Conjectured Polynomial Time Compositeness Tests for Numbers of the Form $k \cdot 2^n \pm 1$

Predrag Terzić

Podgorica, Montenegro e-mail: pedja.terzic@hotmail.com

August 11, 2014

Abstract: Conjectured polynomial time compositeness tests for numbers of the form $k \cdot 2^n - 1$ and $k \cdot 2^n + 1$ are introduced.

Keywords: Compositeness test, Polynomial time, Prime numbers.

AMS Classification: 11A51.

1 Introduction

Let p be an odd prime . Define the sequence $\{S_n\}_{n\geq 0}$ by

$$S_0 = 6$$
, $S_{k+1} = S_k^2 - 2$, $k \ge 0$

The compositeness test for $(2^p + 1)/3$ states :

Theorem 1.1. If N_p is prime then $S_{p-1} \equiv -34 \pmod{N_p}$

See Theorem 2 in [1].

2 The Main Result

Definition 2.1. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where m and x are positive integers .

Conjecture 2.1. Let $N=k\cdot 2^n-1$ such that n>2 and k>0 .

Let
$$S_i = P_2(S_{i-1})$$
 with $S_0 = P_k(6)$, thus
If N is prime then $S_{n-1} \equiv 6 \pmod{N}$

Conjecture 2.2. Let $N=k\cdot 2^n+1$ such that n>2 and k>0 .

Let
$$S_i = P_2(S_{i-1})$$
 with $S_0 = P_k(6)$, thus
If N is prime then $S_{n-1} \equiv 2 \pmod{N}$

References

[1] Pedro Berrizbeitia , Florian Luca , Ray Melham , "On a Compositeness Test for $(2^p+1)/3$ ", Journal of Integer Sequences, Vol. 13 (2010), Article 10.1.7 .