
1

                                        (3.87) 

( )
⎪⎩

⎪
⎨
⎧
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We introduce the operator of the symmetric components for the input and 
output ports: 
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Û

                                      (3.91) 

 

We introduce the matrix relation between operators: 
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From expecting relations (3.85) and (3.86) with (3.92) it results: 
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By examining the form of the symmetric impedance operators, there can be 

noticed that: 

SS Ẑ̂Ẑ̂ 2112 −=  

 

This represents the reciprocal condition. 

For a three-phase electrical multipole, with 11 'ZZ = , 22 'ZZ =  and 

33 'ZZ = , one can obtain the symmetry condition, known from the electrical 

quadripoles:  

SS Ẑ̂Ẑ̂ 2211 −=  

 

 

 

4. THREE-PHASE ELECTRIC LINES WITH DISTRIBUTED PARAMETERS 

4.1. Telegraphers’ equations for three-phase electric lines 

 

A three-phase electrical line with distributed parameters represents a 

generalization of a three-phase electrical line with distributed parameters in which 

each phase is coupled with the other phases. 

As in the case of the transmission line, we will introduce the following per 

unit length parameters for three-phase electrical lines : 
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 R1, R2, R3, the resistance per unit length of the conductors that 

make phases 1, 2 and 3. 

 L1, L2, L3 the inductance per unit length of the conductors 

themselves. 
 L12, L23, L31, the inductance per unit length of the couple between 

phases. 

 C12, C23, C31, the capacitance per unit length of the coupling 

between phases. 
 G12, G23, G31 the conductance per unit length of the losses between 

phases. 

In figure 4.1 an infinite small transmission line of length dx, is presented for 

which the electrical parameters (Ridx, Lidx, Lijdx, Cijdx, Gijdx with i, j =1, 2, 3) are 

considered lumped.  

 If we consider , , , respectively , , 

, the electrical voltage and current at the distance x from the beginning of 

the transmission line, then at the distance x+dx, these quantities will be 

, ,

)x(u12 )x(u23 )x(u31 )x(i1 )x(i2
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We apply Kirchhoff’s second law on the contour ”11’2’2”: 

)dx
x
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The infinite small terms of second order are neglected and we obtain: 
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(4.1) 

Through circular permutations of the indexes, the other two equations are found: 
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Considering the currents’ case, by applying Kirchhoff’s first law in A, B, C 

nodes, it results that: 
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And the following equation is obtained: 

 

t
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Analogously, the following equations are obtained: 
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Relations (4.1), (4.2), (4.3), (4.4), (4.5) and (4.6) form a system of equations 

with partial derivates for the three-phase electrical lines with distributed 

parameters which generalize Telegrapher’s equations for transmission lines. The 

system of equations with partial derivates reveal the fact that both electrical 

voltage and current are functions of variables x and t, so we will have  

respectively  (j = 1,2,3 and they represent the phases). 

)t,x(u j

)t,x(i j

For sinusoidal steady state we will look for a solution of the form: 
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By expressing the voltages and currents in complex, the system of 

equations expressed by relations (4.1) -(4.8) becomes: 
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We derive the group of equations (4.9) in respect to x and we write it using 

matrixes: 
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In relation (4.11), we note longẐ̂  the right matrix and with transŶ̂ we note the matrix 

in the right side of relation (4.12). 
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Ŷ̂ trans

ωω
ωω

ωω
           (4.14) 

 

From relations (4.11) and (4.12) and with notations (4.13) and (4.14), we get: 
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ltranslong
l )x(ÛŶ̂Ẑ̂

dx
)x(Ûd
=2

2

                                  (4.15) 

 

Relation 4.15. represents the complex form of the Telegrapher’s equations of 

second order generalized for three phase electrical lines, for voltages on the 

line. 

In relation (4.15) we introduce the propagation (or transfer) constant : 

  

 translong YZ ⋅=γ  

 

In order to obtain Telegrapher’s equations of second order generalized for three 

phase electrical lines, for phase currents, relations  (4.9) are (4.10) rewritten using 

matrix form: 
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ltrans

long
l

ÛŶ̂
dx

Îd

ÎẐ̂
dx
Ûd

                                          (4.16) 

The second equation from (4.16) is derived and introduced in the first 

equation, obtaining: 

 

)x(ÎẐ̂Ŷ̂
dx

)x(Îd
longtrans=

2

                                            (4.17) 

 

 It can be observed that in (4.16) and (4.17) operators longẐ̂  and longŶ̂  are 

switched which means that different expressions for voltages and currents will be 

obtained.  
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4.2. Multipolar equations 

 

The general solution of the equation (4.15) is: 

 

 21 ĈeĈe)x(Û xˆ̂xˆ̂ γγ += −                                     (4.18) 

 

In which 1Ĉ  and 2Ĉ  are arbitrary constants written as column vector, generally 

complex, which are determined using conditions at the ends of the line.   

For determining the current Î , the general solution (4.18) of the voltage is 

introduced in relation (4.9), which is written in matrix form: 

 

  ÎẐ̂
dx

Ûd
long=−                                               (4.19) 

 

We obtain: 

Î̂'Ẑ̂eĈˆ̂eĈˆ̂ long
xˆ̂xˆ̂
=−− γγ γγ 21                                     (4.20) 

By multiplying on the left with
1−

Ẑ̂ , the electrical current expression is obtained: 

 

 ( )21

1

ĈeĈeˆ̂Ẑ̂Î xˆ̂xˆ̂
long

γγγ −= −
−

                                (4.21) 

and 

 cclong Ŷ̂Ẑ̂ˆ̂Ẑ̂ ==
−− 11

γ                                              (4.22) 
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The expression given by relation (4.22) is called characteristic admittance operator 

of the three-phase electrical line. It is a matrix and it generalizes the characteristic 

admittance of the transmission line that is a complex number.  

In order to obtain the expression for the characteristic impedance matrix, 

relation (4.22) is inverted term by term and the following is obtained: 

 

  logc 'Ẑ̂Ẑ̂ 1−= γ                                                   (4.23) 

 

The general solutions for the electrical voltage and current are: 
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                                  (4.24) 

 

To determine the constants 1Ĉ  and 2Ĉ  that occur in equation (4.24), 

voltages and currents are assumed known at the beginning of the line.

For: 

 , 0=x 1II ˆˆ =  and 1UU ˆˆ = .  

It is obvious that 1Î and 1Û  are three-column array elements.

We obtain: 
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In order to determine the constants 1Ĉ  and 2Ĉ , the second relation above 

is multiplied on the left with 
1−

cŶ̂ .  

For constants 1Ĉ  and 2Ĉ  the following expressions result:   
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                                               (4.25) 

 

Based on relations (4.25), relations (4.24) become: 
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                               (4.26) 

 

Equations (4.26) represent the multipolar equations of a piece of three-phase 

electrical line, situated between the input and a section at “x” distance. 

If in equations (4.26) there is introduced lx = , there are obtained the equations 

at the output as a function of the input quantities: 
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                    (4.27) 

 

Equation (4.27) can be written also using matrix form: 
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It can be observed that the squared matrix 2x2, on the right side of relation (4.28), 

is the matrix of the fundamental operators, written with the help of the 

characteristic parameters cẐ̂  and lˆĝ̂
c

γ= . 

 

lˆ̂chÂ̂ γ=                 ( ) cẐlˆ̂shB̂̂ γ−=  

 

                                  lˆ̂shĈ̂ γ−=         lˆ̂chD γ=  

 

4.3. Refection coefficient 
 

 Let’s analyze the general solutions (4.24) not just from the point of view of 

the multipolar equations, but also from the point of view of the forward and 

backward waves with which we are familiar from the transmission lines.  

Referring to relations (4.24), we can write them like this: 
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The forward voltage and current waves have the form: 
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ĈeŶ̂)x(Î
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                                      (4.30) 

 

And the backward voltage and current waves are: 
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                                     (4.31) 

 

Constants 1Ĉ  and 2Ĉ  have the expressions (4.25). 

From relations (4.30) it can be noticed that the last two terms of the second 

relation represent the forward voltage wave (meaning the first relation): 

 

  dcd Û̂Ŷ̂)x(Î =                                                (4.32) 

 

Analogously for relation (4.31): 

 

  1ici Û̂Ŷ̂Î −=                                                   (4.33) 

 

Relations (4.32) and (4.33), show that in any section of the three phase 

electrical line, the forward component of the current is related to the forward 

component of the voltage through characteristic admittance operator. The same 

thing can be said about the backward components of the current and voltage: 

 

  
⎪⎩

⎪
⎨
⎧

−=

=

ici

dcd

ÎẐ̂Û

ÎẐ̂Û
                                                     (4.34) 

 

The reflection coefficient rK̂̂  is defined as a mathematical expression, 

which links the forward wave of voltage to the backward wave voltage at the end 

of the line (x = l). 

In order to determine its expression, let us consider the two voltage waves 

at the end of the line. From relations (4.30) and (4.31), we obtain: 
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                                   (4.35) 

 

Because of the matrix character of the quantities, we cannot define the ratio 

of the two voltage waves. Not to encounter this problem, we will write that: 

 

  dri ÛK̂̂Û =                                                        (4.36) 

 

Where the reflection coefficient must be a matrix, because iÛ  and dÛ  are column 

matrixes themselves.  

From relations (4.35) and (4.36) we obtain: 

 

 )ÎẐ̂Û(eK̂̂)ÎẐ̂Û(e c
lˆ̂

rc
lˆ̂

1111 +=− −γγ                               (4.37) 

 

For easing the computations and emphasizing the role of the three phase 

consumer’s impedance, we will write relation (4.37), as a function of the quantities 

at the end of the line, meaning 2Û , 2Î , sẐ . The voltages at the end of the line are 

identical with the voltages at the consumer. In previous conditions, relation (4.37) 

becomes: 

 

  )ÎẐÛ(K̂̂ÎẐÛ crc 2222 +=−                                    (4.38) 

 

We introduce condition outputsoutput ÎẐ̂ÛÛ ==2  in relation (4.38) and 

obtain:     )Ẑ̂Ẑ̂(K̂̂Ẑ̂Ẑ̂ csrcs +=−  

By multiplying on the right with the inverse matrix of the coefficient rK̂̂ , we 

obtain in the end: 
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  1−+−= )Ẑ̂Ẑ̂)(Ẑ̂Ẑ̂(K̂̂ cscsr                                     (4.39) 

 

For transmission lines, the reflection coefficient is generally a complex 

quantity, its module being equal to the ratio between the absolute values of the 

amplitudes of the forward and backward waves at the end of the line.  

 For a three-phase line, the reflection coefficient is a matrix because each of 

the three voltages and currents are reflected at the end of the line. It is obvious 

that in the case of an asymmetric three-phase line with asymmetric load 

consumers, each phase will have its own reflection coefficient.  

 

 

4.4. The input impedance 
 

 In paragraph 4.3, relation (4.27), we have set the dependency between the 

electrical quantities at the output and the electrical quantities at the input. We 

solve the system of equations (4.27) as function of input electrical quantities inputÛ  

and inputÎ  and we obtain: 

 

 
⎪⎩

⎪
⎨
⎧

+=

+=

outputoutputcinput

outputcoutputinput

Î)lˆ̂ch(ÛŶ̂)lˆ̂sh(Î

ÎẐ̂)lˆ̂sh(Û)lˆ̂ch(Û

γγ

γγ
                          (4.40) 

 

If in the case of the electrical quadripole, the input impedance is defined as 

the ratio between the input voltage and current, in complex representation, in the 

case of the three-phase electrical multipole, both voltage and current are column 

matrixes which can not be divided algebraically. 

We have reached the same problem as in the case of the reflection 

coefficient. In this situation, we define the input impedance for a three-phase 

electrical line, as a proportional constant between the matrix of the input voltage 

and the one of the input current. It is obvious that this constant is a matrix and has 

the dimension of impedance: 
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  inputinputinput ÎẐ̂Û ⋅=                                              (4.41) 

 

We replace in the above relation inputÛ  and inputÎ  with the expressions from 

relations (4.40) and obtain: 

 

⎥⎦
⎤

⎢⎣
⎡ +=+ outputoutputscinputoutputcoutputs Î)lˆ̂ch(ÎẐ̂Ŷ̂)lˆ̂sh(Ẑ̂ÎẐ̂)lˆ̂sh(ÎẐ̂)lˆ̂ch( γγγγ

 

It can be noticed that the input impedance inputẐ̂  can be obtained directly from the 

above relation by multiplying on the right with the inverse of its coefficient: 

 
1−

⎥⎦
⎤

⎢⎣
⎡ ++= )lˆ̂ch(Ẑ̂Ŷ̂)lˆ̂sh()Ẑ̂)lˆ̂sh(Ẑ̂)lˆ̂ch((Ẑ̂ sccsinput γγγγ        (4.42) 

 

The open impedance 0,inputẐ̂  and the short impedance k,inputẐ̂ of the three-phase 

can be obtained from relation (4.42) for the particular cases  ∞→SẐ̂  and 

0→SẐ̂ . The expressions of these impedances are: 

 

  
1

0

−

⎥⎦
⎤

⎢⎣
⎡= c,input Ŷ̂)lˆ̂sh()lˆ̂ch(Ẑ̂ γγ                                     (4.43) 

 

 1−

⎥⎦
⎤

⎢⎣
⎡= )lˆ̂ch(Ẑ̂)lˆ̂sh(Ẑ̂ ck,input γγ                                      (4.44) 

 

Taking into account expressions (4.43) and (4.44), the following expressions are 

obtained: 

 1
2

0
−= )lˆ̂ch(Ẑ̂)lˆ̂ch(Ẑ̂Ẑ̂ ck,input,input γγ                                  (4.45) 

 

 1
2

0
−= )lˆ̂sh(Ẑ̂)lˆ̂sh(Ẑ̂Ẑ̂ c,inputk,input γγ                                 (4.46) 
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From expressions (4.45) and (4.46), it can be noticed that in general 

operators 0,inputẐ̂  and k,inputẐ̂  are not switchable. The necessary and sufficient 

condition to be switchable is that 
2

cẐ̂  to be switchable with both )lˆ̂ch( γ  

and )lˆ̂sh( γ .  

In this situation there is obtained: 

 

 
2

00 c,inputk,inputk,input,input Ẑ̂Ẑ̂Ẑ̂Ẑ̂Ẑ̂ ==                               (4.47) 

 

Relation (4.47) is known in the theory of the electrical quadripole. 

Returning to relation (4.43) and (4.44) we compute the expressions: 

 
1

0

−

,inputk,input Ẑ̂Ẑ̂   and k,input,input Ẑ̂Ẑ̂
1

0

−

 

 

For the first relation we obtain: 

 

11
1

0
−−

−

= )lˆ̂ch(Ŷ̂)lˆ̂sh()lˆ̂ch(Ẑ̂)lˆ̂sh(Ẑ̂Ẑ̂ cc,inputk,input γγγγ              (4.48) 

 

And for the second: 

 

11
1

0
−−

−

= )lˆ̂ch(Ẑ̂)lˆ̂sh()lˆ̂ch(Ŷ̂)lˆ̂sh(Ẑ̂Ẑ̂ cck,input,input γγγγ                     (4.49) 

It can be noticed that in this case as well, relations (4.48) and (4.49) are 

equal only when cẐ̂  and cŶ̂  switch the hyperbolic functions lˆ̂chγ  and lˆ̂shγ . 

There is obtained: 

 

[ ]212
1

0

1

0
−

−−

== )lˆ̂ch()lˆ̂sh(Ẑ̂Ẑ̂Ẑ̂Ẑ̂ k,input,input,inputk,input γγ                      (4.50) 

 

 

 46 
 



 
 MIHAI Gheorghe                             The theory of the three-phase electric multipole 
 
 

5. CONCLUSIONS 

 

1. The three-phase electric multipole is a spatial electric circuit that is 

associated with a polyhedral shape. The external unit normal vector to the 

lateral surface is associated with the direction of path of the circuit. 

2. The input-output voltages, respectively input-output currents form a column 

matrix with six elements, divided into two matrixes with three elements. 

3. Between the matrix for input-output voltages and the matrix for input-output 

currents is a linear operational relation. 

4. The reciprocity and symmetry conditions of three-phase electric multipole 

have a similar form to that from quadripole, where the impedance 

parameters are substituted by the associated impedance operator 

parameters. 

5. The electric consumers: mono-phased, bi-phased, three-phased and the 

damages can be modulated by transversal impedances Z12, Z23, Z31, Z10, 

Z20, Z30. 
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