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The phenomenon of total internal reflection is considered in terms of exact
solutions of Maxwell equations. Matching of plane and evanescent waves at
the interface is completed. It is shown that amplitude of the reflected wave
cannot be obtained from the matching alone. Since it can differ from that of
incident wave due to possible energy loss which may occur in the evanescent
wave zone if there is another layer of optically dense medium, this loss is to
be specified via amplitude of the reflected wave. Besides, reflected wave

potential has phase shift which also depends on this specification.

1 Introduction

Rigorous mathematical descriptions of reflection, refraction and transmission
of plane waves are found in numerous monographs on classical electrodynam-
ics and optics [1, 2]. The phenomenon of total internal reflection is somewhat
more complicated because it contains waves of two distinct kinds, namely,
ordinary plane waves and evanescent waves, which have different properties.
Usually, one follows the lines of quantum mechanics in which it suffices to add
imaginary part to one of components of the wave vector. This trick works
when dealing with scalar fields, but its legality in electrodynamics was to be
verified. It turns out that Maxwell equations have no solutions composed
this way. It will be shown below that no other waves but ordinary plane and
evanescent ones exist and there is no freedom of adding an imaginary part
to wave vector of an electromagnetic wave. This fact tells us that there is
no continuous passage from plane to evanescent waves and the phenomenon
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of total internal reflection is to be studied without using the trick used in
quantum mechanics.

The main task to be completed when describing the phenomenon of total
internal reflection is matching strengths and inductions of the field on the
interface. In this work the matching procedure is completed under an addi-
tional assumption that reflected wave has an unknown phase shift which can
be obtained from the entire analysis. This assumption adds one unknown
that broadens opportunities of matching the fields at the interface and after
all, allows us to complete the procedure of matching. The result obtained
shows that, first, amplitude of the reflected wave cannot be obtained from
this procedure because the general solution admits possible energy drain by
another layer of an optically dense medium which can be placed behind the
first one. In other words, amplitude of the reflected wave is equal to that
of the incident wave only if it is know that the less optically dense medium
fills the half-space, otherwise it must be specified with account of the energy
loss. It turns out that the phase shift and amplitude of the reflected wave
are linked via a certain relation.

This work is organized as follows. We start with a special representation
of source-free Maxwell equations and boundary conditions in terms of exterior
calculus and their solutions which describe plane and evanescent waves. This
analysis is necessary because it shows that there is no continuous passage
from plane to evanescent waves which is known in quantum mechanics and
which is used as a straightforward description of tunneling effect. Then, we
derive relations for amplitudes from the boundary conditions and solve them
as algebraic ones. The result obtained has the form of relation for amplitudes
and phase shift.

2 Exterior calculus and source-free Maxwell

equations

Our approach consists in the following. Strengths E and H and inductions
∆ and B (∆ stands for electric induction) constitute a complex 2-form Ψ

Ψ = dt ∧ (E + ıH) + (B − ı∆), (1)

where t is Lorentzian time and

∆ = ϵ · ∗E, B = µ · ∗H. (2)
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Here the asterisk conjugation is 3-dimensional (otherwise one of signs chan-
ges). According to source-free Maxwell equations, the 2-form Ψ is closed,
consequently, there exists such a complex 1-form A that

dA = Ψ (3)

and the equations (2) play the key role in this mathematical construction.
The equation

dΨ = 0

which, by construction, is an identity, contains boundary conditions at an
interface. Indeed, if, say ϵ and µ behave as step functions with jump at the
plane z = 0:

ϵ =

{
ϵ+, z > 0
ϵ−, z < 0

(4)

this equation requires that xy-components of the 2-forms B and ∆ remain
continuous and jump of the corresponding strengths does not make sense.
On the other hand, the same equation requires that tangent components of
the strengths are continuous. Denote E±, H±, B± and ∆± these forms on
the boundary with sign specifying the side as that of the coordinate z. Then,
the boundary conditions take the form

(E+)t = (E−)t, (H+)t = (H−)t, (5)

(B+)xy = (B−)xy, (∆+)xy = (∆−)xy, z = 0

where the subscript t stands for tangential components.

3 Plane waves

In case of plane wave the t-component of the 1-form A can be omitted:

A = f dx+ g dy + h dz, A = A1 + ıA2 (6)

where A1 and A2 are real-valued 1-forms specified by their components f1,
g1 h1 and f2, g2 h2 correspondingly. Taking its exterior derivative and sub-
stituting the result into the equations (1-6) yields a system of six equation
for six unknowns. This system consists of two subsystems of three equations
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each. The subsystems are independent on each other, one of them has the
form

ϵ
∂g1
∂t

= ∂h2
∂x

− ∂f2
∂z

, (7)

µ
∂f2
∂t

= −∂g1
∂z

, µ∂h2
∂t

=
∂g1
∂x

and another one is

ϵ
∂f1
∂t

=
∂g2
∂z

, ϵ∂h1
∂t

= −∂g2
∂x

µ
∂g2
∂t

=
∂f1
∂z

− ∂h1
∂x

.

Solutions of these equations represent plane electromagnetic waves of two
possible polarizations.

When describing plane waves it is convenient to introduce the phase

ϕ = ωt− px− qz

as an auxiliary function. Evidently, functions like

f = a cosϕ, g = cosϕ, h = b cosϕ,

turn both subsystems into that of algebraic ones, namely

ϵω = aq − bp, aµω = q, bµω = −p

for the first and

µω = bp− aq, aϵω = −q, bϵω = p

for the second subsystem. Both of them yield the well-known dispersion
equation

ϵµω2 = p2 + q2 (8)

and provide amplitudes a and b explicitly as soon as components of the wave
vector p and q are chosen in accord with the equation (8). The 1-form A will
be represented as

A =
ıq

µω
cosϕ dx+ cosϕ dy − ıp

µω
cosϕ dz (9)
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for one polarization and

A = − q

ϵω
cosϕ dx+ ı cosϕ dy +

p

ϵω
cosϕ dz (10)

for another.
Now, calculate the corresponding strengths and inductions. In case of

plane waves (9) and (10) we have

E = −ω sin(ωt− px− qz) dy, (11)

H = − q

µ
sin(ωt− px− qz) dx+

p

µ
sin(ωt− px− qz) dz,

B = p sin(ωt− px− qz) dx ∧ dy − q sin(ωt− px− qz) dy ∧ dz,

∆ = −ωϵ sin(ωt− px− qz) dz ∧ dx

and

E =
q

ϵ
sin(ωt− px− qz) dx− p

ϵ
sin(ωt− px− qz) dz,

H = −ω sin(ωt− px− qz) dy,

B = −ωµ sin(ωt− px− qz) dz ∧ dx,

∆ = q sin(ωt− px− qz) dy ∧ dz − p sin(ωt− px− qz) dx ∧ dy

correspondingly.

4 Evanescent wave

One more pair of solutions of the equations (7) and (8) is obtained below.
Consider a more general case with components to be found factorized as
f = F (z) sin(ωt − px) and f = F (z) cos(ωt − px). It will be shown below
that both of them are needed. The amplitudes have the form

f = F (z) sin(ωt− px), (12)

g = G(z) cos(ωt− px), h = H(z) cos(ωt− px)

or

f = F (z) cos(ωt− px), (13)

g = G(z) sin(ωt− px), h = H(z) sin(ωt− px).
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We consider only waves with polarization specified by f2, g1 and h2 (E tan-
gent to the interface), therefore, polarization subscripts are unnecessary. Sub-
stituting this representation into the equations (7) turns them into ordinary
differential equations

−ϵωG = H2p− F ′
2 (14)

µωF = −G′, −µωH = pG

for the functions (12) and similar for (13). For the earlier, exclusion of the
unknown H and denoting

q2 = p2 − ω2ϵµ

reduces them to the following pair of equations:

µωF ′ = −q2G, G′ = −µωF

and for the latter,
µωF ′ = −q2G, G′ = µωF.

Solution of the equations (14) is trivial and so for another triplet of compo-
nents and finally we have the following pair of 1-form A:

A =
ıq

µω
e−qz sin(ωt− px) dx+ e−qz cos(ωt− px) dy −

− ıp

µω
e−qz cos(ωt− px) dz

and similar for another opportunity. It will be seen below why both of them
are important. These solutions describe waves which propagate in the x
direction and extinct in the z direction.

5 On matching plane and evanescent

waves

Expressions for strengths and inductions given in [2] and [1] look quite com-
plicated. We obtain much simpler form

E = aωe−qz sin(ωt− px) dy, (15)

H = −aq

µ
e−qz cos(ωt− px) dx− ap

µ
e−qz sin(ωt− px) dz,

B = −ape−qz sin(ωt− px) dx ∧ dy − aqe−qz cos(ωt− px) dy ∧ dz,

∆ = aωϵe−qz sin(ωt− px) dz ∧ dx
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and, for another opportunity,

E = aωe−qz cos(ωt− px) dy, (16)

H =
aq

µ
e−qz sin(ωt− px) dx− ap

µ
e−qz cos(ωt− px) dz,

B = −ape−qz cos(ωt− px) dx ∧ dy + aqe−qz sin(ωt− px) dy ∧ dz,

∆ = aωϵe−qz cos(ωt− px) dz ∧ dx

which is also important. Note that no other solutions but purely plane waves
and purely evanescent waves, exist. In other words, there are no solutions
containing an oscillating factor which descends exponentially as if the wave
vector has imaginary part.

Consider a plane wave propagating in a more optically dense medium
which fill the half-space z < 0, towards the interface. For simplicity, we
consider only one polarization with electric strength parallel to the interface.
The corresponding field has the form (9) multiplied by an amplitude ai.
Reflected wave has amplitude ar and wave vector with opposite z-component.
So, strengths and inductions of the field of incident is given by the equations
(11):

E = −aiω sin(ωt− px− q−z) dy, (17)

H = −ai
q−
µ

sin(ωt− px− q−z) dx+
aip

µ
sin(ωt− px− q−z) dz,

B = aip sin(ωt− px− q−z) dx ∧ dy −
−aiq sin(ωt− px− q−z) dy ∧ dz,

∆ = −aiωϵ sin(ωt− px− q−z) dz ∧ dx.

As for the reflected wave, we assume that it has a phase shift α, therefore its
field has the form

E = −arω sin(ωt− px+ q−z + α) dy, (18)

H =
arq−
µ

sin(ωt− px+ q−z + α) dx+
arp

µ
sin(ωt− px+ q−z + α) dz,

B = arp sin(ωt− px+ q−z + α) dx ∧ dy +

+arq− sin(ωt− px+ q−z + α) dy ∧ dz,

∆ = −arωϵ sin(ωt− px− q−z + α) dz ∧ dx

where sign of one of components of the magnetic strength changed together
with that of q−.
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The total strengths and inductions in the z < 0 half-space is sum of the
fields given by the equations (17) and (18). Now, substitute these expressions
and those from the equations (11) into the boundary conditions (5). For this
end, first we collect components of strengths and inductions for the sum
of incident and reflected waves at z = 0. Employing the sine and cosine
summation theorems, obtain:

(Ei + Er)y = −(ai + ar cosα)ω sin(ωt− px)− arω sinα cos(ωt− px),

(Hi +Hr)x =
(−ai + ar cosα)q+

µ+

sin(ωt− px) +
arq+
µ+

sinα cos(ωt− px),

(Bi +Br)xy = (ai + ar cosα)p sin(ωt− px) + arp sinα cos(ωt− px)

and xy-component of ∆ is zero for both plane and evanescent waves. Here
the subscripts + and − stand for the sign of the z coordinate. The same for
evanescent waves has the form

(Et)y = [a1 sin(ωt− px) + a2 cos(ωt− px)]ω

(Ht)x = − q−
µ−

[−a1 cos(ωt− px) + a2 sin(ωt− px)],

(Bt)xy = −p[a1 sin(ωt− px) + a2 cos(ωt− px)]ω.

The coefficients ai and ar are arbitrary (see below) and two others are am-
plitudes to be fit. It is seen that matching Bxy gives the same equations as
matching Ey, therefore, third lines of both systems above are extra. All the
rest yields the following quartet of equations

a1 = −(ai + ar cosα), a2 = −ar sinα,
q−
µ−

a1 =
q+
µ+

ar sinα,
q−
µ−

a2 = − q+
µ+

(ai − ar cosα).

Two of them determine the unknowns a1 and a2 which can now be excluded
so that it remains to solve the system of two equations

Qar sinα = −(ai + ar cosα), Q(ai − ar cosα) = −ar sinα

where
Q =

µ−q+
µ+q−

.

Solution of this system yields the phase shift α:

cosα =
1−Q2

1 +Q2

ai
ar
.
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It was expected that solution should give both phase shift and amplitudes of
the evanescent waves. It is not so because boundary conditions used do not
specify possible energy drain by another interface which can well be placed
behind this one as in experiments on tunneling. If there is an air gap between
two optically dense media, evanescent wave in this gap has the same form,
but the phase shift and amplitudes are different so that amplitude of the
reflected wave is not equal to that of the incident one. If energy loss is
known, this amplitude must be found and substituted to the equations just
considered that gives another values for two other amplitudes.

6 Conclusion

The procedure of matching the fields in case of total internal reflection differs
from that of ordinary refraction. First, reflected wave has a phase shift
which depends on possible presence other interface(s) behind that under
consideration as in the experiments of the work [3]. If an experiment, there
is an air gap between optically dense media, the evanescent wave loses energy
that diminishes amplitude of the reflected wave and changes its phase. Taking
all this into account allows one to solve the problem of matching the fields.
In any case, the amplitude of reflected wave is not known a priori and needs
to be found by matching the fields at the second interface, if any. If there is
no energy loss of this kind, amplitude of the reflected wave is to be put equal
to that of the incident wave that simplifies the final result.
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