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Abstract - The problem of filtering of unobservable components      of a multidimensional continuous 

diffusion Markov process                 , given the observations of the (multidimensional) process 

     taken at discrete consecutive times with small time steps, is analytically investigated. On the base 

of that investigation the new algorithms for simulation of unobservable components,     , and the new 

algorithms of nonlinear filtering with the use of sequential Monte Carlo methods, or particle filters, are 

developed and suggested. The analytical investigation of observed quadratic variations is also 

developed. The new closed-form analytical formulae are obtained, which characterize dispersions of 

deviations of the observed quadratic variations and the accuracy of some estimates for     . As an 

illustrative example, estimation of volatility (for the problems of financial mathematics) is considered. 

The obtained new algorithms extend the range of applications of sequential Monte Carlo methods, or 

particle filters, beyond the hidden Markov models and improve their performance. 

Keywords - nonlinear filtering; multidimensional diffusion Markov process; particle filters; sequential 

Monte Carlo methods; simulation; quadratic variation; volatility.  
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1. Introduction 

In the last two decades a great deal of works has been devoted to development and 

investigation of particle filters, or sequential Monte Carlo algorithms, for filtering of an 

unobservable process                      given observations of the other process 

                      , taken at discrete times                        with 

small time steps              (see, for example, survey [1], collection [2], works [3 - 5], and 

references wherein). The observations        are being obtained consecutively, and an estimate 

for       should be updated at each time   . It is assumed that the whole process      

                            is a Markov process.  
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    In order to solve the problem of filtering of      , given the sequence of 

observations        
                         with the use of Monte Carlo methods, the 

samples of the random sequences        
           

                (from the distributions 

of         when       
   and       

    are given) should have been simulated numerically for 

       . 

    In general case, first of all, the problem arises: how to obtain an explicit and compact 

analytical expression (exactly or approximately) for the conditional probability density 

              
          

    in order to simulate samples of       when        
   and       

    

are given. 

    Suppose that such sample sequences        
   are being simulated, for        . The joint 

probability density for the given observations       
   and the sequence        

   could be 

computed: 

               
        

       
                    

 
                           ),       (1) 

where                                represents the transition probability density of the 

Markov process            , and           is the probability density for the initial joint 

distribution of the initial value       and the initial observation      .  

   In a large number of works devoted to particle filters the various algorithms of resampling 

were introduced in order to obtain the most a posteriori probable samples. For the problem of 

searching for the maximum a posteriori probable sample the following algorithm of resampling 

can be suggested: Introduce the values                   
    , for         . Then 

      can be considered as a weight of the sample sequence        
     (as well as of the sample 

point       ), which characterizes the a posteriori probability (or the importance) of the sample 

sequence        
   in comparison with the other samples         

   given       
  . Due to the 

Markov property of the process      , the recursive formulae for        and       can be 

written in general form; we have 

                                  
            .                                                                   (2) 

Then, it is possible to calculate recursively the new values         and        , when the 

new measurement         is obtained and the new sample point          is augmented to the 

sequence         
 , so that        

                              . It is easy to see, that it is 

not necessary to keep in memory  all the sequence        
   , but only the last point  

        Then the samples         
   with small weights       could be deleted, but the “more 

important” samples        
  should be continued with a few ‘offsprings’, so that the number of 

all sample sequences under consideration is equal to N (exactly or approximately). The 
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point     
     and the sequence    

     
  that have the maximum weight        correspond to 

the point      ) and to the sample sequence that is maximally a posteriori probable given the 

observations       
  , among all the considered sample points       ) and sample sequences 

       
 . Then the value of    

     can be taken as the sought estimate of        On the base of 

the Laws of Large Numbers, it could be proved that this Monte Carlo estimate converges to the  

maximum a posteriori probability estimate for       if    increases.  

    In most of works the additional assumption is accepted that the process      is a Markov 

process in itself, and that the conditional probability density                                

(for the observable process     ) can be presented in explicit and simple analytical form. Such 

cases are often referred to as hidden Markov models. Then, in many works, the sample 

sequences        
  are being simulated as trajectories of the Markov process        in itself, 

since such a simulation can be easily done.  The joint probability density, corresponding to the 

constructed sample        
   and to the observations        

 , is equal to  

         
        

     

                        
 
                               

                         (3) 

Then the weights       (or the other similar weights) could be easily calculated, and the above 

procedure of sampling and resampling could be realized, in order to obtain the estimate for 

     .  In some cases it would be better to simulate samples        with the use of the 

conditional probability density                                  which includes the observed 

value       . But this could have required a large amount of computations if we do not have an 

explicit and compact analytical expression for that conditional probability density. Meantime, if 

the process      is being simulated just as a Markov process in itself, the sample sequences 

       
  represent samples from the a priori distribution for       that can be far apart from the 

a posteriori distribution for        given       
 . Then resampling with the use of weights and 

significant increase in the number   are needed in order to find the most a posteriori probable 

values of        using the algorithm described above. Nevertheless, for hidden Markov models 

the particle filters with such a simple simulation of the sample sequences        
  , with 

resampling based on consideration of weights, but with large  ,  have been implemented and 

proved to be useful in some applications.  

    In general case when      represents only some components of a multidimensional Markov 

process             (and      is not a Markov process in itself), it was not shown in the 

literature how to simulate sample sequences        
  when the values of the other 

components,       
 , are  given (i.e. how to simulate sample sequences        

    without a 

formidable amount of computations at each time   ).  
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    Note that the difficulties in obtaining the samples        
  that correspond to the 

distributions               
          

   have led to the introduction and the use of some 

‘proposal sampling distributions’ (which can be simulated easier) in many works (see, for 

example, [2]). In the present work the explicit and compact analytical formulae and algorithms 

for simulation of the sample sequences        
  , when        

   is given, and for recursive 

calculations of      , weights, and estimates are obtained for the general case of a 

multidimensional continuous diffusion Markov process            .  

    For the problem of estimation of a function          or         
   the new estimates in 

explicit and closed analytical form are obtained in the following Section 2.2. 

   Moreover, in the quotients              
     the ‘scale’ of all the       is cancelled, and the 

information that could characterize the smallness of the a posteriori probability of all the 

generated samples        
   is lost.  In the present work the new sequential Monte Carlo 

algorithms are derived that include some tests in order to discard the samples of low a 

posteriori probability before the calculation of all the weights is done. The implementation of 

the suggested tests guarantees that the samples that remain under consideration belong to the 

domain where the a posteriori probability density is localized. 

    The obtained new algorithms improve performance of particle filters, or sequential Monte 

Carlo methods, and extend the range of their applications beyond the hidden Markov models.    

    The special case when the diffusion coefficients of the observable process      depend on 

unobservable components      is considered. In that case “observed quadratic variations” of 

the process      can be introduced (when observations       are taken in discrete time), and 

they contain a lot of information about     . In the present paper, the analytical formulae that 

characterize the observed quadratic variations are obtained in explicit and closed form. With 

the use of these results, the algorithm of filtering and estimation that incorporates the 

observed quadratic variations into the set of observed data is developed.  

    The implementation of particle filters, as it is usual for Monte Carlo methods, requires a lot of 

repeating computations, but it became accessible and useful in some applications (for example,  

[5], [18]), since the speed of computations and the capacity of computers have increased 

dramatically in the last two decades. 

 

2. Derivation of new recursive algorithms for Monte Carlo simulation and filtering 

of unobservable components of multidimensional diffusion Markov processes. 
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 2.1. Simulation of trajectories of unobservable components. Analytical investigation of a 

multidimensional diffusion Markov process observed at discrete times.  

Consider the multidimensional diffusion Markov process 

                                . The components                       are 

unobservable, but the other components                        are available for 

observations, which are being taken at discrete times   . 

    A diffusion Markov process with continuous trajectories      can be characterized by its drift 

and diffusion coefficients: 

                                          ,            ,                                     (4) 

                                                            ,                        (5) 

where     is a small time step. Denote                                                            

From the assumption that the trajectories of the process      are continuous functions of   it 

follows [6, 7] that 

       
 

  
      

        
             , with     .                                                (6) 

    The matrix       is symmetric and nonnegative definite. Therefore, in general case, that 

matrix can be represented with the use of its ‘square root’ in the form                  
 

, 

where      
 

 stands for transpose matrix      . 

    Then the process       could be constructed as a solution of the system of stochastic 

differential equations: 

                     
 
              ,            ,         ,                                            (7)  

where       are independent Wiener processes.  The initial condition at      is given as 

        , where    is a random variable independent of all        with given probability 

density       . The system (7) should be interpreted as the system of stochastic integral 

equations: 

         
 

  
                

 

  

 
                 ,                                                      (8)  

with stochastic integrals in the sense of Ito [11]. It is assumed that the drift coefficients         

satisfy the Lipschitz condition 
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                    , with                                                                (9) 

It is also assumed that the diffusion coefficients          are continuous and differentiable 

functions of   and    The Lipschitz conditions (9) guarantee that trajectories      do not have 

finite escapes, i.e.        does not tend to infinity when    tends to some finite moments of 

time.  

    The system of integral equations (8) with any given continuous trajectory       

                 can be solved with the use of successive approximations, which converge 

and define the continuous trajectory     . Thus, the trajectories of the process      are 

continuous with the probability 1.  

    The diffusion Markov process      can be also constructed as the limit solution of the system 

of finite difference equations: 

                                               
 
                    ,                    (10) 

where the random impacts         are independent random variables (for all         , 

       ), with           and          
 

   ;            ;         . In 

particular, the increments of Wiener processes,                           can be used in 

the finite difference equations (10) instead of             : 

                                               
 
                 ,                           (11)  

Here again it is assumed that the Lipschitz conditions (9) are satisfied, and that the functions 

        and          are differentiable with respect to  . The construction of diffusion Markov 

processes by the passage to the limit in the scheme of finite difference equations when time 

steps     tend to zero was first introduced and investigated by Academician S.N. Bernstein [9, 

10] in 1934, 1938 years. The works [9, 10] were published at first in French. They are 

republished in Collected works of S.N. Bernstein, vol.4 (in Russian), Publishing House Nauka 

(Academy of Science of USSR, Moscow, 1964). The results, obtained in these works [9, 10], 

define analytically all the joint probability distributions for the limit process     , for all the 

random variables       ,       ,…,         for any   and     By the Theorem of A.N. Kolmogorov 

on extension (or continuation) of measures in function space [8], those multidimensional 

distributions can be continued to the measure on the σ-algebra that corresponds to the process 

     with continuous time  . The convergence of the linear broken lines, which represent 

interpolation of the solutions of finite difference stochastic equations (10) or (11), to the 

continuous trajectories of diffusion Markov processes was also proved in [19]. Thus, the 

diffusion Markov process      is well defined by the system of finite difference equations 

(which could be more general, but similar to (10)) and by the passage to the limit from those 
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Markov processes with discrete time [9, 10].  Analytical methods and solutions for some 

problems of filtering and estimation, based on recursive finite difference stochastic equations, 

with the passage to the limit (as the time steps tend to zero), similarly to the scheme of S.N. 

Bernstein [9, 10] were developed and investigated in [13 – 16]. 

    In the present work, we are interested to describe analytically the conditional probability 

density               
          

  . Consider the local increment    of the Markov process      

when the value        is given, with small time step   ; denote                 

       . We have the relations (4) – (6) for the moments of    given         Then the 

characteristic function for the random value    can be presented in the form: 

                   

 

   

                      

 

   

                  

         
 
              

 

 
                    

 
              ,                                    (12) 

where              is a real vector. The last equality follows from the known expression for 

the characteristic function of a random variable with the use of its moments (see, for example, 

[12]). The inverse transformation provides the representation 

                              
 
                                                                        

       
 

                    
 

   
             

 
                                ,    (13) 

where            
  

 is the inverse matrix of        (with  1          The above 

expressions (12), (13) show that the local increment    (in the small, but finite time interval   )  

of the multidimensional diffusion Markov process      with continuous trajectories, when 

       is given, can be considered as a multidimensional Gaussian random variable.  

    Using the Theorem on Normal Correlation, we find the following expressions for the first and 

second moments of the conditional probability distribution of the increments      (with 

        ) provided that the increments      (with            ) and the value 

        are given (see [13] Chapter 3, subsections 3.1.2 and 3.3.1, pages 79-81, 101-106): 

                                                           ,                           (14)            

                                                          .                                  (15) 

   Hereinafter the summation is being made over repeated indices,  with         ,  

             the matrix       represents the inverse or pseudo-inverse (Moore - 
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Penrose) matrix of the matrix of the diffusion coefficients of the observable components       , 

so that              
 
   

    For the probability density of the increments    we obtain the following expression: 

                         
 

   
                                       ,         (16) 

where         is the normalization factor.   

    Note, that in the theory of filtering of diffusion Markov processes with observations made in 

continuous time  , i.e. if      is supposed to be known exactly on the time interval       , 

in such case it is assumed that the diffusion coefficients     , with             , do not 

depend on unobservable components       In the contrary case (as it was pointed out by this 

author in [13], Chapter 3, and [16], Chapter 3) since the diffusion coefficients  

                 could be (at least, theoretically) precisely restored on the base of a single 

realization of the observed trajectory      on the small time interval            (no 

matter how small the taken value of δ is), the functions                  could have been 

incorporated  into the set of  observable functions. In the problem at hand, when filtering of 

the process      should be obtained on the base of observations        taken at discrete times 

   with small, but finite time steps    , that restriction may be cancelled. We shall consider 

further how to incorporate some estimates of the values of                      given       
  

in order to improve filtering of        

    The matrix                 is symmetric and nonnegative definite, and it can be 

presented in the following form:    

                                
 
   with             ,                                                                                                                                            

 Then the samples         , when         
    and       

   are given, can be simulated as 

  
        

                                                        
 
        + 

                                                           

                        ,                                                                                                                 (17) 

where   
 
    are independent samples from  Gaussian standard distribution, with    

      ,  

    
          (for all         ,         ,          ;            . 
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We shall denote shortly                          
                               

   
                                  

                                           

Note, that the above expressions (14) – (17) show that if all the diffusion coefficients     vanish 

(with      ,           ) and if         ,          do not depend on     , then 

      
   will be simulated without the use of       

 .  Only the initial measurement        will be 

taken into account: the initial sample point        should be simulated as a random variable 

with the probability density 

                                                   .                                                     (18) 

This particular case do not correspond to all the hidden Markov models: The process      could 

be a Markov process in itself, but it is still possible, that some coefficients     are not equal to 

zero, for example, in case, if there are some ‘white noises’, which enter simultaneously into 

equations for      and into ‘random disturbances or random errors’ of the observable process 

    . 

    In general case of a multidimensional continuous Markov diffusion process            , the 

influence of the observed data       
  is manifested in the expressions (17), which describe 

simulation of the random samples       . 

     The values       and       can be easily calculated: 

                                                                                                                                                            (19) 

                          

 

   

                                                     

where the conditional probability densities for the increments,        )                 ,  

     )                 are Gaussian densities with moments determined by (14), (15), and 

(16). And the above procedure of sampling and resampling, which corresponds to a search for 

the point       that provides maximum to the a posteriori probability density, could be 

implemented.  In the next sections 2.2 - 2.4 the results of the further analytical investigation 

and development of the algorithms are presented. 

2.2. Estimating of a function           

Consider the problem of estimation of some functions           or           
      given       

   

The general expression for the estimate can be written in the following form: 



 

10 
 

                           
   

                 
        

         
 

         
        

         
   .                                                (20) 

It is assumed that for the considered functions      or         
   this conditional expectation 

exists. In case of a Markov process               we can write: 

        
        

                                   

 

   

                         

       
 
                     .                                                                                                           (21) 

In our case of a multidimensional continuous diffusion Markov process we have derived the 

explicit analytical expressions (19), (16). Hence, in this case we obtain 

       

 

   

                    

        
           

          
 

 
 

 

   

 
                                                

                     
    ,                                                                                                                   (22) 

where         
          

   ) represents the known normalization factor.  Denote shortly 

                  
          

    . 

If   samples        
  , with          and    , have been independently taken from the 

distribution  

                        
                          , 

then,  in accordance with basics of Monte Carlo methods, the following integrals  can be 

interpreted as mathematical expectations. Then we obtain 

                 
        

         
          

 

 
      

                  

     
 

 
 

 

   

 
      

                                 
           

  
         

            
    ,                                                                                                                   (23) 

and similarly 

         
        

         
          

 

 
   

 
          

     
 

 
 

 

   

 
      

                                 
           

  
         

            
    .                                                                                                                   (24) 
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Due to the Laws of Large Numbers, the accuracy of those approximate estimates increases as N 

increases.  

   Denote shortly 

                   
 

 
 

 

   

 
      

                                 
           

  
         

            
    .                                                                                                                   (25) 

Then the sought estimate       
    can be written in the following form: 

       
          

   (      
    , where    

     
     

       
   

 .                                                       (26) 

    In most of applications, we can assume that there exists the mathematical expectation of the 

random value                 , where       
   is fixed and         

  represent the results of 

independent random simulations with the use of (17); i.e.                      . Then the 

Strong Law of Large Numbers (the Theorem of Kolmogorov) guarantees that the sums (i.e. the 

arithmetic means) in right-hand-side of the formulae (23), (24) converge with probability one 

(i.e. almost surely) to the integrals in left-hand-side if     .   

    Note, that in case if the diffusion coefficients     (for        ) of the observable 

process      do not depend on unobservable process     , then         and    
        do 

not depend on  , and cofactors              
 

 
 

 

   

 
      

                       should 

be cancelled in the numerator and denominator of the formula (26). In that case we can put: 

            
 

 
    

 
              

                 
         

             .                 (27) 

Note that the calculations of the values       (25) or (27) can be implemented recurrently since 

they are determined by the values of the recursively accumulated sums. 

In case of hidden Markov models where the unobservable process      is a Markov process in 

itself, and the observable process      is described by a stochastic differential equation: 

                                                                                                                                   (28) 

where        is a given nonlinear function with respect to  ,          and      is a standard 

Wiener process, the above estimate        
    takes the form, which is similar to the estimates 

for          that were earlier constructed and studied for this particular case in the literature. 

The novelty of the estimates (23) – (27) and the simulation (17), obtained in the present paper, 

is that the simulation of unobservable components and estimates       
     are obtained in 
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explicit and closed analytical form for the general case of partially observable multidimensional 

continuous diffusion Markov processes, and the obtained Monte Carlo estimate (26) converges 

with probability one to the sought posterior expectation of          given       
 , if    . 

    Now we shall demonstrate that the Monte Carlo estimates (23) - (26), (27) for          

(obtained in the present paper) hold true also in the case if the sample sequences        
  are 

being generated with the use of some branching sampling procedures. 

    Consider the following branching resampling. As it was already pointed out in the 

Introduction, it is purposeful to discard the samples        
  that have negligibly small weights 

      or    
    , in order to decrease the amount of all the computations.  

    Suppose that in the end of each time interval            (with           ;      ; 

            , and    and    are given numbers) each sample sequence         
  that still 

existed at the time      is being continued with      ‘offsprings’. At the initial moment of 

time,   , there are    independently taken initial sample points       ,          . When 

        and               ,  sample points              are being augmented to the 

sequence         
   with           , in order to construct the ‘offsprings’ . The sample 

points              are being independently taken from the distribution 

           
      

        
    . Then those sample sequences (with ‘offsprings’) will be 

continued until the next time of branching,      , except for some sample sequences that are 

discarded before      since their weights become ‘too small’ (for example, smaller than some 

chosen threshold     ); and so on. For the simplicity of discussion, we can renumber again all 

the current sample sequences (that still exist at the time   ) as         
 .  Consider at first the 

case when all the sample sequences are being continued without discarding. Then their number 

is growing, and at the time      it is equal to             (with      ).  

    Consider the estimate  

      
                            

  , 

under condition that the above branching sampling procedure is being implemented. Denote 

                  the time interval that contains   , so that                        

         .  

    From the Markov property of the random process             and the factorization (21), 

(22), and from the ‘tower property’ of conditional expectations: 
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     , 

it follows that the formulae (23) -(26), (27) hold true for the Monte Carlo estimate of integral 

                    in the case if the sample sequences        
  are generated with the use of the above 

branching procedure.  

    We can consider the Monte Carlo estimates for the integrals (23), (24) for each  -th ‘tree’ of 

the branching sample sequences, which begins at the point       , with         . Denote 

these random values as      , with         . Then the random values        are 

independent of each other, and they have one and the same probability distribution, and 

         . Then they obey the Strong Law of Large Numbers, so that 
 

  
   

  
    converges 

with probability one to the sought integral as     . 

    But many of the exponential weights   
     are rapidly decreasing with increase in the 

number   of time steps. Therefore, it is possible to discard some highly a posteriori improbable 

sample sequences        
 , which do not provide noticeable contribution into the estimates 

      
   . The numbers   ,   , and the threshold     can be adjusted (in practical 

implementation for a particular class of applications) in order to decrease the amount of all the 

calculations and make them feasible, and at the same time to keep the current sample points 

       in the domain where the a posteriori probability density is localized. In practical 

implementation, it can be also purposeful to begin branching not at the fixed moment of time 

   but at some current moment of time    when the number of all existed sample sequences 

(or sample points) becomes less than some given fraction of   . 

    It is worth noting that in the following Section 2.4 the tests (47), (48) are obtained that allow 

detection and rejection of samples        of low a posteriori probability to be done without the 

use of the weights       or   
     (for         , i.e. independently for each sample 

sequence        
 . Thus, in the above algorithm we can use such tests instead of the 

comparison of the weight     
     with the threshold    . Then the algorithm described above 

can be effectively implemented with the use of parallel computing, since the simulation and 

continuation (the branching resampling) of each sample sequence        
  can be done 

independently of the other samples         
  with    . The values       determined by (25) 

or (27) will be also calculated recurrently and independently for each sample sequence        
 . 

Thus, that large amount of calculations could be effectively performed with the use of parallel 

computing.  And only on the other stage all the obtained accumulated values       (with 

         ) will be used for the calculation of the weights   
    , which are needed for the 

calculation of the sought estimate       
          . 
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       The new Monte Carlo algorithm of estimation of          or         
   (presented above) 

is derived straightforwardly from Bayes formula (20). The estimates are constructed with the 

use of the samples        or        
  that are simulated by (17), and their weights   

     are 

defined by (23) – (26), (27). 

   For the particular case of hidden Markov models, another algorithm with random branching 

resampling for ‘particle filtering’ of unobservable Markov ‘signal’       was developed, that is 

the Sequential Importance Resampling (SIR) algorithm; it is studied in the works [4], [1] (for the 

processes with discrete time). In that SIR algorithm with random branching resampling, the a 

posteriori probability distribution for       is approximated by some ‘cloud of random particles’ 

       with weights           ,            With the use of our new algorithm of 

simulation of unobservable components       given       
  (see Section 2.1, (17) ) and the new 

closed form analytical expressions (14) – (17), (23) – (27), that SIR algorithm with random 

branching  can be generalized for the general case of filtering of unobservable components      

of a multidimensional diffusion Markov process            , in the following way. 

    In the generalized algorithm that we are proposing the sample sequence        
  should be 

chosen for continuation at the time of branching          (and kept up to the next time of 

branching,     ) with probability       (which will be determined below) in each of   

independent attempts to continue their ensemble, so that the expectation of the random 

number       of its ‘offsprings’ is equal to                                        
    

  

      , with           , where      denotes the number of all the sample points 

          that still existed at the time      . We can suggest that the times of branching 

           , with    ,              (Note, that     in the standard SIR 

algorithms). The probability       depends on all the sample points       , … ,           or 

sample sequences        
 . Such a procedure of random resampling is similar to the standard 

SIR algorithm, but we have to determine the probability       for the general case of 

multidimensional diffusion Markov processes            . 

     For the general case, with the use of analytical expressions (16) – (27), we derive the 

following expression:  

      
                 

   
    
   

              
  , 

where 
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                   , 

and       denotes the normalization factor of the probability density                 . 

Here the notations are the same as earlier in Sections 2.1, 2.2. 

In the case if the diffusion coefficients     of the observed process      do not depend on the 

unobservable process     , the above expression can be written in the following more concise 

form: 

      
            

            
    
   

 , 

where 

      
 

 
               

   
                        

               

  
              

                . 

In case of hidden Markov models (28), which can be considered as a particular case of a 

multidimensional diffusion Markov process            , from the above expression follows: 

      
            

            
    
   

 , 

where 

        
 

   
           

                                                   .  

For the simplicity of notation, the above formula is written for the case of one-dimensional 

processes      and     , which satisfy (28). The last expression for       (for the case    ) 

is in agreement with the determination of the probabilities of continuation of the samples 

       presented in [4], [1].  

   With the use of the above procedure of random branching and with our algorithm (17) of 

simulation of       given       
 , we can generalize the SIR algorithm of particle filtering with 

random branching, which was developed for hidden Markov models, to the general case of 

multidimensional diffusion Markov processes            .  

    Thus, in the present paper a few different possible versions of algorithms of particle filters 

are provided for filtering of unobservable components         given       
 , which are justified 

theoretically. The new algorithm developed above, with branching sampling and recurrent 

calculation of the values (25) or (27), appears to be preferable for implementation with the use 
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of parallel computing. The further practical implementation and comparison for various 

applications could be achieved in the future works.   

2.3. Analytical investigation of observed quadratic variations.  

Consider the case when some diffusion coefficients      of the observable process      depend 

on the unobservable process     . We assume throughout this paper that the diffusion 

coefficients          are continuous and differentiable functions with respect to  . For 

simplicity of notation, consider at first the case when      is one-dimensional. For example, 

consider the following model that plays an important role in financial mathematics [17]: 

                                
  

 
                                                             (29)  

Here             are independent Wiener processes, μ and    are known constants, and the 

functions         and         are continuous and differentiable with respect to  . In the 

famous Black – Scholes models [17], the observable process      in (29) represents the natural 

logarithm of a stock price,     , so that             , while the process        corresponds 

to volatility, which is to be estimated given the path     ,       . If the process       were 

available for observations continuously over the time interval        , the value        

could have been restored precisely, at least theoretically. 

    It is well known that a diffusion Markov process      is not differentiable at any time  . It can 

be proved that its quadratic variations 

    
 
                                  

          
             

   

   
          ,                             (30) 

if time steps     tend to zero, while    ; here                        

      , with given    , and the value of δ can be arbitrarily small. Note that the relation 

(30) will be also obtained as a consequence of the new analytical estimates that are developed 

below. 

    For the system (29),                      
      , and from (30) it follows that the value 

of       could be restored with any desirable accuracy. Then                 , and the 

filtering problem would be solved exactly.  

    But the observations       are being taken at discrete times    with small, but finite time 

steps     , so that it is impossible to observe precisely the values of                      In 

general case, we can calculate the ‘observed quadratic variations’, 

   
     

          
 
                                          ,                                        (31)  
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and consider it as an estimate for                       The similar estimates for volatilities 

were introduced and considered in [17, chapter 15]. It is more convenient to use the recursive 

averaging instead of the moving averaging (31). Then 

   
                   

                                                                          (32) 

with       In the limit, if all     decreased and tended to zero, we would have obtained  

    
        

          
                     

 

  
               .                                                                    (33) 

    We can incorporate the observed quadratic variations    
     

     into the set of observed 

data. We shall show further, in section 2.4, how to use that “observed quadratic variations” in 

order to reject at once the samples        
  that are highly improbable given       

 . 

      The recursive formula (32) implies that 

   
                      

                                     .                                         (34) 

We may assume that the considered realization of the process     , 

                                              , is being obtained consecutively in 

accordance with finite difference stochastic equations (11). The value of observed quadratic 

variation    
     

     is being accumulated in parallel, along with that realization of      , so that 

the random increment                          will be produced after                   

is   realized. We are interested to describe the properties of the observed quadratic variations  

   
          under condition that the realization of unobservable components,       

 , is fixed, 

although it is unknown, and that the next measurement       will arrive after the previous 

measurement         is already given.  

     The conditional expectation 

                                                               .                                      

    In general case, as it was demonstrated above, the increment                  in small 

time step   , given       , can be described as the Gaussian multidimensional random 

variable with the probability density (16). The increments        are independent from the 

past history before      if         is given. The following properties of Gaussian distributions 

will be useful in the sequel:  If   is a Gaussian random variable with     , then     

       .  If               is a 4-dimensional Gaussian random variable with         (for 

         , then  
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                                                        . 

In general case of multidimensional process       we obtain 

                                                  

                                                               

[                               .                                                                                                       

Denote shortly                             .  Introduce the following value: 

            
                         

      .                                                                             (35) 

Formula (35) can be written in recursive form, similar to (32): 

   
                      

                          .                                                           (36)                   

Consider deviation  

               
             

     .                                                                                                     (37) 

For simplicity of discussion suppose that all the time steps          We obtain:          

     . That notation means that this small value is proportional to a value which decreases 

faster than    if    decreases.  

     The increments         and         with       are independent when                   

is given.  We obtain that the dispersion of the deviation         (37) (under condition that 

      
   is fixed) is equal to 

                        
 

       
    

                                             
 
        

     
            

 .                    (38)  

In case if the diffusion coefficients of the observable process,            are the functions of    

and   only, so that                          (with              we obtain 

                                                        
 
  

            
  

   
        

         
     .                                                                                                                    (39)                                               

 The value (39) also can be calculated recursively, similarly to (36). Note, that the value     
      

is a value proportional to    .  If     , the above expression takes more concise form: 
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 .                                                               (40) 

In general case, if             depend on     , we can find the estimates  

                
          , where     may be determined either as some functions of 

      
     or as some constants        . Then for the variance (38) we obtain the following 

estimates: 

                                     
           

  
   ,                                                              

                 
  

 

 
   .                                                                                                       (41) 

The process      is considered on the finite time interval       , so that  the values of 

          
     are limited. Thus, the variance of the deviation (37) is a value proportional to   , 

and if      the observed quadratic variation tends to the limit (33). We shall demonstrate 

below, that the probability distribution for the deviation     or     tends to the Gaussian one  

as      . It follows that the deviations converge to zero  if      . 

    Besides, we obtained new analytical formulae (38) - (41), which describe the dispersion of the 

deviation (37) of the observed quadratic variation when observations are taken in discrete 

times, with small time steps.       

    For the system (28), the general analytical formulae (38) - (40), obtained in the present 

paper, provide characterization of the accuracy of the estimate of volatility        , which is 

constructed with the use of the observed quadratic variation. If this accuracy satisfies 

requirements, the problem of estimation is solved. In that case the value of the given time step 

   can be considered as ‘small enough’.  

    In general case, if the value of       cannot be uniquely recovered only on the base of 

observed quadratic variations, the further filtering may be needed.  

    Finally, we are going to demonstrate that the probability density of the random value 

        can be approximately described as a Gaussian one. The deviation         contains the 

sum of squares of the increments         , which are  independent of the past history before  

     given        ,        . The increments          (given        ,        ) can be described 

as the Gaussian random variables with probability density  (16). The sum of squares of Gaussian 

random variables is not a Gaussian random variable.  However, the probability density for the 

random deviation          can be approximately described as the Gaussian probability density. 

Consider the case when             (with              are the functions of      and   

only. Then the variance of deviation          is equal to    
      (40), which represents a value 

proportional to    (here the time step    can be small, but    is finite).  
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     Note, that for a Gaussian random variable   with      the following relations hold true: 

                   , where      is a constant, and for the odd moments           , 

with           . Those relations can be useful in estimating of the moments of         

when         ,         is given. Then the consideration of the higher moments of the 

deviation proves that           
 

      , if      Then the characteristic function of the 

random deviation          takes the form similar to (12), which implies the Gaussian 

expression for its inverse transformation, similar to (13). Hence, the probability density of that 

deviation can be approximately described as a Gaussian probability density. The smaller    the 

higher the precision of that approximation, although the deviation itself tends to zero if       

But in practice the time step should not be chosen too small since in our mathematical model  

     is  considered as a diffusion random process, which is not differentiable at any time  . That 

is not the case in practice where we have a smooth trajectory      , and the quadratic variation 

of       is equal to zero. Diffusion approximation can be accepted when the time steps 

        ,  where      represents the characteristic time span of decay of correlation, so that 

correlation between the random values         and           (given                 ) would be 

negligibly small [13 - 16]. 

2.4. Detection and rejection of highly a posteriori improbable samples 

In the process of resampling, the a posteriori improbable samples       
  are being rejected 

when their weights become small. Besides, it is possible to discard some highly a posteriori 

improbable samples before all the weights       or   
     are calculated. It can be done with 

the use of the following tests that are based on analysis of the obtained analytical expressions 

(19), (21), (22).  

    The measurements       
  are being obtained under condition that there is an unobservable 

realization of the process               
  , which is unknown. (Here the superscript “tr” stands 

for “true”). The first and the second moments of the random variables         given          
  

are equal to 

           
                                                  

            ,                 (42) 

                  
                                                        

   
                 ). 

For simplicity of discussion we can assume that all the time steps are equal to     

    Consider at first the case when the diffusion coefficients      of the observable process      

do not depend on     ; then    
     

       .  
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The value        (19) contains the following cofactor:   

    

       
 

 
 

 

   

 
                                      

           

   
         

            
    ,                                                                                                                  (43) 

where the normalization factor   does not depend on        
  in that case. 

    Consider the hypothesis    that the sample        
   is situated in the vicinity of the true 

realization         
 , and the ‘closeness’ means that 

   
          

                                      
       . Here the function           

can be determined on the basis of some preliminary analysis of the considered dynamical 

system, for example, we can put            
          

   
    , where    are constants, 

     . In order to distinguish between two hypotheses,     and its negation    
    , consider 

the following value: 

                 
 
     

               .                                                                                       (44) 

Note, that        can be recursively calculated. Denote 

                   
 
     

         
          .                                                                             (45)                                                                            

The larger the difference                 the farther the sample        
  can be from         

  

Denote     
                

            ,                   
 
     

          
     .   

Consider the variance of the random value        when the realization          
  is given. We 

obtain 

                   
 
                             

         
         

       
      . 

If the matrix       is not degenerated, then           , where     is Kronecker symbol,  

      if       and         if     . In that case, the above expression for 

            can be written in more concise form: 

                   
 
           

         
         

       
      .                                            (46) 

In order to reject the samples       
 , which are highly improbable given       

 , we can use 

approximately the following test. If the considered dynamic system is stable, the following 

value can be used as an approximate estimate for the above expression (46), if the hypothesis 

   is true and the measurements       
   are obtained: 
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          .         

The probability of the following event:  

                               
  

           
                                               (47)                                                         

is small under condition that    is true. Hence, if the inequality (47) is satisfied for the 

considered sample        
 , the hypothesis    should be rejected, and that sample        

  

should be discarded. If all the considered sample sequences are discarded, the new sample 

points       should be generated as initial points, i.e. as samples from the initial distribution 

                (18). For the samples        
  that remain under consideration the values       

and       or   
     will be recursively computed. The samples that were not discarded can be 

continued with a few ‘offsprings’. Due to the test (47) the samples        
  that are highly a 

posteriori improbable (when the sequence of observations        
  is given) will be rejected at 

once, before the weights       or   
     are computed. 

    Consider the case when some diffusion coefficients     depend on     . In some cases, as it 

was shown above, the unobservable value of      can be restored with the use of the observed 

quadratic variations. In other cases, if      cannot be uniquely recovered, it is purposeful to use 

observed quadratic variations    
     

     in order to reject the samples        
  that are highly a 

posteriori improbable. That test is similar to the above test (47). Assume that if hypothesis    is 

true, the sample         
  is ‘close’ to the true realization          

 , and the ‘closeness’ means 

that  

                                                                   
     . 

Here the function           can be determined as             
           

   
    , where    are 

constants. Denote shortly (similarly to (35), (36), (38),(39)):  

    
          

         
        

      ,     
          

         
        

      ,  

  
         

         
        

                  
                               ,         

   
                      

           
              . 

 Consider the case when                         (with            ). Then the 

probability of the following event 
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                                                                                  (48) 

is small if the hypothesis    is true. Hence, if the inequality (48) is satisfied at least for one 

number ρ, with          , then the hypothesis    should be rejected, and the sample  

       
  should be discarded at once, before the calculation of all the weights       is done. 

In case if                              , with        
 
         

     
       , the 

following test can be used instead of (48): 

    
             

           
           

 

 
    .                                                                              (49) 

     The derivation of the algorithms is completed. 

 

                 3. Conclusion 

In this work the analytical investigation of multidimensional diffusion Markov processes 

considered at discrete times   , with small time steps    , is developed. The analytical formulae 

in closed form for the conditional probability density for increments                 of 

unobservable components      given increments                 of the observable 

components      and for the probability density of   , given            , are obtained. On the 

base of this investigation the new algorithms for simulation of unobservable components, 

     , of a diffusion Markov process given the measurements of the other components       
   

and the new algorithms of nonlinear filtering  and estimation   with the use of sequential Monte 

Carlo methods, or particle filters, are derived and suggested. 

    The analytical investigation of observed quadratic variations is also developed. If diffusion 

coefficients of the observed components,     , depend on unobserved components,     , then 

the observed quadratic variations can be used for estimation of unknown values of     . The 

new analytical formulae, (38) – (40), obtained in this work, characterize the accuracy of such 

estimates. It is shown how to incorporate the observed quadratic variations into the set of 

observed data. 

    Besides the use of the weights        or      , some new tests for detection and rejection of 

highly a posteriori improbable samples       
  are derived. Realization of such tests provides 

opportunity for implementation of the new suggested particle filtering algorithm (with 

branching sampling and recurrent accumulation of the values (25) or (27)) with the use of 

parallel computing. 
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  The obtained new algorithms and estimates extend the range of applications of sequential 

Monte Carlo methods, or particle filters, beyond the hidden Markov models, and improve their 

performance. 
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