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The absence of impedances from the Standard Model is most remarkable. Impedance is a fun-
damental concept, of universal validity. Impedances govern the flow of energy. In particular, the
coupling of the photon to matter happens in the near field. The absence of the photon near field
impedance in photon-electron interactions is the most basic and profound example of this remark-
able circumstance, sitting unnoticed in the foundation of quantum electrodynamics. One cannot
obtain a complete understanding of such interactions without examining the role of impedances.
How this essential principle escaped notice in the development of quantum field theory is outlined,
and consequences of its inclusion in our present understanding are explored.

INTRODUCTION

Given the practical everyday utility of the impedance
concept in technical applications, it is not surprising that
one finds the most helpful historical introductions and
expositions not in the academic literature, but rather in
that of technologically advanced industries, where proper
application of the concept is essential for economic suc-
cess. The reader is encouraged to consult a sampling of
that literature[TH4] for straightforward presentations of
basic impedance concepts.

This inadvertent divorce of the theoretical from the
practical has had profound consequences for quantum
field theory (QFT), where the Hamiltonian and La-
grangian formalisms are focused upon the conservation of
energy and its flow between potential and kinetic, rather
than upon that which governs the flow, the impedances.

The inevitable reconciliation of practical and theoret-
ical, the incorporation of impedances into the founda-
tions of quantum theory, is potentially paradigm-shifting
in condensed matter, gravitation, and particle physics,
as well as in the most esoteric of the present pursuits in
theoretical physics, where it is forgotten that vibrating
strings have characteristic impedances[5].

The most rudimentary example can be found at the
foundation of quantum electrodynamics (QED), in the
photon-electron interaction. The formidable breadth of
the crack through which the impedance concept has fallen
becomes apparent when one considers that the near field
photon impedances[6] shown in figure 1 cannot be found
in the physics textbooks of electricity and magnetism[7-
12], QED[13H23] (although Feynman[24] does mention
impedances in the context of boundary conditions of the
one-dimensional crystal, and in the context of influence
functionals), or QFT[25H30].

While common knowledge in the engineering commu-
nity, it is most remarkable and significant that what
governs the flow of energy in photon-electron interactions
is explicitly absent from the formal education of the PhD
physicist.
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FIG. 1. Far and near field 13.6eV photon and scale invariant
electron impedances as a function of spatial scale as defined
by photon energy. The role of the fine structure constant «
is prominent in the figure.

IMPEDANCES, CLASSICAL AND QUANTUM

In simple terms, impedance may be defined as a mea-
sure of the amplitude and phase of opposition to the
flow of a current. Zeldovich[31] defines impedance in
terms perhaps more useful to the theoretician, as a mea-
sure of the ellipticity of phase space trajectories, then
goes on to normalize the conjugate variables (p,x) by the
impedance, which permits him to calculate impedance-
based quantum creation and annihilation operators.

Impedances can be mechanical or electromagnetic,
classical or quantum, fermionic or bosonic, geometric or
topological, scale-dependent or scale-invariant.

Geometric impedances are scale dependent. Topologi-
cal impedances (quantum Hall, chiral, centrifugal, Cori-
olis, three body,...) are scale invariant. The various
impedances are one or the other - either scale depen-
dent, or scale invariant. The lone exception is the pho-
ton, which has both scale dependent near field and scale
invariant far field impedances.

Impedances can be classical or quantum. What distin-



Strong Decay | EM Decay | Weak Decay
m,—> 2y 98.8% < e >ie >
+a- 0,
m—>e'ey 1.2% Compton charm beauty strangeness
—> 2 39.3% ‘classical’ Q0 ;
N 3w 326% Bohr  Rydberg |« n'
n—> nn 22.7% S8 k4 .
some o I.F.\s Yl .
n—> 'y 4.6%H 7 .in:'a. . e e Mg 4A0 K2 K
‘Higgs' - 8 S o'n vy
Wy o 303%  fy FEELSC (08¢ em g & A A S "1
" p%y pw =53 oY % p¥ = ke
incl. Ty 29.3% '{g' = Le WA
n'—n'z'n 21.6% - D, 2 + fermion
> oy 2.8% o © boson
n"—> 7Y 2.2% @ o @
(typical)
. . S 3 . o S
107 - - == | . .. . § .
zg == ‘\: - = ot [ elecmc photon + Horizontal axis in both plots is logarithmic
n - - - hoton
Ty jesscelipeccccoocces i....,‘t.... @@0ls o oot vevtor Lorentz * Length scales are the same for both plots, and
.y 108 ., = = s o ® centripetal T they are properly aligned
o Lot - == A a (@@ electric vector Lorentz 1 + Upper plot shows particle lifetimes multiplied by
o * - [ l® ® electric vector Lorentz 2 2a N
Gonnt, .l . - K 4 # clectric dipole 1 the speed of light, the coherence lengths
ZgviLomntz, 10 Hall impedance  + - = "\- @ electric dipole 2 l (adapted from The Power of Alpha by Malcolm MacGregor)
e ....zfmu.-m...m 2 o ¢ magnene dpole _Y_ + Plot at leftis electron impedances, details at
ZgvE2Lorents, e A N B B meaciic Covtonk | http://redshift vif com/JoumnalFiles/V1BNO2PDFVIBN2CAM pdf
Dot 2 e s i a4 clectic sealar Loreatz 1 + Alpha-spaced coherence lengths of 1", 1, and
* i — - ‘“ ‘-‘ a4 ::;1:‘;‘::;_’::: 2 200 - are at conjunctions of mode impedances, can
ZmDp, 40 | £ = K Ld. = 4 eee hidden Hal 1 H 1 couple to the photon for fast EM decay
ZaagDipoe,, S F R '... . Zglt::ces @ & hidden Hall 2 Y+ Location of =; at boundary of EM and weak
T, - - BN N * | decays is suggestive of the chiral anomaly
am 10 - — —= == = e electron dipole + Weak decays are mismatched to the photon
* ! 2a .
:m:sc“l "‘ A‘A . * / * impedances + Alpha-spaced coherence length alternation of
Z3E1 n A - %T, l f i /b i kd tob
. 10 - % ermions/bosons in weak decays appears to be
Qq; =T o =T {eeeee***9 —  related to parity violation and electroweak
4a a2 e -+ enhancement of charm/tau coherence lengths
R 1 a == + Clustering of superheavies (top, Higgs, Z, W) at
f:ﬂj“'ln — - the 10GeV coherence length is tantalizing
Tnnsd, 4 - - » » Impedance junctions at the classical radius are
i = f. related to mass quantization and MacGregor's
i *e 70MeV ‘platform state’
01 * + See also http://vixra.org/author/peter_cameron
1.4TeV  10GeV 70MeV 511MeV 3.7KeV 13.6eV ~1p  ~100p

FIG. 2. A composite of 13.6eV photon impedances and a variety of background independent electron impedances[38], measured
branching ratios of the 7°, 7, and 7’ the four fundamental quantum lengths shown in fig.1, and the coherence lengths of the

unstable particles.[39H41]

guishes the two is the existence of a fundamental length
scale, the quantization length. The remainder of this
note will focus on quantum impedances defined at the
electron Compton wavelength, as highlighted in figure 2.
For classical impedances, the reader is again encouraged
to consult the references cited in the introduction to this
note[TH4].

The quantum impedances found in the canonical lit-
erature are limited to the photon and the quantum Hall
impedance of the electron. The scale invariant quan-
tum Hall impedance is associated with the Lorentz force,
which is perpendicular to the direction of motion and can
do no work, can only communicate quantum phase.

Scale-invariant impedances are associated with inverse
square potentials[32H36], and in the literature appear
most frequently in discussions of anomalies. The phase-
only character of inverse square potentials, the incapac-
ity to do work, is emphasized in the case of the cen-

trifugal potential of the free Schroedinger particle by
Holstein[34]. The unbroken symmetry is scale invariance.

Quantum impedances can be defined for all quantum
potentials and forces, and in particular for those of the
electron[37] in the photon-electron interaction. Defining
a quantization length has significant consequences, as can
be seen from figure 2.

e The low and high energy impedance mismatches of
the scale dependent modes that communicate en-
ergy provide natural cutoffs. The impedance ap-
proach is finite in the absence of renormalization.

Looking not at what is excluded by these natural
cutoffs, but rather at what remains in the middle,
the impedance mismatches as one moves away from
the quantization length provide a natural confine-
ment mechanism for the coupled modes that define
a given particle.



The impedance approach is not only naturally finite
and confined, but also naturally gauge invariant. Com-
plex impedances - inductance and capacitance - shift
phases. Complex quantum impedance shifts quantum
phase, not a single measurement observable. In the Stan-
dard Model the phase coherence that distinguishes quan-
tum systems from classical (as required by gauge invari-
ance) is maintained by the artifice of the covariant deriva-
tive. In the impedance approach one need only account
for the phase shifts introduced by the impedances.

As a consequence of the natural finiteness and gauge
invariance, there are no anomalies in the impedance
approach[42].

THE MODEL

Given a quantization length, what does one quantize?
Restricting the possible fields to electromagnetic only,
starting with full symmetry between electric and mag-
netic, and taking only the simplest topologies needed for
an arguably realistic model, we have

e quantization of magnetic and electric flux, charge,
and dipole moment

e three topologies - flux quantum (no singularity),
monopole (one singularity), and dipole (two)

e confinement to a fundamental length
e the photon

What is shown in the impedance plot of figure 2 are cal-
culated coupling impedances of the interactions between
these three topologies[37, [38].

QUANTUM IMPEDANCE HISTORY

If impedances are in fact a useful and powerful tool (as
further explicated later in this note), how is it that they
are not already present in the Standard Model?

One might suggest that the absence is simply an his-
torical accident, a consequence of the order in which the
experimentalists revealed the relevant phenomena. The
scaffolding of QFT has been erected on experimental dis-
coveries of the first half of the twentieth century, on the
the foundation of QED, which was set long before the
discovery of impedance quantization.

The 1980 discovery[43] of a new fundamental constant
of nature, the Nobel Prize discovery of exact impedance
quantization in the quantum Hall effect, was greatly fa-
cilitated by scale invariance. This classically peculiar
impedance is topological, the measured impedance being
independent of the size or shape of the Hall bar. Prior to
that discovery, impedance quantization was more implied

than explicit in the literature[d4H51]. Early mentions in-
clude the 1955 paper of Jackson and Yovits[44] and the
1957 paper of Landauer[45].

Bjorken was perhaps not familiar with their work when
writing his 1959 thesis[46]. In that thesis is an approach
summarized[47] as “...an analogy between Feynman dia-
grams and electrical circuits, with Feynman parameters
playing the role of resistance, external momenta as cur-
rent sources, and coordinate differences as voltage drops.
Some of that found its way into section 18.4 of...” the
canonical text[48]. As presented there, the units of the
Feynman parameter are [sec/kg], the units of mechanical
conductance[d).

It is not difficult to understand what led Bjorken
astray, as well as those who have made more recent simi-
lar attempts[5IH54]. The units of mechanical impedance
are [kg/sec]. One would think that more [kg/sec] would
mean more mass flow. However, the physical reality is
more [kg/sec|] means more impedance and less mass flow.
This is one of many inter-related mechanical, electromag-
netic, and topological paradoxes[56] to be found in the
SI system of units[55].

With the confusion that resulted from misinterpreting
conductance as resistance, and more importantly lacking
the concept of quantized impedance[43], the anticipated
intuitive advantage of the circuit analogy[48] was lost and
the possibility of the jump from a well-considered analogy
to a photon-electron impedance model was not realized
at that time.

Like the first Rochester Conference on Coherence and
Quantum Optics in 1960, the 1963 paper/thesis by Ver-
non and Feynman[49] on the “Interaction of Systems”
was motivated by the invention of the maser. It is a
particularly suggestive combination of the languages of
the electrical engineer and the physicist. The authors
devoted a thesis to the concepts needed for impedance
matching to the maser. However, lacking again was the
explicit concept of quantized impedance in the maser.

While the 1970 paper by Landauer[50] somewhat clar-
ified his earlier work, the explicit concept of impedance
quantization remained obscure.

Quantization of mechanical impedance in the hydro-
gen atom was introduced in a 1975 unpublished note[51].
However, the quantity with units [kg/sec] was interpreted
at that time to be related to mass flow in the deBroglie
wave, with confusion arising again as a result of the in-
version in the SI system of units. It was only recently
that the correct impedance interpretation of that 1975
paper came to light[37].

Had exact impedance quantization been discovered
in 1950 rather than 1980, one wonders whether the
impedance concept might have found its way into the
foundation of QED at that time, before it was set in the
bedrock, to underpin rather than illuminate gravity and
QFT [57H63].



MORE RECENT DEVELOPMENTS

More recent developments can be separated into
two groups. In the first we see a gradually de-
veloping awareness of the importance of impedances
in Atomic/Molecular/Optical and Condensed Matter
physics. In the second we find the generalization of the
impedance concept to all quantum potentials and forces.

Condensed Matter/AMO

Since the pivotal 1980 discovery of exact quantization,
and particularly in the past few years, understanding of
quantum impedances in electron dynamics, and partic-
ularly AMO and condensed matter, has been expanding
at an accelerating rate, as shown by a sampling of the
literature [64H109).

Extending the understanding beyond the photon and
Landauer/quantum Hall impedances to the generalized
impedances associated with all potentials appears to offer
great promise in condensed matter physics[I10]. The rel-
evant length scale for the appropriate electron impedance
network in condensed matter is not the Compton wave-
length but rather the deBroglie wavelength, the wave-
length of the Doppler-shifted Compton frequency[I11].

Generalized Impedances

Once it was understood that the background inde-
pendent mechanical impedances derived from Mach’s
principle[37, [51] could be defined for all forces, quantized
by assigning a fundamental length, and converted to elec-
tromagnetic impedances by assigning a line charge den-
sity to the fundamental length, the progress was rapid.

e As shown in figure 2, aligning the impedance net-
work with the coherence lengths of the unstable
particles revealed a strong correlation between the
two, suggesting that the impedance network might
comprise a background independent model for the
elementary particle spectrum[I12].

e Calculating the impedance mismatch between
the electron and the Planck particle revealed
an exact relationship between gravity and
electromagnetism [T13)].

e Applying the impedance concept to the measure-
ment problem yielded explanations of state reduc-
tion, non-locality, and entanglement[114].

e A possible resolution of the black hole information
paradox (presented at the 2013 Rochester Confer-
ence on Quantum Information and Measurement)
followed from a synthesis of the previous three pa-
pers and the holographic principle[57].

e A presentation by Lev Vaidman at the Rochester
conference[I15] [I16] motivated an impedance anal-
ysis of time symmetry in the nested Mach-Zender
interferometer[T17].

e Quantum Interpretations try to explain emergence
of the world we observe from formal quantum the-
ory. The impedance model was included in com-
parisons of selected interpretations[118].

e The chiral anomaly was
impedance approach[42)

analyzed via the

e A presentation file was prepared, summarizing and
explaining the above results[55]

There has been substantial progress in the impedance
approach in a surprisingly short amount of time, arguably
sufficient to merit systematic and thorough critical ex-
amination of the logical foundations, results, and conclu-
sions outlined here.

WHAT NEXT?

It would seem that the obvious next step is to put the
impedance approach on a more formal theoretical foun-
dation. The approach as it stands now evolved from the
practical perspective of the pragmatic engineering physi-
cist. While it is both logically coherent and computation-
ally correct, having enjoyed substantial scrutiny within
the physics community without meeting criticism other
than what could be categorized as a matter of experience
and convention rather than scientific fact, it could benefit
from a more formal theoretical foundation.

On the practical side, if the approach proves
useful then the greatest benefit will likely be in
AMO/Condensed Matter. Omne possibility is design of
superlattices[I04] TT0] matching the deBroglie impedance
network of the electron. Another is impedance matching
in the deuteron, with a cautious eye towards cold fu-
sion. Both require adding dynamics to the model, namely
the couplings and phases (the amplitudes are known, are
what permit the calculations accomplished thus far) of
the modes whose impedances comprise the network.

The requirement for dynamics is also present in parti-
cle physics, where the immediate goal is to map the stan-
dard model constituents onto the modes of the impedance
network, the purpose being to understand proton and
neutron spin structure[IT9HI22] while RHIC (the world’s
only high energy collider with polarized beams) is still
in operation, a potentially tenuous circumstance in the
present economic climate.

And of course there is dark matter[I23HI25], whose
presence dominates the impedance network and gives
hope that the impedance approach will yield insight into
the task of designing appropriate dark matter antennas
and receivers.



SUMMARY

It appears that the impedance approach is far more
radical than one might have imagined or desired. It de-
constructs the Standard Model.

The weak force goes away. Anomalously long nuclear
and unstable particle lifetimes can be understood as sim-
ple impedance mismatches, rather than as consequences
of the postulated weak force. In the case of the un-
stable particles the impedance mismatch is to the pho-
ton, as can be see from figure 2. For coherence lengths
greater than that of the neutral pion, none of the network
impedances can be matched to the photon’s scale invari-
ant far field impedance. Instead, the much more difficult
and improbable match to the neutrino’s scale dependent
impedance is required.

Mass generation via chiral symmetry breaking and the
Higgs becomes irrelevant for two independent reasons.
First, in the absence of the weak force there is no need for
massive gauge bosons. And second, the chiral impedance
is scale invariant, cannot communicate energy but rather
only quantum phase, cannot deliver mass.

Similarly, mass generation in QCD via dynamic chiral
symmetry breaking is seen to be not possible in light of
the scale invariance of chiral impedances.

In the impedance approach the origin of mass is the
energy in the fields of the coupled modes represented in
the impedance network and confined by impedance mis-
matches. The calculated mass of the electron is correct
at the nine significant digit limit of experimental accu-
racy, the muon at a part in one thousand, the pion at two
parts in ten thousand, and the nucleon at seven parts in
one hundred thousand[126].

The superheavies (top, Higgs, Z, W) appear to be in-
credibly short-lived excitations of the magnetic modes.
Their coherence lengths sit at the 9.59 GeV electromag-
netic fine structure line, in the middle of the dominant
bottomonium decay modes.

CONCLUSION

The impedance approach to quantum field theory is
truncating and tangential at best. The natural finiteness
removes the need for regularization and renormalization,
a major branch of QFT. Finiteness combined with the
natural gauge invariance removes the anomalies, one of
the most foundational aspects.

In keeping with the universal character of the
impedance concept, the impedance approach has found
direct and simple application to a variety of diverse top-
ics at the core of the Standard Model and beyond, ap-
plication to the unstable particle spectrum, the chiral
anomaly, state reduction, non-locality, time asymmetry,
gravitation, dark matter, electric dipole moments, and
paradoxes in our systems of units.

Best of all, once the initial unfamiliarity passes the
impedance approach is simple.
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