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Presence of a charged wall distributes like charges (co-ions) and unlike charges

(counter-ions) differently within an electrolytic solution. It is reasonable to ex-

pect that counter-ions have more population near the wall, while co-ions are

abundant away from it; experiments and simulations support this [1, 2]. An an-

alytical formula for the net charge-density distribution ρe has been used widely

since almost hundred years, was obtained by solving the Poisson-Boltzmann

equation [3–5]. However, the old formula shows excess counter-ions everywhere,

cannot account for the missing co-ions satisfactorily, and clearly violates charge

conservation principle. Here, I correct the distribution formula from fundamen-

tal considerations. The old derivation expresses ρe as a function of electrostatic

potential ψ [6], through Boltzmann distribution, but missed a crucial point that

the indefinite nature of ψ [7–9] makes ρe indefinite as well. We must tune ψ by

adding suitable constant until the integral of ρe becomes consistent with the net

charge present in solution; old theory did not do it, that I do here. This result

demonstrates how to reconcile a definite quantity to an indefinite one, when

they are related. I anticipate, this result is going to have far reaching impacts

on many fields like colloid science, electrokinetics, bio-technology etc. that use

the old theory [4, 10–12].

The charged wall attracts counter-ions and repels co-ions, hence, the counter-ions appear

excess in number near the wall region and that must be accompanied by the absence of

same number of them in other regions. In particular, a solution that is electrically neutral

as whole, must have regions with excess co-ions to satisfy principle of conservation of charge;

any formula for ρe must reflect this. A widely used, simple 1-D, analytical formula shows,

how ρe varies with the distance x, normal to the wall [5, 13]. It turns out that, the ρe vs

x graph never crosses abscissa, see Fig. 1(a), here I plot the graph for a positively charged

wall, for definiteness. It shows excess counter-ions everywhere. The area under the graph

represents the net charge present in the liquid, so according to the old formula there is

always a net amount of counter-ions there. A question naturally comes: “If the liquid is

electrically neutral as a whole, why some co-ions are missing?”

Some authors [13–17] tried to find an explanation by considering some ‘particular’ sys-

tems, where the wall acquires some net charge from solution by adsorption. They said,

an initially neutral wall when acquires some charge from a neutral solution, must have left
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FIG. 1. (Color online) Charge density distribution along the domain cross-section, in an electrolytic

solution enclosed by positively charged walls. (a) According to the old theory, the graph never

crosses abscissa; counter-ions are excess everywhere; it cannot account for missing co-ions that are

needed to satisfy principle of charge conservation. (b-d) According to the corrected theory, there

are both counter-ion and co-ion abundant regions. The graph can cross the abscissa (at point ‘P ’)

so that it can enclose both positive and negative areas, the algebraic sum of areas gives the net

charge Q0 present in a cross section, which can be of any sign and magnitude. (b): Q0 = 0 (c):

Q0 > 0 (d): Q0 < 0 .The old case (a) is a particular case of the general corrected theory, where

Q0 � 0 with no layer of co-ions. The corrected graph can be obtained by uniform translation of

the old graph, which corresponds to addition of a suitable constant to electrostatic potential ψ.

equal number of counter-ions in the solution. This apparently explains the old theory, and

created a strong mental barrier against thinking about any other explanation. Although, the

shortcomings of the classical formula become evident through different experiments [1] and

molecular dynamical simulation results [2], no one could find the source of error. I discuss

the flaw in the above arguments below.

It must be remembered that the general problem that we were interested to solve is: “

Given a solution, in contact with a charged wall, what is the distribution of ions? ” We

never bothered how the wall acquired the charge, the derivation of formula begins when

everything settles down to equilibrium; it never considered any adsorption of ions by wall.

It does not impose any restriction regarding the net polarity of the solution, it could be of
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either type or possibly zero. The derivation never prohibits a wall that does not adsorp any

charge from solution, but could be charged by other means, so the net charge present in

the liquid remains the same before and after its exposure to the wall. Also, it is possible to

add some extra co-ions or counter-ions from outside, to attain a net charge of any polarity.

Even if the wall acquires charge from solution, we can remove old solution from the domain

and add fresh neutral solution again and again; wall cannot adsorp an indefinite amount of

charge, so we are soon left with a charged wall plus a neutral solution. Also, adsorption is a

‘surface’ phenomenon, only a thin layer of charge is adsorped, and it is unlikely that it will

leave entire liquid ‘volume’ with excess counter-ions; for a concentrated solution it is even

more unlikely.

Since, the matter was not understood clearly, it became a topic of debate, whether the

solution is electrically neutral or not [18], some authors believe that the near wall regions

are dominated by counter-ions and the bulk is neutral [13–15, 19], that means there is a net

amount of counter-ions in the liquid. Others [18] say, the issue was settled in favour of total

electro-neutrality. So, each of them reached a conclusion with intuitive arguments without

theoretical justifications.

It can be noticed from Fig. 1, that, if the graph shown in Fig. 1(a) could be translated

uniformly, so that it can change sign, then it encloses both positive and negative areas

under it (see Fig. 1(b), Fig. 1(c), Fig. 1(d)); depending upon the amount of translation, the

algebraic sum can assume any sign and magnitude (possibly, zero), thus we can get rid of

the conservation problem, find a general solution.

But, the translation of the graph must be associated with some physical principle that

I describe below. The derivation of the old formula expresses ρe in terms of ψ [6] in an

intermediate step, through Boltzmann distribution. (See the supplementary materials for

details.)

ρe,Old = Aψ (1)

Where, A is a constant of known value, that depends upon various parameters. Using it in

Poisson’s equation, which arises from one of the Maxwell’s equations applied to electrostatics,

one can solve for ψ and hence get ρe,Old as a function of x.

Now it is well-known that ψ is defined to within an additive constant, i.e. adding an

arbitrary constant should not change the physics [7–9], but here we must fix it to a definite

value so that ρe is also consistent with the net charge present in the solution. I add a constant
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‘C’ to ψ in Eq. 1 to get the corrected distribution ρe,Corr. Hence, ρe,Corr = ρe,Old + A · C.

Now, from old theory we know ρe,Old as a function of x, hence ‘C’ can be determined in

terms of different parameters, using the condition,
∫ x=+a

x=−a
ρe,Corrdx = Q0, where Q0 is the

net charge present in a cross-section of the channel and is assumed to be known, we can

assign it to any value and sign (in particular, if the solution is electrically neutral as a whole,

Q0 = 0).

For a positively charged wall, I plot ρe,Corr in Fig. 1 for different cases: Fig. 1(b): Q0 = 0,

Fig. 1(c): Q0 > 0, Fig. 1(d): Q0 < 0. The point ‘P’, where the graph crosses the abscissa,

is electrically neutral and can be called ‘neutral point’. In a 3-D domain, the collection

of neutral points forms a neutral surface. We have three distinct kinds of electric layers,

layer-1: a layer of wall surface charge, layer-2: adjacent to wall, layer of excess counter-ions

(counter-layer) and layer-3: after counter-layer, a layer of excess co-ions (co-layer). The

aggregate can be called Electric Triple Layer or ETL. Unlike this, the old Electric Double

Layer (EDL) theory contains two electric layers: layer of wall charge and layer of counter-

ions. However, ρe,Old can be thought of as a special case of ρe,Corr, when Q0 � 0; co-layer is

absent here.

Another very important thing can be done with the corrected theory that is not possible

with the old one. It turns out that the integral of ρe,Old i.e. the net charge in liquid

varies if we increase the solution concentration (Debye length changes with concentration)

and cannot explain the fact that if we add some more extra neutral salt to solution, that

increases its concentration but keeps the net charge unchanged (assume there is no further

adsorption by wall). In the corrected theory the net charge Q0 can be specified explicitly to

a constant value and that nicely accounts for the variation in concentration by the addition

of salt.

In the old theory, charged layer was thought to occupy only a fraction of the fluid domain

and its extent was estimated using Debye length scale. In new ETL theory, the spatial

extents of different electrical layers in the fluid domain can be calculated accurately (although

numerically) by solving for the neutral point ‘P’, i.e. solving the equation ρe,Corr = 0, for x.

Thus we detect a serious error in a very important formula by observing a graph; the

graph itself suggested how to rectify the error and it has been achieved invoking a deep

physical principle.

I am grateful to Sujata Sarkar, Abhijit Sarkar, Fluent India, IIT Kharagpur, State Bank
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about the indefiniteness of potential that played the key role in this analysis.

[1] P. Kekicheff, S. Marcelja, T. J. Senden, and V. E. Shubin, J. Chem. Phys. 99, 6098 (1993).

[2] R. Qiao and N. R. Aluru, Phys. Rev. Lett. 92, 198301 (2004).

[3] P. Debye and E. Huckel, Physikalische Zeitschrift 24, 185 (1923).

[4] R. B. Schoch, J. Han, and P. Renaud, Rev. Mod. Phys. 80, 839 (2008).

[5] S. Chakraborty and D. Paul, J. Phys. D: Applied Physics 39, 5364 (2006).

[6] A. Ajdari, Phys. Rev. Lett. 75, 755 (1995).

[7] D. J. Griffiths, Introduction to Electrodynamics, 3rd ed. (Prentice-Hall of India, New Delhi,

India, 2005) Section 2.3.2, p. 80.

[8] E. M. Purcell, Berkeley Physics Course Vol. 2: Electricity and Magnetism, 2nd ed. (Tata

McGraw-Hill Publishing Company Limitied., New Delhi, India, 2008) Section 2.2, p. 45.

[9] R. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics Vol. 2, Vol. 2

(Narosa Publishing House, New Delhi, India, 1964).

[10] T. M. Squires and S. R. Quake, Rev. Mod. Phys. 77, 977 (2005).

[11] G. M. Whitesides, Nature 442, 368 (2006).

[12] S. Wall, Current Opinion in Colloid & Interface Sci. 15, 119 (2010).

[13] H. Bruus, Theoretical Microfluidics (Oxford University Press Inc., New York, United States,

2008).

[14] H. Stone, A. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004).

[15] J. Lyklema, Fundamentals of Interface and Colloid Science, Vol. 2, Vol. 2 (Academic, London,

1991).

[16] C. Zhao and C. Yang, Microfluid Nanofluid (2012), 10.1007/s10404-012-0971-1.

[17] G. E. Brown-Jr., Science 294, 67 (2001).

[18] J. Lyklema, Colloids and Surfaces A: Physicochem. Eng. Aspects 222, 5 (2003).

[19] S. Ghosal, Annu. Rev. Fluid Mech. 38, 309 (2006).

6



I. SUPPLEMENTARY MATERIALS:

A. derivation of charge distribution ρe

1. Old charge distribution ρe,Old

Consider a rectangular domain of width 2a� length; y-axis is aligned with long, vertical

domain-axis; x-axis is normal to the long, charged walls that are placed at x = ±a. Define,

η ≡ x/a. The suffix ‘Corr’ means ‘Corrected’. The initial steps for the derivation of

ρe,Corr are similar to that of ρe,Old. For electrostatics, the electric field E is related to

electrostatic potential as, E = −∇ψ, hence, one of the Maxwell’s equation reduces to

Poisson’s equation, ∇2ψ = −ρe/ε, where, ε is the permittivity of the solution (assuming

polarization is proportional to E). Since 2a � length, ρe essentially varies in x direction,

and we get a 1-D equation.
d2ψ

dx2
= −ρe

ε
(2)

We can derive a relationship between ρe and ψ that can be used to solve the above equation.

The number density distributions of ±ve ions separately follow Boltzmann distribution; for

small values of arguments in the exponential that can be linearized (an equation containing

ψ is physically meaningful only if it is linear in ψ; superposition principle is strictly valid).

n±
Old = n0 exp[∓(ezψ)/(kBT )]

≈ n0[1∓ (ezψ)/(kBT )] (3)

Where, n0 is mean of number densities of ±ve ions; for a symmetric electrolyte z = |z±|,
where z± are valences of ±ve ions; e, kB and T are elementary charge, Boltzmann constant

and absolute temperature respectively.

ρe,Old = ez+n+
Old + ez−n−

Old

= ez(n+
Old − n−

Old)

= −
[

2e2z2

kBT

]
ψ = −ε

[
2e2z2

εkBT

]
ψ = −

[
ε

λ2D

]
ψ

ρe,Old = −
[
εκ2

a2

]
ψ (4)

Where, λD ≡ [(2n0z
2e2)/(εkBT )]−1/2, the Debye length scale. An important non-dimensional

parameter is κ ≡ a/λD. Using this relationship in the Poisson’s equation, remembering
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η ≡ x/a, we arive at linearized Poisson-Boltzmann equation.

d2ψ

dη2
= κ2ψ (5)

It can ve solved using boundary conditions, at η = ±1, ψ = ζ,

ψ = ζ
cosh(κη)

cosh(κ)
(6)

Using it in Eq. 4 we get,

ρe,Old = −
[
εκ2ζ

a2

]
cosh(κη)

cosh(κ)
(7)

Define ρ0 ≡ (εκ2ζ/a2), which takes ±ve values for ±ve values of ζ i.e. when wall charge

is ±ve. Hyperbolic cosine function is strictly positive, so, ρe,Old does not change sign, in

particular, for positively charged wall it takes negative values only, implies counter-ions

everywhere in liquid.

2. Corrected charge distribution ρe,Corr

Now, I correct the old formula by adding a final step to it. Add a constant ‘C’ to ψ in

Eq. 4, call ρe as ρe,Corr, use Eq. 7 at the end.

ρe,Corr = −
[
εκ2

a2

]
(ψ + C)

= −
[
εκ2

a2

]
ψ −

[
εκ2

a2

]
· C

= ρe,Old −
[
εκ2

a2

]
· C

= −
[
εκ2ζ

a2

]
cosh(κη)

cosh(κ)
−
[
εκ2

a2

]
· C (8)

Now, use the condition
∫ +1

−1
ρe,Corrdη = Q0, where Q0 is the net charge present in a cross-

section and assumed to be known; in particular, if the liquid is electrically neutral as a

whole, Q0 = 0. Hence, we get ‘C’ in terms of various parameters and Q0,

C = −
[

tanh(κ)

κ
ζ +

(
a2

εκ2

)(
Q0

2

)]
(9)

Using this, finally we arrive at the corrected charge distribution,

ρe,Corr =

[
εκ2ζ

a2

](
tanh(κ)

κ
− cosh(κη)

cosh(κ)

)
+
Q0

2
(10)

=

[
εκ2ζ

a2

][(
tanh(κ)

κ
− cosh(κη)

cosh(κ)

)
+
Q0a

2

2εκ2ζ

]
(11)
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B. Corrected ion density distributions

Adding ‘C’ to ψ in Eq. 3 from Eq. 9, we obtain corrected distribution for co-ions and

counter-ions,

n±
Corr = n0

[
1∓ ez

kBT
ψ

]
± n0ez

kBT

[
tanh(κ)

κ
ζ +

(
a2

εκ2

)
Q0

2

]
(12)
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