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Abstract: 

It is well known that electron spin is quantized, and is measured to be either spin up or spin down in a 

magnetic field, as was first demonstrated in the classic Stern-Gerlach experiment almost 100 years ago.  

However, it is also believed that a quantum spin may be indeterminate until it is measured, being in a 

quantum superposition of the two quantum states.  On the contrary, I propose (based on a locally 

realistic spin-quantized picture of quantum waves) that an electron quantum state is always either spin 

up or spin down, but is never in a superposition of the two.  This concept should be directly testable 

using a two-stage Stern-Gerlach experiment, similar to that presented in standard quantum textbooks, 

but apparently never carried out experimentally.  This experiment should be straightforward using 

modern atomic beam laboratory equipment.  If successful, this could lead to a serious review of quantum 

foundations, as well as a new set of practical applications.  In particular, a binary storage or logic 

element based on quantum spin should continue to work down to the atomic scale.  This should enable 

computer memories with orders of magnitude greater density than those based on conventional magnetic 

memories.   
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I.  What is Spin? 

As generally understood in quantum mechanics, spin is an intrinsic parameter associated with 

fundamental point particles such as an electron or a photon.  On the contrary, in the spin-quantized wave 

picture [1,2], a “particle” of mass m is a coherent localized domain in a real vector field rotating at 

angular frequency mc
2
/, whereby the rotating field carries angular momentum, and the total 

angular momentum of an electron is quantized to /2.  The fundamental relations E =  and p = k 

follow from spin quantization, which transforms a world of microscopic continuous fields into one of 

discrete particles.  As shown in Fig. 1, the quantum phase is a real phase angle associated with the 

rotating vector field.  The phase may be uniform in a particle at rest, but a phase gradient develops from 

the Lorentz transformation of this field for a moving particle, as required for a de Broglie wave. 

 
Fig. 1.  Rotating coherent vector field constituting matter wave such as an electron, with distributed angular 

momentum and quantized spin.  (a) Electron at rest, with fields rotating in phase at =mc
2
/.  (b) Moving 

electron, with phase gradient corresponding to de Broglie wavelength. 
 

Now consider an electron in a magnetic field B.  The magnetic moment  of the charged electron will 

align either parallel or antiparallel with B.  These two states differ in energy (and hence rotational 

frequency) by E = 2B.  A quantum change from one state to the other is accompanied by emission or 

absorption of a single photon with energy 2B and spin ±.  One may have a two-electron state that 

consists of two electrons of opposite spins, but no other configurations are possible consistent with the 

Pauli principle.  In particular, a single-electron state cannot be a superposition of two opposite spins, 

contrary to the orthodox theory. 

 

What happens to an electron in the ground (parallel) state if B changes direction?  The electron sees a 

time-varying electromagnetic field, but if the change is sufficiently slow, the electron spin axis will 

rotate to track the change in direction, remaining in the parallel ground state.  In doing so, its total 

energy and frequency remain constant, while the torque needed to change the angular momentum comes 

from the source of B.  This represents a consistent picture that makes sharply different predictions from 

orthodox quantum theory, as shown below. 

 

II.  Stern-Gerlach Experiments 

In the original Stern-Gerlach (SG) experiment in 1922 [3,4,5], a beam of neutral univalent atoms (Ag) 

was directed into a non-uniform magnetic field.  This performed magnetic separation on the atomic 

beam, with transverse motion in proportion to the magnetic moment of the atom (and hence that of the 

single valence electron).  The beam was found to split into two discrete sub-beams, as opposed to the 

continuous distribution that would be expected from classical physics.  This provided the earliest 

experimental evidence of quantization of spin.  The SG experiment may be easily understood if one 

assumes that the atoms are in a mixture of spin-up and spin-down states, as shown in Fig. 2a.  The 

gradient in magnetic field simply provides magnetic separation of these two populations. This 

explanation contrasts with the explanation in the orthodox quantum theory, in which the initial state of 
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all the atoms is an undefined linear superposition of spin-up and spin-down states.  The experiment 

constitutes a quantum measurement that forces a given electron into one or the other of these states, 

which are then separated in the gradient.  This yields the same split beam result as the argument above.   
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Fig. 2.  Concepts of Stern-Gerlach experiments: One-Stage (a) and Two-Stage (b).  A beam of spin-½ atoms move 

in the +x-direction in a magnetic field B pointing in the +z-direction, with an additional field gradient Bz in the 

+z-direction.  In (b), the first stage polarizes an initially unpolarized atomic beam into an excited state (+) and a 

ground state (-), and the second stage rotates the magnetic field by an angle q. 

 

However, these two approaches predict quite different results for the two-stage SG experiment shown in 

Fig. 2b.   This two-stage SG experiment is a standard paradigm for quantum measurement, and is widely 

used in quantum mechanics texts (including the Feynman Lectures [4]), but this has apparently never 

been tested (as Feynman admitted). The second stage is the same as the first, but rotated by an angle q. 

Because of fringe fields B remains nonzero outside the apparatus, and in the spin-quantized picture, the 

spins in the excited (+ state) will all rotate smoothly into the rotated excited state, yielding 100% in 

Detector 1 and 0% in Detector 2.  In contrast, the orthodox quantum theory states that the excited-state 

spins will project onto a rotated spin basis in the 2
nd

 polarizer, yielding cos
2
q in Detector 1 and sin

2
q in 

Detector 2. This latter prediction is so well established that there is an online Flash Demo that 

incorporates it [5].  This experiment should be straightforward to do using modern atomic-beam 

equipment [6], which would provide a definitive test of these two alternative approaches. 

 

III. Application to Spin Memory Devices 

All practical digital logic and memory device technologies are based on solid-state bistable elements, 

with each of the two states stable for an appropriate length of time.  Consider a single spin in a static 

magnetic field ~1T.  The energy-level splitting of ~0.1 meV corresponds to a temperature ~ 1K and a 

frequency ~ 30 GHz.  For very low temperatures and large fields, thermal excitation due to phonons 

would be unlikely, as would spontaneous emission from the excited state, so that both states should be 

relatively long-lived.  A single isolated spin might be located on an impurity atom near the surface of 

what is otherwise a spin-compensated crystal with no other electronic magnetic moments.  It is well 

known that such spin states form very narrow resonant transitions, which form the basis for the 

phenomenon of electron spin resonance (ESR), also known as electron paramagnetic resonance (EPR).  

A properly shaped narrowband inversion pulse will cause the spin to be excited from the ground state to 

the excited state, or relax from the excited state down to the ground state via stimulated emission.  These 

pulses are directly analogous to those in nuclear magnetic resonance (NMR), although the frequency for 

ESR is ~10
4
 larger. 

 

Consider, then, a single spin closely coupled to a nanocoil as in Fig. 3a.  This coil could serve to 

transmit a resonant inversion signal to the spin, and could also send a weak resonant emission signal to a 
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sensitive narrowband receiver.  While the signal from a single spin is quite small, recent experiments 

have shown that it can be detected [7].  Such spins could be placed in a two-dimensional array as shown 

in Fig. 3b, where the distance between spins might be as small as 10 nm.  This may be far enough apart 

to prevent coupling between spins, but would also permit an enormous memory density of 1 Tbit/cm
2
.  

One can also envision a set of address and readout lines.  For example, the static magnetic field could 

exhibit a gradient along the address lines, so that each column would have a unique resonant frequency, 

which could be read out using a sensitive narrowband receiver at the end of the column. 
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Fig. 3.  Proposed spin-based memory cell and array.  (a)  Single spin near surface of crystal coupled to nanocoil.  

(b)  Spin memory array in magnetic field gradient with horizontal address lines connected to transmitters T and 

vertical read lines connected to receivers R. 

 

IV. Implications for Quantum Information Theory 

The two-dimensional Hilbert-space model for electron spin provides the paradigm for quantum 

measurement and quantum information theory.  This assumes a qubit with superposition of quantum 

states for a single spin, and quantum entanglement between N such superposition states.  Indeed, it is the 

expansion of this Hilbert space by 2
N
 with N coupled qubits that forms the basis for the exponential 

parallel speedup promised by quantum computing.  But if spins are real localized waves as envisioned 

by the spin-quantized wave picture, then such entanglement should not exist, and the entire foundation 

of quantum computing would become questionable.  The proposed two-stage Stern-Gerlach experiment 

should provide a critical test for both theory and applications of quantum mechanics. 
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