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Abstract

Using condition of relativistic covariance, group theory and Clifford algebra the 2(2s+1) -
component Lorentz invariance generalized relativistic wave equation for a particle with

arbitrary mass m and spin s is suggested, where m>0 and s= O,%,l,g,z,... It is shown that

the charged scalar (e=0 and s=0) and noncharged scalar (e=0 and s=0) particles with

m=0 are described by two-component relativistic equations. Accordingly, the noncharged

scalar fermi particles (m=0,e=0and s=0) can be used as an elementary particle of the
Standard Model of particle physics. In the case of arbitrary integral spin (s=1.2,...), the

relativistic equation for m=0 leads to the equation of massless boson particles. For the
solution of presented in this work generalized relativistic equation in the linear combination of
atomic orbitals approximation, the 2(2s+1)-component orthogonal basis sets of spinor
functions for the arbitrary mass and spin are suggested in position, momentum and four-

dimensional spaces.

Keywords: Relativistic covariance, Clifford algebra, Lorentz invariance, Exponential type
spinor orbitals, Slater type spinor orbitals

l. Introduction

It is well known that the form of relativistic or nonrelativistic wave equations of motion
depends on the spin of the particles. The usual Schrodinger equation describes the motion of
the spin-0 particles in the nonrelativistic domain, while the Klein-Gordon equation is the
relativistic equation appropriate for spin-0 particles. The spin-1/2 particles are governed by
the relativistic Dirac equation which, in the nonrelativistic limit, leads to the Schrodinger-
Pauli equation [1-4]. For particles with spin-1 or higher, only relativistic equations are usually

considered [5].

The first higher spin equations have been proposed by Dirac in [6]. These equations in

the presence of an external electromagnetic field, as was shown by Fierz and Pauli [7], led to



the inconsistencies. They have suggested the equations for the special cases of s=g and

s=2. Rarita and Schwinger [8] have developed theory of spin g free particles which

contains many of the features of the Dirac theory. The theory of spin-s free particles has been
also developed by Proca [9], Kemmer [10] and Bargmann and Wigner [11]. All of these
formalisms for spin-s free particles have many intrinsic contradictions and difficulties when
an electromagnetic field interaction is introduced (see [12] and references therein). It should
be noted that the mathematical structure of our study, based on the case of new definition of
Bose-Fermion theory (see [13] and references therein), is different from all of the approaches
which are available in the literature. Therefore, the generalized relativistic equation presented
in this work can not be reduced to them. By the use of group theory and Clifford algebra, we
have shown in [14] that the generalized relativistic equation for the particles with arbitrary
half-integral spin is consistent and causal in the presence of an electromagnetic field
interaction. The aim of this work is, using the method set out in [14, 15], to establish the
generalized relativistic equation for fermions and bosons with arbitrary values of parameters.
For the solution of this equation by the use of linear combination of atomic orbitals (LCAO)
approach, the orthogonal basis sets of spinor functions are presented in position, momentum

and four-dimensional spaces.
I1. Generalized relativistic equation of arbitrary mass and spin

The arguments given for the solution of this problem are based on three completely different
points of view, namely, the application of group theory, and making use of the conditions of

relativistic covariance and Lorentz invariance.
I1-1. Use of group theory and Clifford algebra

For a single particle of charge e and mass m the relativistic Hamilton operator is given by

H :\/cz(ﬁ—gﬂ)2+m2c4+epb, (11-1)

where m=0 and s=0, g for fermions, m=0and s=1,2,... for bosons, A, is the

N |-

scalar potential, A the vector potential and f>= V the momentum operator.



The new arguments in presented approach based on the use of group theory and Clifford

algebra. It is well known, in accordance with the postulates of quantum mechanics the

Hamilton operator H has to be linear and Hermitian. One can immediately see that the
condition of linearity cannot be fulfilled, since the square root is not a linear operator.
Therefore, the relativistic problem for arbitrary mass and spin can be viewed in terms of a
special polynomial algebra [16, 17]. In a previous work [14], for the linearization of the
square root in the case of half-integral spin we have used the group theory and Clifford
algebra. The generalized relativistic problem for arbitrary mass and spin can be solved in a
similar way. Using the method set out in [14], we obtain for the order of the Clifford algebraic

Dirac group the following relation:
g, =8(2s+1)°, (11-2)

where 5:0,%,1,2,2,... This group has %g5+1 classes, therefore, %gs+1irreducible

representations. The dimensions n, for these representations are determined by

%gsﬂ-
> ni=g,, (11-3)
i=1
where
1 forl<i slgs
n = . 27 (11-4)
2(2s+1) fori :EgS +1

The one-dimensional representations do not satisfy the conditions of Clifford, therefore, only

the 2(2s+1) dimensional irreducible representations can be used. The results are presented in

Table 1.
11-2. Generalized relativistic equation

Making use of Table 1 obtained from the application of group theory and condition of

relativistic covariance we introduce the following 2(2s+1)x2(2s+1) Hermitian and unitary

matrices:



0 O 0 o
0 O o 0
. .. o 0 0
7° = 0 o (11-5)
. o 0
o 0
o 0 0 O
and
! 0 fors:O,l,E,... andm=0 (11 -6)
. 0° -I° 2 2
p= 0° 0
fors=12,...and m=0. (n-=7)
0° 0
These matrices satisfy
o+ fe =0 (11-8)
o) +oa, =20,1°. (11-9)

It should be noted that, in the case of integral values of s the matrices f°in the form

IS S
Vs :(OS 0| SJ do not satisfy the condition (11-8), i.e.,

o+ o =0 fors=12,... (11-10)
Therefore, Eq. (11-7) correspondences to the case of massless particles for s =1,2,....

The generalized relativistic equation corresponding to the matrices (11-5), (11-6) and (11-7) is

defined as

in Y _ oy (11-11)
ot

H® =ca®(p—=2 A)+mc?f° +eh, (11-12)
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we=| 11-13
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where for integral spin (s=0,1,2,...)
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5,2s-3

s,25-1



~s,25-1

~3,25-3
4

(11-15b)

Here, ¢*, @*and y*, 7**are the single- and two-component matrices, respectively. The

two-component matrices are defined as

SA
sA u
x = usHH
~s A+1
~S1 __ u
Z - ljsﬂ. !

where 0<A(1)<2s and 0< A(2)<2s-1 fors=0,1,2,... and s=

N |-

(11-16a)

(11-16b)

35 respectively
i :

By the use of procedure described in Dirac’s papers [18, 19] it is easy to show that the

generalized relativistic equation (11-11) satisfies the condition of Lorentz invariance.

In the special case of scalar particles (s=0), the generalized relativistic equation (I1-11) has

the form:

— HO\PO

H® = ca’(p—=2 A)+mc8° +eA,

00
0 Q
v :[sbf"’}'

(11-17)

(11-18)

(11-19)

(11-20)



Here, o is formed by the Pauli matrices o,,0,,0, and

o 9,9

_~ D 674 oXx oy
_n 11-21
P=7lo .o 5 (I1-21)

ox oy 0z

In the case of free particle for e=0, s=0 and m =0, the two-component relativistic equation

becomes
HOWO = &9°, (11-22)
H = c(&6)+mc203. (11-23)

As can easily be seen that the Eq.(11-17) for relativistic scalar particles is a first-order
differential equation, while the Klein-Cordon equation forms a second-order differential
equation. Therefore, one has to arrive immediately at the conclusion that the Klein-Cordon
equation does not meet the requirement of the condition of relativistic covariance, namely, the
condition of linearity for a relativistic Hamiltonian. The Klein-Gordon equation only partially
satisfies the postulates of (relativistic) quantum mechanics.

I11. Basis sets of spinor functions in position, momentum and four-dimensional spaces

The elaboration of algorithms for the solution of the generalized relativistic equation for
the particles with arbitrary mass and spin in linear combination of atomic orbitals (LCAO)
approach [20-22] necessitates progress in the development of theory for complete
orthonormal basis sets of relativistic spinor functions of multiple orders. The method for
constructing in position, momentum and four-dimensional spaces the complete orthonormal
basis sets for (2s+1)-component relativistic tensor wave functions and Slater tensor orbitals
has been suggested in previous article [23]. Extending this approach to the case of spinors of

multiple order and using the method set out in [24], we construct in this study the relevant
complete orthonormal basis sets of 2(2s+1)-component relativistic ¥“° -exponential type
spinor orbitals (W** -ETSO) for particles with arbitrary mass and spin in position, momentum
and four-dimensional spaces through the sets of one- and two-component spinor type tensor

spherical harmonics and radial parts of the complete orthonormal sets of nonrelativistic y* -

exponential type orbitals (w* -ETQO) [25] the angular parts of which are the scalar spherical



harmonics. The indices @ occurring in the radial parts of “ -ETO is the self-frictional
quantum number [26]. It should be noted that the nonrelativistic w*-ETO are the special

cases of W**-ETSO for s=0, i.e., ¥*° =y *. The basis sets of relativistic spinors of multiple
order obtained might be useful for solution of generalized relativistic equation of arbitrary
mass and spin particles when the complete orthonormal relativistic W“*-ETSO basis sets in
LCAO approximation are employed. We notice that the definition of phases in this work for

the scalar spherical harmonics (Y,;I =Y,_m|) differs from the Condon-Shortley phases [27] by

*

the sing factor (¥,

Im,

=imimy, .

I11-1. Relativistic spinor type tensor spherical harmonics

In order to construct the complete orthonormal basis sets of relativistic W**-ETSO and
X* -Slater type spinor orbitals ( X °-STSO) of 2(2s+1) order in position, momentum and four-

dimensional spaces we introduce the following formulae for the independent spinor type

tensor (STT) spherical harmonics of (2s+1) order (see Ref. [23]):

for integral spin:

I H|Js'r(T)1 (9,(P)
Hus'rln (9,(/))

H ?,2571 (0’ (0)

Ijm

I H ?,ZS (e’w)

Ijm

Hin (0,0) = (11-1a)

B 7_[5,25 (9’(/)) ]

ljm
7{5612571(9140)
ﬂljs-m (6?,(/)) = : (111-1b)
ﬂl?rln (‘91(/’)
}[Ijr?l (‘9’(P)

for half-integral spin



Yljsm (9'(0) =

Yy, (0.9)=

_YS,ZS—l

ljm

YS,ZS—S

Ijm

YSZ

(6.9)

(©.9)

fim (31¢)

| Yim(0.9)

(111-2a)

(111-2b)

These STT spherical harmonics are eigenfunctions of operators J2 iz,fzand §%. The one-

and two-component basis sets of STT spherical harmonics H“?fn(ﬁ,(p) : }[ﬁﬁ(e,(o) and

Yu% (9,(/?),

can be expressed through the scalar spherical harmonics:

Hin (0.0) =35, (1) B, Viniy (6:0)

Hin (0,0) =

lj

Yljsn;1 (49,(p) =

YSA

where

Ysﬂ

lim (91¢7):

ljm

a'I?m (/’i‘)ﬂm(i)Ylm(l) (0’ @)
a'I?m (ﬂ’ +1) ﬂm(h—l)

_ialjm (ﬂ’ + 1)ﬂm(/1+1)Ylm(/1+l) ((9’ (D)
—iay, (DL Yima) (6.9)

for integral spin

0< A1) < 2s,

m=m(i)=m-s+iand g, = (—yymar e

for half-integral spin

_iaﬁm (i)ﬂm(ﬂ)Ylm(ﬂ) (‘9’ go)

l-s|<j<j+s —j<m<j,

(6,9) occurring in Egs. (111-1a), (111-1b) and (I11-2a), (111-2b), respectively,

(111-3a)
(111-3b)
(111-4a)
(111-4b)

t=2(j—1)=0,£2,...,+2s,



0<A(2)<2s-1 |I-s|<j<j+s,—j<m<i, j:|+%t,
t=2(j-1)=+L43,..,425, m =m(2)=m-s+4, f,, =(-1) """,
Here, a; (4) are the modified Clebsch-Gordan coefficients defined as
a;, (1) = (Ism(4)s - AlIsjm). (111-5)
See Ref. [27] for the definition of Clebsch-Gordan coefficients (Ismm—m|Isjm).

The STT spherical harmonics Hy, (6,¢), %}, (6.9) and Y., (6,9), Y}, (6,¢)for fixed s

satisfy the following orthonormality relations:

n2r 2s w27W
[ [Hin(0.0)H; . (6.0)Sinod0dp=>"[ [ Hi (6.0) JHY (6,9)Sin0d0dp = 6,5,6,, (111-6a)
00 =00 0

2s m2W

T 2r

[ [ 75, (0.0) 71 . (0.9)Singdodg = M 0)7; (0,0)SiN0dOdp = 5,55,  (11l-6b)
00 =00 0

n2r 2517 27

[ [Yir (0.0)Ys (6.9)Sin0dOdp =Y [ [ Yo" (6,0) Y57, (0, 0)SiN0dOdp = 6,65,y (111-7a)
00 4=09 0

R 2s-17
i, (6, gp)Yme (6’ )Singdgde = Z 1€ jj Omm'
A=0 o

O —y
o'—._:"\’

2r
[ Yo (6.0) Vi (6.0) SiNOAOAp = 5,65, - (111-Th)
0

111-2. Basis sets of relativistic ¥*°*-ETSO and X *-STSO functions

To construct the basis sets of 2(2s+1)-component relativistic spinors from STT spherical
harmonics and radial parts of nonrelativistic orbitals we use the method set out in a previous

paper [14]. Then, we obtain for the complete basis sets of relativistic spinor wave functions

W P and Slater spinor orbitals X* in position space the following relations:

for integral spin

10



a;m (O) ﬂm(o)l//r?im(O) ( r,o, §D)
a‘I?m (1) ﬁm(l)l//r?im(l) (r' 01 ¢)

aﬁm (23 _1) ﬁm(Zs—l)l//rﬁm(zs—l) (r, 0, (P)
\Pas R:(r)Hljs'm (9,@)] 1 aam(ZS)ﬁm(ZS)l/[noim(Zs)(rlHI(D) (“I'Sa)

1
nljm(r’e’go):ﬁ{ﬁ: (r)#£5, (0,9)

2 —iag, (25) By Wiimes) (1, 0,0)
_iaﬁm (28 _1) ﬁm(ZS_l)l//r%m(Zs—l) (r’ 91 ¢)

_ial?m (1) ﬁm(l)l/ll’ﬁm(l) (r, o, (/’)

B _iaﬁm (O)ﬁm(oﬂ//rﬁmm) (r, 0, ¢) |
al?m (O)ﬂm(o)lprﬁm(O) (I’, 0, (0)

al?m (1) ﬁm(l)lprﬁm(l) ( r,o, Q’)

3 (25 -1) Brn(2s W nimizs-1 (r.0,9)

R (r)H;. (6, (p)] 1] 80 (25) B Thimes (1.0.0) (111-8b)
2| —iag, (25) B, e Times (1.0,0)

—iay, (25 1) Byas o Piimezs 1 (1,6, 9)

_iaﬁm (1) ﬁm(l)lpr'(ﬁm(l) (r’ 0, (/’)
_iaam (O)ﬂm(o)‘/zfﬁmw) (r: 0, (0)

aI?m (O)ﬁm(o)lnlm(o) (r’ 01 Q))
aEm (1) ﬂm(l))(nlm(l) (I’, 0, (0)

B (25 =1) Bros 1) Zrimzssy (T 6. 0)

R (r)H;n (6, 4”)} 1 Ain (28) Br(os) Zuimezs) (1,0, 9)
V2| -ia;, (25) Brosy Zaimeas) (1,6, 9)

_ia,j-'m (23 —1) ﬂm(Zs—l)lﬁlm(Zs—l) (r, 0, (p)

, (I1-9)

_ial?m (1):Bm(1)lﬁ|m(1) (r1 0, (0)
_iaﬁm (O)ﬂm(O)zﬁfm(O) (r’ 0, (0)

for half-integral spin

11



aI]m (0) l//nlm(o) (r 9 ¢)
aljm (2) 2)‘//n|m(2) (I’ 0, (P)

B (25 _3) ﬂm(25—3)l//rﬁm(25—3) (I’, 0, §0)
as 1 ( )Yum (9 ¢) 1 aﬁ-m (23 —1) ﬂm(Zsfl)l//rﬁm(Zs—l) (r’ o, Q’)
\Pnljm(r ‘9(0)—$ =——

_ial?m (25 _1) ﬁm(ZS—l)l//:Im(Zs—l) (I’, 0, §0)
_iaﬁm (25 _3) ﬂm(25—3)wr'ﬁm(25—3) (r’ 0, (0)

(111-10a)

Iallm (2) lr//nlm(Z) (r 0 ¢7)
L —lay, (O)ﬂm(o)l//ﬁlm(o) (r.0,9)

al?m (O)ﬁm(o)lprﬁm(O) (r’ 0, ¢)
a'I?m (Z)ﬁm(z)lprﬁm(z) (r1 91 ¢)

1 R (25 _1) ﬂm(2s—1)§prﬁm(25—1) (I’, 0, ¢)
_ialim (23 _l) ﬂm(ZS—l)Wr:im(Zs—l) (I’, 0, (0)
_ia;m (25 - 3) ﬂm(2s—3)lpr‘ﬁm(25—3) (r7 o, ¢)

B (23 _3) ﬂm(ZS—S)lprﬁm(Zs%) (r, o, (0)
R ()Y (6:0) ; _
SRNLTY

_ialim (2) ﬂm(z)'?r%m(z) ( r.o, (/7)
L _ia;m (o)ﬁm(o)lpr%m(o) (I’,Q,go)

al?m (O)ﬁm(O)anm(O) (r’ 0, (9)
aI?m (Z)ﬁm(z)xnlm(z) (r1 81 ¢)

aﬁm (25 _3) ﬂm(ZS—a)anm(ZS—s) (r! 0, (0)

(r 0, ¢) R (r)Y'jS’“ (9,(p) _ 1 aI?m (2S_l)ﬂm(25—l)lnlm(25—l)(r’9’¢)
o J_ P —lay, (28_1):Bm(25_1)7(ﬁ|m(2s—1) (r.0,0)
_ia;m (25 - 3) ﬂm(25—3)zﬁlm(23—3) (r, 0, (P)

(11-11)

—ia;, (2) B2y Xame2) (r.0,0)
_ial?m (O)ﬁm(o)lmm(m (r1 0, §0)

where n>1, s<j<s+n-1 j—s<l<min(j+s, n-1) and

12



R (M= R, (¢r)= & prrger (111-12)

The relativistic spinor wave functions ( Kn“m, Krﬁfm) and Slater spinor orbitals K

nljm

position, momentum and four-dimensional spaces are defined as

K = i (6.1, @55, (1K), 25, (£, B60) (IN-13)

Ko = Prin (), B35, (€1K), 255, (S AOp) (11-14)
Kiin = K gl € PV (€ K0V (€, 500) (111-15)
Here, the ki, knTm and K, are the nonrelativistic complete basis sets of orbitals.

They are determined through the corresponding nonrelativistic functions in position,
momentum and four-dimensional spaces by

krﬁm l//:im(,l) &1 ¢:I(m(l) (k). Z:Im(},) (&, Bbp) (111-16)
Koty = P (DB (& K), T 1 (£, 6D) (111-17)
Kaim(z) = Zot2) (€5 P U1y (6 K)oy (& BOW) - (111-18)

See Ref. [28] for the exact definition of functions occurring in Egs. (111-13) - (111-18).

The relativistic spinor orbitals satisfy the following orthogonality relations:

| K (& XK b (£, %) AR = 3,051y S (11-19)

T S Ul L (111-20)
.[Knljm nIJm § )d |:(2n) (2n):|1/2 5“5115”"“

Using the relation aj, (1) =5;6,,,,, and formulae
Hljm(g (0) ﬁml Im, (0,@) (|||-21a)

Hyjm (0, 0) == 3, Y, (0, 9) (111-21b)

for the scalar particles it is easy to show that the relativistic spinor functions

13



S

K K;ﬁm and relativistic Slater spinor orbitals K ;. for particles with spin s=0 are reduced
to the corresponding quantities for nonrelativistic complete basis sets in positon, momentum

and four-dimensional spaces, i.e., K;;;mzkgml,rz;;;m IZnTmI and  Kgy, =Ky, , Where

s=0, j=I,t=0,m(1)=mJ,, and m=m . Thus, the nonrelativistic and relativistic scalar

particles can be also described by wave functions K , Krﬁfm and Kp,for s=t=0, j=1Iand
m=m,, i.e,
K
Keo =L | Fom (I11-22a)
' 2| -k,
— _Rnam
Ree = L|™m (111-22b)
' 2| -k,
1 _knlm
Kom === . | 11-23
"= ik, (111-23)

The 2-, 6-,10- and 4-, 8-component complete orthonormal basis sets of relativistic ¥**-ETSO

through the nonrelativistic w* -ETO in position space for s=0,s=1, s=2 and s :%, S= 3

2

respectively, are given in Tables 2, 3,4 and 5, 6.

111-3. Derivatives of ¥*°-ETSO in position space

Now, we evaluate the derivatives of ¥**-ETSO with respect to Cartesian coordinates that
can be used in the solution of reduced relativistic equations when the LCAO approach is

employed. For this purpose we use the ¥**-ETSO in the following form:

for integral spin

14



as as,2s
pos :i ¢inljm :i ¢n|jm
o

nljm \E

as
filjm

0]
¢noijsm

1
¢rﬁjsm

Tas,l
B

ar

,0
| Him |

for half integral spin

\Pas

where ¢as,i’ ¢7as,i and gDaS,i,(bas,ﬂ

nljm :ﬁ ¢

1 [coﬁifm

~as
filjm

nljm

as,2

(onljm

~as,2
Aljm

~as,0

defined by

fum =R, (1) HE (0.0)
B =R; (1) 765 (6. 0)
P =R ()Y (6,0
P =R (1) Y (6.0).

as,0 ]

as,25-1
:| 1 nljm
- ~as,25-1 |’
\/5 Prljm

| Piljm |

(111-24)

(111-25)

are the one- and two-component spinors, respectively, are

(111-26a)
(111-26b)
(IN-27a)

(IN-27b)

Here, 0<A(1) <2s and 0< A(2) <2s-1 for integral and half-integral spin, respectively.

15



To obtain the derivatives of ¥“*-ETSO we use the following relations [15]:

0 df f Im -

= (1) = Z [dr (2 =Kl)— }b AN (111-28)
o .2 df f]ym

(&_Iaj( fﬂmYlm) = k_z_l [dr (5k 1_k|) | dk ﬂm—lYIJrk,m—l (|||-29)
0 .0 L | df f]

(&‘i_l@j(fﬂmYlm):k_zl[E-l_(é‘k,l_kl)?_ ﬂm I+k,m-+1 1 (111-30)

where f is any function of the radial distance r and

b =[ (1 +m+S,)(1 —m+8,) /(201 +1) +k) (@ +k) |~ (111-31)
A" = —k[(| —km+25,)(1 —k(m=1)) / 2(1 +1) + k)2l +K) | (111-32)
=k[(1+km+25,)(1 +k(m+1))/ (20 +D+k) (2 +k) ] =—dL ™. (111-33)

The symbol Z in Egs. (111-28), (111-29) and (111-30) indicates that the summation is to be
performed in steps of two. These formulae can be obtained by the use of method set out in

Ref.[29].

Using Eqgs. (111-28), (I11-29) and (111-30) we obtain for the derivatives of two-component
spinors of half-integral spin the following relations:

(el =PRIV |- fZ'{d;a (@rk')Ra}

]

{ Bin (4:0,0)+, Dljm(/1+1-e q)):l

Cin(4:0,0)= B, (A1 +10,0) (11-34)
asi -2 a ysA | dRa % %
c(5P)¢" =c(6P)| Ry Yin | = chZ{ +(8,, k) r}
{ B, (A+16,p)+ , D;y (4:6, (p)}
Cin(2+%0,0)- B} (4:0.0) | (111-35)
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where,

k Bl?m (’1; 0, §D) = aI?m (ﬂ“)b&m(l)ﬁm(ﬂ)YHk,m(i) (‘91 §0) (111-36)
kcl?m (’1; 0, ¢) = aI?m (ﬂ“)Clim(i)ﬂm(ﬂ.)+lYl+k,m(i)+1 (9’ (0) (1-37)
D5 (2:6,0) =285, (A" B,0 Yo 1 (60). (111-38)

The formulae presented in this work show that all of the 2(2s+1)-component relativistic
basis spinor wave functions and Slater basis spinor orbitals are expressed through the sets of
one- and two-component basis spinors. The radial parts of these basis spinors are determined
from the corresponding nonrelativistic basis functions defined in position, momentum and

four-dimensional spaces. Thus, the expansion and one-range addition theorems established in

[28] for the nonrelativistic k,ﬁml and knImI basis sets in position, momentum and four-
dimensional spaces can be also used in the case of relativistic basis spinor functions Kﬁiﬁl and
Kr?,ml . Accordingly, the electronic structure properties of arbitrary mass and spin relativistic
systems can be investigated with the help of corresponding nonrelativistic calculations.

IV. Conclusions

In this study, we have generalized the Dirac’s spin—1/2 theory to a relativistic theory for

particles with arbitrary mass and integral and half-integral spin. The relativistic basis sets of
spinor orbitals for the arbitrary spin particles in position, momentum and four-dimensional

spaces are also constructed. It is shown that this theory has the following properties:

(1) The generalized relativistic matrices are irreducible and Clifford algebraic.

(2) The generalized relativistic wave functions and matrices possess the 2(23+1)

independent components.
(3) The generalized relativistic equation satisfies the condition of Lorentz invariance.

(4a) The relativistic scalar particles fore >0 and m= 0 satisfy the two-component relativistic

equation.

(4b) The free particle with e=0, s=0 and m#0 is described by two-component relativistic

equation.
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(5) The integral spin (s=12, ...)satisfies the 2(2s+1) component generalized relativistic

equation for massless particles.

(6) The half-integral spin [s:

N w

j satisfies the 2(2s+1)-component generalizes

N |-

relativistic equation for particle with m#0.

(7) The relativistic basis sets of spinor orbitals for the arbitrary mass and spin particles in
position, momentum and four-dimensional spaces are expressed through the corresponding

quantities of nonrelativistic spinor functions.

The generalized relativistic theory presented in this work can be used in the solution of
different problems of describing particles with arbitrary mass and spin within the framework
of relativistic quantum mechanics when the position, momentum and the four-dimensional

spaces are employed.
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Table 1. Summary of the generalized Dirac group properties for 0<s<—

2
No. of | No. of | No. of | No. of
Group | No. of | No. of No. of No. of No. of No. of
S . . . . ) 10-D 12-D 14-D 16-D
Order | Classes | 1-Dirred 2-D irred 4-D irred 6-D irred 8-D irred
irred irred irred irred
0 8 5 4 1 0 0 0 0 0 0 0
]/ 2 32 17 16 0 1 0 0 0 0 0 0
1 72 37 36 0 0 1 0 0 0 0 0
3/2 | 128 65 64 0 0 0 1 0 0 0 0
2 200 101 100 0 0 0 0 1 0 0 0
5/2 | 288 | 145 144 0 0 0 0 0 1 0 0
3 392 197 196 0 0 0 0 0 0 1 0
7/ 2 | 512 257 256 0 0 0 0 0 0 0 1

Note: irred-irreducible representation

Table 2. The exponential type spinor orbitals in position space for s=0,
1<n<2,0<lI<n-1 and -l <m, <I

a0

n [ | m, ‘PnlmI
1w

1 0|0 | =™
\/E__";Vlog_

ol o | L] v
2 \/E_—i‘//go%_
L | A va
\/E__i‘//zal(i_

Lo | L] v
\/E__i‘//z%_
1 L{ w}
\/E _iV/zal(il
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Table 3. The exponential type spinor orbitals in position space for s=1, 1<n<2,0<I<n-1,

l-s|<j<l+s, —jsm<j,t=2(j-1)and A=n+lt]

Tsal
nl e m lPZIjm
tjofef2]s ] V:/@ , , ; ; _i‘/\//g_oo
2 2
Y100 1300
0 0 — 0 0 e 0
2 N5
Y100 1300
-1 0 0 0 0
2z | %
R 1 Y 0 0 0 0 W
X N5
0 0 Y a0 0 0 _i‘//foo 0
N 72
-1 0 0 Va0 7 0 0
L | v
11102 1 1.
1 ——y,, 0 0 —=ly,
21//210 2‘//211
1. , 1.,
0 0 _E Wou 0 _E Wy
1. , 1.
-1 0 -y, | —Ziys, 0
2 2
21214 2 You 0 0 0 0 Uy
2 N5
1 0 0 _% iy
2 2
0 W Yo You Cy _ 17 iy
243 NE] 243 2.3 NE] 23
1, 1.,
-1 0 _E Vo - E W 410 0
l//;l—l iV
-2 0 0 ——= —= 0 0
|
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Table 4. The exponential type spinor orbitals in position space for S=2,1<n<2,0<I<n-1,

l-s|<j<l+s, —jsm<jt=2(j—l)and A=n+t|

n I J t Al m a2
\Pnljm
1/0|2|4]|5 » ilr/ISaOO
Yioo -
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NA 2
Y100 0 0 ——il//;éo 0
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0 o | Y | v 0 0 0
1 77200
NA 2
¥ 200 _i‘//g:)o
-2 0 0 0 0 \/5 ﬁ 0 0 0 0
2 \/§ ﬁ 0 0 0 0 0 0 \/g \/§
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Table 5. The exponential type spinor orbitals in position space for s =

1<n<2,0<l<n-1, [I-s|<j<l+s, —j<m<j,t=2(j—l)and A=n+[t|
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Table 6. The exponential type spinor orbitals in position space for s =

N W

,1sn<2,0<l<n-1 |[I-s|<j<l+s, —j<m<j,t=2(j—I)and Ai=n+t]
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