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Abstract

In his famous thought experiment,Schrôdinger(1935) imagined a cat that measures the
value of an quantum mechanical observable with its life. Since Schrödinger’s time, no
any interpretations or modifications of quantum mechanics have been proposed which
gives clear unambiguous answers to the questions posed by Schrödinger’s cat of how long
superpositions last and when (or whether) they collapse? In this paper appropriate
modification of quantum mechanics is proposed. We claim that canonical interpretation
of the wave function   c11  c22 is correct only when the supports the wave
functions 1 and 2 essentially overlap. When the wave functions 1 and 2 have
separated supports (as in the case of the experiment that we are considering in this
paper) we claim that canonical interpretation of the wave function   c11  c22 is no
longer valid for a such cat state. Possible solution of the Schrödinger’s cat paradox is
considered.We pointed out that the collapsed state of the cat always shows definite and
predictable outcomes even if cat also consists of a superposition:

cat c1 live cat  c2 death cat .
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6mm . Introduction 3mm
As Weinberg recently reminded us cite: Weinberg12[1], the measurement problem remains

a fundamental conundrum. During measurement the state vector of the microscopic system
collapses in a probabilistic way to one of a number of classical states, in a way that is
unexplained, and cannot be described by the time-dependent Schrödinger equation
cite: Weinberg12[1].To review the essentials, it is sufficient to consider two-state systems.
Suppose a nucleus n, whose Hilbert space is spanned by orthonormal states |sit,
i  1,2,where |s1t  undecayed nucleus at instant t and
|s2t  decayed nucleus at instant t is in the superposition state,

|t n  c1|s1t  c2|s2t, |c1 |2  |c2 |2  1.
1.1

A measurement apparatus A, which may be microscopic or macroscopic, is designed to
distinguish between states |sit by transitioning at each instant t into state |ait if it finds n
is in |sit, i  1,2. Assume the detector is reliable, implying the |a1t and |a2t are
orthonormal at each instant t ,i.e., 〈a1t||a2t  0 and that the measurement interaction does
not disturb states |si  -i.e., the measurement is “ideal”. When A measures |t n, the
Schrödinger equation’s unitary time evolution then leads to the “measurement state” |t nA :

|t nA  c1|a1t  c2|a2t, |c1 |2  |c2 |2  1.
1.2

of the composite system nA following the measurement.

Standard formalism of continuous quantum measurements
cite: BassiLochanSatinSinghUlbricht13, JacobsSteck06, Mensky93, Mensky00 [2, 3, 4, 5]

leads to a definite but unpredictable measurement outcome, either |a1t or |a2t and that
|t n suddenly “collapses” at instant t ′ into the corresponding state |sit ′. But unfortunately
equation (1.2) does not appear to resemble such a collapsed state at instant t ′?

The measurement problem is as follows:
(I) How do we reconcile canonical collapse models postulate’s
(II) How do we reconcile the measurement postulate’s definite outcomes with the
“measurement state” |t nA at each instant t and
(III) how does the outcome become irreversibly recorded in light of the Schrödinger
equation’s unitary and, hence, reversible evolution?



This paper deals with only the special case of the measurement problem, known as
Schrödinger’s cat paradox. For a good and complete explanation of this paradox see Leggett
cite: Leggett84[6] and Hobson cite: Hobson13[7].
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Schrödinger

Schrödinger’s cat adapted to the measurement

of position of an alpha particle cite: Schrodinger35[8]

In his famous thought experiment cite: Schrodinger35[8], Schrôdinger(1935) imagined a cat
that measures the value of an quantum mechanical observable with its life. Adapted to the
measurement of position of an alpha particle, the experiment is this. A cat, a flask of poison,
and a radioactive source are placed in a sealed box. If an internal monitor detects radioactivity
(i.e. a single atom decaying), the flask is shattered, releasing the poison that kills the cat. The
Copenhagen interpretation of quantum mechanics implies that after a while, the cat is
simultaneously alive and dead. Yet, when one looks in the box, one sees the cat either alive or
dead, not both alive and dead.

This poses the question of when exactly quantum superposition ends and reality collapses
into one possibility or the other?

Since Schrödinger’s time, no any interpretations or extensions of quantum mechanics have
been proposed which gives clear unambiguous answers to the questions posed by
Schrödinger’s cat of how long superpositions last and when (or whether) they collapse.

The canonical interpretations of the experiment.

Copenhagen interpretation
The most commonly held interpretation of quantum mechanics is the Copenhagen

interpretation cite: Wimmel92[9]. In the Copenhagen interpretation, a system stops being a
superposition of states and becomes either one or the other when an observation takes place.
This thought experiment makes apparent the fact that the nature of measurement, or
observation, is not well-defined in this interpretation. The experiment can be interpreted to
mean that while the box is closed, the system simultaneously exists in a superposition of the
states "decayed nucleus/dead cat" and "undecayed nucleus/living cat", and that only when the
box is opened and an observation performed does the wave function collapse into one of the



two states.
However, one of the main scientists associated with the Copenhagen interpretation, Niels

Bohr, never had in mind the observer-induced collapse of the wave function, so that
Schrödinger’s cat did not pose any riddle to him. The cat would be either dead or alive long
before the box is opened by a conscious observer cite: Faye08[10]. Analysis of an actual
experiment found that measurement alone (for example by a Geiger counter) is sufficient to
collapse a quantum wave function before there is any conscious observation of the
measurement cite: CarpenterAnderson06[11]. The view that the "observation" is taken when a
particle from the nucleus hits the detector can be developed into objective collapse theories.
The thought experiment requires an "unconscious observation" by the detector in order for
magnification to occur.

Objective collapse theories

According to objective collapse theories, superpositions are destroyed spontaneously
(irrespective of external observation) when some objective physical threshold (of time, mass,
temperature, irreversibility, etc.) is reached. Thus, the cat would be expected to have settled
into a definite state long before the box is opened. This could loosely be phrased as "the cat
observes itself", or "the environment observes the cat".

Objective collapse theories require a modification of standard quantum mechanics to allow
superpositions to be destroyed by the process of time evolution. This process, known as
"decoherence", is among the fastest processes currently known to physics cite: Omnes99[12].

Ensemble interpretation
The ensemble interpretation states that superpositions are nothing but subensembles of a

larger statistical ensemble. The state vector would not apply to individual cat experiments, but
only to the statistics of many similarly prepared cat experiments. Proponents of this
interpretation state that this makes the Schrödinger’s cat paradox a trivial matter, or a
non-issue. This interpretation serves to discard the idea that a single physical system in
quantum mechanics has a mathematical description that corresponds to it in any way.

Remark 1.1.Ensemble interpretation in a good agreement with a canonical interpretetion of
the wave function (-function) in canonical QM-measurement theory. However under rigorous
consideration an dinamics of the Schrödinger’s cat this interpretation gives unphysical result,
see Proposition 3.2.(ii).

The canonical collapse models.

In order to appreciate how canonical collapse models work, and what they are able to
achieve, we briefly review the GRW model. Let us consider a system of n particles which, only
for the sake of simplicity, we take to be scalar and spinless; the GRW model is defined by the
following postulates: (1) The state of the system is represented by a wave function
tx1,x2, . . . ,xn belonging to the Hilbert space ℒ23n. (2) At random times, the wave
function experiences a sudden jump of the form:

tx1,x2, . . . ,xn → tx1,x2, . . . ,xn;xm 
m

xmtx1,x2, . . . ,xn
‖m

xmtx1,x2, . . . ,xn‖2

,

1.3

where tx1,x2, . . . ,xn is the state vector of the whole system at time t, immediately prior to



the jump process and n
xm is a linear operator which is conventionally chosen equal to:

m
xm  rc

2−3/4 exp − 
xm −

xm
2

2rc
2 ,

1.4

where rc is a new parameter of the model which sets the width of the localization process, and
xm is the position operator associated to the m-th particle of the system and the random
variable xm corresponds to the place where the jump occurs. (3) It is assumed that the jumps
are distributed in time like a Poissonian process with frequency   GRW this is the second
new parameter of the model. (4) Between two consecutive jumps, the state vector evolves
according to the standard Schrödinger equation.

The 1-particle master equation of the GRW model takes the form

d
dt
t  − i


H,t − Tt.

1.5

Here H is the standard quantum Hamiltonian of the particle, and T represents the effect of
the spontaneous collapses on the particle’s wave function. In the position representation, this
operator becomes:

〈x|Tt|y   1 − exp − x − y2

4rc
2 〈x|t|y.

1.6

Another modern approach to stochastic reduction is to describe it using a stochastic
nonlinear Schrödinger equation, an elegant simplied example of which is the following one
particle case known as Quantum Mechanics with Universal Position Localization [QMUPL]:

d|tx  − i


H − kq − 〈qt 
2dt |txdt  2k q − 〈qt dWt|tx.

1.7

Here q is the position operator, 〈qt   〈t |
q|t  it is its expectation value, and k is a constant,

characteristic of the model, which sets the strength of the collapse mechanics, and it is chosen
proportional to the mass m of the particle according to the formula: k  m/m00, where m0

is the nucleon’s mass and 0 measures the collapse strength. It is easy to see that Eqn.(1.5)
contains both non-linear and stochastic terms, which are necessary to induce the collapse of the

wave function. For an examle let us consider a free particle (H  p2/2m), and a Gaussian state:

tx  exp −atx − xt2  iktx .
1.8

It is easy to see that tx given by Eq.(1.6) is solution of Eq.(1.5), where



dat

dt
 k − 2i

m at
2, dxt

dt
 

m kt 
k

2Reat
Ẇt,

dkt

dt
 − k

Imat
Reat

Ẇt.
1.9

The CSL model is defined by the following stochastic differential equation in the Fock space:

d|tx  − i


H − k Mx − 〈Mtx
2
dt |txdt 

 2k Mx − 〈Mtx dWtx|tx.

1.10

6mm . Generalized Gamov theory of the alpha decay via tunneling
using GRW collapse model 3mm

By 1928, George Gamow had solved the theory of the alpha decay via tunneling
cite: Gamov28[13]. The alpha particle is trapped in a potential well by the nucleus. Classically,
it is forbidden to escape, but according to the (then) newly discovered principles of quantum
mechanics, it has a tiny (but non-zero) probability of "tunneling" through the barrier and
appearing on the other side to escape the nucleus. Gamow solved a model potential for the
nucleus and derived, from first principles, a relationship between the half-life of the decay, and
the energy of the emission.

The -particle has total energy E and is incident on the barrier from the right to left.
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The particle has total energy E and

is incident on the barrier Vx from right to left.

Adapted from cite: Gamov28[13]

The Schrödinger equation in each of regions I  x|x  0, II  x|0 ≤ x ≤ l and
III  x|x  l takes the folloving form

∂2x
∂x2  2m

2 E − Uxx  0,
2.1

where

Ux 

0 for x  0

U0 for 0 ≤ x ≤ l

0 for x  l

2.2

The solutions reads [8]:

IIIx  C expikx  C− exp−ikx,

IIx  B expk ′x  B− exp−k ′x,

Ix  Acoskx  A
2
expikx  exp−ikx,

2.3

where

k  2


2mE ,

k ′  2


2mU0 − E .
2.4

At the boundary x  0 we have the following boundary conditions:



I0|x0  II0|x0,
∂Ix
∂x x0


∂IIx
∂x x0

.
2.5

At the boundary x  l we have the following boundary conditions

IIl|xl  IIIl|xl,
∂IIx
∂x xl


∂IIIx
∂x xl

.
2.6

From the boundary conditions (2.5)-(2.6) one obtains cite: Gamov28[13]:

B  A
2

1  i k
k ′

,B−  A
2

1 − i k
k ′

,

C  Achk ′l  iDshk ′l,C−  iASshk ′lexpikl,

D  1
2

k
k ′
− k ′

k
,S  1

2
k
k ′

 k ′
k

.

2.7

From (2.7) one obtain the conservation law

|A|2  |C |2 − |C− |2.

Let us introduce now a function EIIx, l  2x, lE2x, l where

E2x, l 
rc

2−1/4 exp − x2

2rc
2 for −   x  l

2

rc
2−1/4 exp − x − l2

2rc
2 for l

2
≤ x  

2x, l 
1 for x ∈ 0, l

0 for x ∉ 0, l

2.8

Assumption 2.1. We assume now that:

(i) at instant t  0 the wave function Ix experiences a sudden jump of the form



Ix → I
#x 

I
x Ix

‖I
x Ix‖2

, 2.9

where I
x  is a linear operator which is chosen equal to:

I
x   rc

2−1/41
x , lexp −

x 2

2rc
2 ;

2.10

where

1x, l 
1 for x ∈ −l, 0,

0 for x ∉ −l, 0.

Remark 2.1. Note that: suppI
#x ⊆ −l, 0

(ii) at instant t  0 the wave function IIx experiences a sudden jump of the form

IIx → II
# x 

II
x IIx

‖II
x IIx‖2

,
2.11

where II
x  is a linear operator which is chosen equal to:

II
x   EII

x , l;
2.12

Remark 2.2. Note that: suppII
# x ⊆ 0, l.

(iii) at instant t  0 the wave function IIIx experiences a sudden jump of the form

IIIx → III
# x 

III
x IIIx

‖III
x IIIx‖2

, 2.13

where III
x  is a linear operator which is chosen equal to:

III
x   rc

2−1/4 exp − 
x − l2

2rc
2 .

2.14

Remark 2.3. Note that. We have choose operators (2.10),(2.12) and (2.14) such that the
boundary conditions (2.5),(2.6) are satisfied.



Definition 2.1. Let x be an solution of the Schrödinger equation (2.1). The stationary

Schrödinger equation (2.1) is a weakly well preserved in region Γ ⊆  by collapsed wave
function #x if there exist an wave function x such that the estimate


Γ

∂2#x
∂x2  2m

2 E − Ux#x dx  O2, 2.15

where  ≥ 1, is satisfied.
Proposition 2.1.The Schrödinger equation in each of regions I, II, III is a weakly well

preserved by collapsed wave function I
#x,II

# x and III
# x correspondingly.

Proof. See Appendix B.
Definition 2.2.Let us consider the time-dependent Schrödinger equation:

i
∂x, t
∂t

 Hx, t,

t ∈ 0,T,x ∈3n.

2.16

The time-dependent Schrödinger equation (2.16) is a weakly well preserved by corresponding
to x, t collapsed wave function #x, t

#x1,x2, . . . ,xn, t 

x1,x2, . . . ,xn, t;xm1 , . . . ,
xmk  


m1,...,mk

xm1 , . . . ,
xmk x1,x2, . . . ,xn, t

‖m1,...,mk
xm1 , . . . ,

xmk x1,x2, . . . ,xn, t‖2

,

m1,...,mk
xm1 , . . . ,

xmk  
i1

k

mi
xmi 

in region Γ ⊆ 3d if there exist an
wave function x, t such that the estimate


Γ

i
∂#x, t
∂t

− H#x, t d3dx  O,

t ∈ 0,T,x ∈3d,

2.17

where  ≥ 1, is satisfied.
Definition 2.3. Let #x, t#x1,x2, . . . ,xd, t be a function



x1,x2, . . . ,xd, t;x 1 , . . . ,
x d .Let us consider the Probability Current Law

∂
∂t

PΓ, t  
∂Γ

Jx1,x2, . . . ,xd, t  nd2dx  O,

Jx1,x2, . . . ,xd, t  x, t∇x, t − x, t∇x, t,

t ∈ 0,T,x ∈3d,

2.18

corresponding to Schrödinger equation (2.16). Probability Current Law (2.18) is a weakly well

preserved by corresponding to x, t collapsed wave function #x, t in region Γ ⊆ 3d if
there exist an wave function x, t such that the estimate

∂
∂t

PΓ, t  
∂Γ

J#x1,x2, . . . ,xd, t  nd2dx  O,

J#x1,x2, . . . ,xd, t  #x, t∇#x, t − #x, t∇#x, t

 O,

t ∈ 0,T,x ∈3d,

2.19

where  ≥ 1, is satisfied.
Proposition 2.2. Assume that there exist an wave function x, t such that the estimate

(2.17) is satisfied. Then Probability Current Law (2.18) is a weakly well preserved by

corresponding to x, t collapsed wave function #x, t in region Γ ⊆ 3d, i.e. the estimate
(2.19) is satisfied on the wave function #x, t.

6mm . Schrödinger’s cat paradox resolution 3mm

In this section we shall consider the problem of the collapse of the cat state vector on the
basis of two different hypotheses:

(A) The canonical postulate of QM is correct in all cases.
(B) The canonical interpretation of the wave function   c11  c22 is correct only when

the supports the wave functions 1 and 2 essentially overlap. When the wave functions 1

and 2 have separated supports (as in the case of the experiment that we are considering in
section II) we claim that canonical interpretation of the wave function   c11  c22 is no
longer valid for a such cat state, for details see section 4.

5mm . Consideration of the Schrödinger’s cat paradox using canonical von



Neumann postulate 2mm
Let |s1t and |s2t be the states

|s1t  undecayed nucleus at instant t ,

|s2t  decayed nucleus at instant t .

3.1

We assume now that

|s10  
−


II

# x|xdx
3.2

and

|s20  
−


I

#x|xdx.
3.3

Remark 3.1. Note that: (i) |s20  decayed nucleus at instant 0 

 free -particle at instant 0 . (ii) Feynman propagator of a free -particle are
cite: FeynmanHibbs05[14]:

K2x, t,x0  m
2it

1/2
exp i


mx − x02

2t
. 3.4

Therefore from Eq.(3.3),Eq.(2.9) and Eq.(3.4) we obtain



|s2t  
−


I

#x, t|xdx,

I
#x, t  

−

0

I
#x0K2x, t,x0dx0 

rc
2−1/4  m

2it

1/2
 
−

0

1x0, lexp − x0
2

2rc
2 exp −i 2


2mE x0 

exp i


mx − x02

2t
dx0 

rc
2−1/4  m

2it

1/2
 
−l

0

1x0, lexp − x0
2

2rc
2 

exp i


mx − x02

2t
−  4mE x0 dx0 

rc
2−1/4  m

2it

1/2
 
−l

0

1x0, lexp − x0
2

2rc
2  exp i


St,x,x0 dx0,

3.5

where

St,x,x0 
mx − x02

2t
−  8mE x0.

3.6

We assume now that

  2rc
2  l2  1. 3.7

Oscillatory integral in RHS of Eq.(3.5) is calculated now directly using stationary phase
approximation. The phase term Sx,x0 given by Eq.(3.6) is stationary when

∂St,x,x0
∂x0

 − mx − x0
t −  8mE  0. 3.8

Therefore

− mx − x0
t −  8mE  0,

−x − x0  t 8E/m ,
3.9

and thus stationary point x0t,x is



x0t,x  t 8E/m  x.
3.10

From Eq.(3.5) and Eq.(3.10) using stationary phase approximation we obtain

|s2t  
−


I

#x, t|xdx,

I
#x, t 

rc
2−1/4  1x0t,x, lexp − x0

2t,x
2rc

2  exp i

St,x,x0t,x  O,

3.11

where

Sx,x0t,x 
mx − x0t,x2

2t
−  8mE x0t,x.

3.12

From Eq.(3.10) and Eq.(3.11) we obtain

I
#x, tI

#x, t ≃ rc
2−1/2  1 x  t 8E/m , l exp −

x  t 8E/m
2

rc
2 . 3.13

Remark 3.2. From the inequality (3.7) and Eq.(3.13) follows that -particle at each instant
t ≥ 0 moves quasiclassically from right to left by the law

xt  −t 8E/m , 3.14

i.e., the result is obtained by estimating the position xestt at each instant t ≥ 0 with final error
rc gives |xestt − xt| ≤ rc, i  1, . . . ,d with a probability 1,i.e.,P|xestt − xt| ≤ rc  1.

Remark 3.3. We assume now that a distance between radioactive source and internal
monitor which detects a single atom decaying (see Pic.1) is equal to L.

Proposition 3.1. We assume now that:
(i) -decay arises at instant t  0 with a probability 1, and therefore a nucleus n at instant
t  0 is in the state

decayed nucleus at instant 0  free -particle at instant 0 .

(ii) Schrödinger’s cat at instant t  0 is in the state

Schrödinger’s cat  a live cat .

Then after -decay at instant t  0 the collapse

Schrödinger’s cat → death cat

arises at instant



T  L
 8E/m

3.15

with a probability PT death cat to observe a state death cat at instant T is

PT death cat  1.

Proof. Note that. In this case Schrödinger’s cat in fact performs the single measurement of
-particle position with accuracy of x  l at instant t  T (given by Eq.(3.15)) by internal
monitor (see Pic.1.1). The probability of getting a result L with accuracy of x  l given by


|L−x|≤l/2

|〈x|s2T|2dx  1. 3.16

Therefore (see Remark 3.2)at instant T the -particle kills Schrödinger’s cat with a probability

PT death cat  1.

Remark 3.4.Note that. When Schrödinger’s cat has performed this measurement the
immediate post measurement state of -particle (by classical von Neumann measurement
postulate P.3.5) will end up in the state

̆T 


|L−x|≤l/2
|x〈x|s2Tdx


|L−x|≤l/2

|〈x|s2T|2dx
 

|L−x|≤l/2
|x〈x|s2Tdx 3.17

From Eq.(3.17) one obtains

〈x ′ ̆T  
|L−x|≤l/2

〈x ′ |x〈x|s2Tdx  
|L−x|≤l/2

x ′ − x〈x|s2Tdx  I
#x ′, t. 3.18

Therefore immediate post measurement state |T  again kills Schrödinger’s cat with a
probability PT death cat  1.

Suppose now that a nucleus n, whose Hilbert space is spanned by orthonormal states |sit,
i  1,2,where

|s1t  undecayed nucleus at instant t
and

|s2t  decayed nucleus at instant t
is in the superposition state

|t n  c1|s1t  c2|s2t,

|c1 |2  |c2 |2  1.
3.19

Remark 3.5. Note that: (i) |s10  undecayed nucleus at instant t  0 

-particle iside region 0, l at instant t  0 . (ii) Feynman propagator of -particle inside
region 0, l are cite: FeynmanHibbs05[14]:

K2x, t,x0  m
2it

1/2
exp i


St,x,x0 ,

3.20



where

St,x,x0 
mx − x02

2t
 mtU0 − E.

3.21

Therefore from Eq.(2.11)-Eq.(2.12) and Eq.(3.20)-Eq.(3.21) we obtain

|s1t  
−


II

# x, t|xdx,

II
# x, t  

0

l

II
# x0K2x, t,x0dx0 

m
2it

1/2 
0

l

Ex0, lIIx0lx0exp i

St,x,x0 dx0,

3.22

where

lx 
1 for x ∈ 0, l

0 for x ∉ 0, l

Remark 3.6.We assume for simplification now that U0 ≃ E, i.e.,

k ′  2


2mU0 − E  1. 3.23

Therefore oscillatory integral in RHS of Eq.(3.22) is calculated now directly using stationary
phase approximation. The phase term Sx,x0 given by Eq.(3.21) is stationary when

∂St,x,x0
∂x0

 − mx − x0
t  0. 3.24

and thus stationary point x0t,x is

−x  x0  0

x0t,x  x.
3.25

Thus from Eq.(3.22) and Eq.(3.25) using stationary phase approximation we obtain



II
# x, t 

Ex0t,x, lIIx0t,xlx0t,xexp i

St,x,x0t,x  O 

 Ex, lIIxlxexp i

mtU0 − E  O 

Ex, llxO1exp i

mtU0 − E  O.

3.26

Therefore from Eq.(3.26) we obtain

|II
# x, t|2  E2x, llxO1  O.

3.27

Remark 3.7. Note that for each instant t  0 :

suppII
# x, t ∩ suppI

#x, t  .

Remark 3.8. Note that. From Eq.(3.11),Eq.(3.13), Eq.(3.19), Eq.(3.22)-Eq.(3.27) and
Eq.(A.13) by Remark 3.7 we obtain

n〈t |
x |t n  |c1 |2〈s1t|

x |s1t  |c2 |2〈s2t|
x |s2t 

c1c2
∗〈s2t|

x |s1t  c1
∗c2〈s2t|

x |s1t∗ 

|c1 |2〈s1t|
x |s1t  |c2 |2〈s2t|

x |s2t  |c1 |2l  |c2 |2L.

3.28

Consideration of the Schrödinger’s cat paradox using canonical
interpretation of the wave function and canonical von Neuman measurement
postulate.

Proposition 3.2. (i) Suppose that a nucleus n is in the superposition state |t n
(|t n-particle) given by Eq.(3.19). Then the collapse: live cat → death cat arises at
instant

Tcol ≈ L  l
|c2 |2 82E/m

. 3.29

with a probability PTcol death cat to observe a state death cat at instant Tcol is
PTcol death cat  |c2 |2.

(ii) Assume now that a Schrödinger’s cat has performed the single measurement of
|t n-particle position with accuracy of x  l at instant T  Tcol (given by Eq.(3.29)) by



internal monitor (see Pic.1.1) and the result x ≈ L  l is not observed by Schrödinger’s cat.
Then the collapse: live cat → death cat never arises at any instant T  Tcol and a
probability PTTcol death cat to observe a state death cat at instant T  Tcol is
PTTcol death cat  0.

Proof. (i) Note that for t  0 the marginal density matrix t is diagonal

t 
|c1 |2 |II

# x, t|2dx 0

0 |c2 |2 |I
#x, t|2dx

In this case a Schrödinger’s cat in fact perform the single measurement of |t n-particle
position with accuracy of x  l at instant t  Tcol (given by Eq.(3.29)) by internal monitor
(see Pic.1.1). The probability of getting a result L at instant T ≈ Tcol with accuracy of x  l

given by


|L−x|≤l/2

|〈x|T n |2dx  
|L−x|≤l/2

|〈x|c1|s1T  〈x|c2|s2T|2dx 


|L−x|≤l/2

|c1〈x|s1T  c2〈x|s2T|2dx 


|L−x|≤l/2

|c1
2II

#2x,T  c2
2I

#2x,T  2c1c2I
#x,TII

# x,T|dx.

3.30

From Eq.(3.30) by Remark 3.7 and Eq.(3.13) one obtains


|L−x|≤l/2

|〈x|T n |2dx  
|L−x|≤l/2

|c2
2I

#2x,T|dx  |c2 |2 
|L−x|≤l/2

|I
#x,T|2dx  |c2 |2. 3.31

Note that. When Schrödinger’s cat has permormed this measurement and the result x ≈ L  l is
observed, then the immediate post measurement state of -particle (by conventional von
Neumann measurement postulate P.3.5) is

̆Tcol n



|L−x|≤l/2
|x〈x|Tcol ndx


|L−x|≤l/2

|〈x|Tcol n |2dx



|L−x|≤l/2

|x〈x|c1|s1Tcol  c2|s2Tcoldx


|L−x|≤l/2

|〈x|Tcol n |2dx


c1 
|L−x|≤l/2

|x〈x|s1Tcol  c2 
|L−x|≤l/2

|x〈x|s2Tcoldx


|L−x|≤l/2

|〈x|Tcol n |2dx
∈ SΘ,Θ  x|L − x ≤ l/2.

3.32

From Eq.(3.32) by Eq.(3.31) and by Remark 3.7 one obtains



|Tcol n 


|L−x|≤l/2
|x〈x|Tcolndx


|L−x|≤l/2

|〈x|Tcoln |2dx



|L−x|≤l/2
|x〈x|c1|s1Tcol  c2|s2Tcoldx


|L−x|≤l/2

|〈x|Tcoln |2dx


 c2

|c2 |


|L−x|≤l/2
|x〈x|s2Tcoldx.

Obviously by Remark 3.4 the state ̆Tcol n
kills Schrödinger’s cat with a probability

PTcol death cat  1.
(ii) The probability of getting a result L at any instant T  Tcol with accuracy of x  l by

Eq.(3.31) and Eq.(3.13) given by formula


|L−x|≤l/2

|〈x|Tcol n |2dx  
|L−x|≤l/2

|c2
2I

#2x,T|dx  |c2 |2 
|L−x|≤l/2

|I
#x,T|2dx 

≃ rc
2−1/2 

|L−x|≤l/2
dx1 x  T 8E/m , l exp −

x  T 8E/m
2

rc
2 ≃ 0.

Thus standard formalism of continuous quantum measurements
cite: BassiLochanSatinSinghUlbricht13, JacobsSteck06, Mensky93, Mensky00 [2, 3, 4, 5]

leads to a definite but unpredictable measurement outcomes, either |s1t or |s2t and thus
|t n “collapses” at unpredictable instant t ′ into the states |sit ′, i  1,2.

5mm . Resolution of the Schrödinger’s cat paradox using generalized von
Neumann postulate 2mm

Proposition 3.3. Suppose that a nucleus n is in the superposition state given by Eq.(3.19),
and therefore Schrödinger’s cat in each instant t  Tcol also is in the superposition state [6]:

Schrödinger’s cat  |c1 |2 live cat  |c2 |2 death cat

Then the collapse:

Schrödinger’s cat  |c1 |2 live cat  |c2 |2 death cat → death cat

arises at instant

Tcol  L
|c2 |2 82E/m

. 3.33

with a probability PTcol death cat to observe a state death cat at instant Tcol is

PTcol death cat  1.

Proof. Let us consider now a state |t n given by Eq.(3.19). This state consists of a
superposition of two wave packets II

# x, t and I
#x, t. Wave packet c1II

# x, t present an
II-particle which lives in region II with a probability |c1 |2 (see Рiс.2.1). Wave packet I

#x, t
present an I-particle which lives in region I with a probability |c2 |2 (see Рiс.2.1) and moves



from the right to the left. Note that I ∩ II  . From Eq.(3.13) follows that I-particle at each
instant t ≥ 0 moves quasiclassically from right to left by the law

xt  −|c2 |2t 8E/m , 3.34

From Eq.(3.34) one obtains

T  Tcol ≃ L
|c2 |2 82E/m

. 3.35

Note that. In this case Schrödinger’s cat in fact permorm a single measurement of
|t n-particle position with accuracy of x  l at instant t  T  Tcol (given by Eq.(3.35)) by
internal monitor (see Pic.1.1). The probability of getting the result L at instant t  Tcol with

accuracy of x  l by Remark 3.7 and by postulate P.4.2 (see subsection 4) (for complete
explanation and motivation see cite: FoukzonPotapovMen'kovaPodosenov16 [15]) given by


|L−x|≤l/2

|〈x|s1,c1Tcol|2 ∗ |〈x|s2,c2Tcol|2 dx 


|L−x|≤l/2

|I,c1
# x,Tcol|

2 ∗ |II,c2
# x,Tcol|

2 dx


|L−x|≤l/2

|c2 |−2|c1 |−2 |I
#x|c2 |−2,Tcol|

2 ∗ |II
# x|c1 |−2,Tcol|

2 dx  1.

3.36

Note that. When Schrödinger’s cat has permormed this measurement and the result x ≈ L  l is

observed, then the immediate post measurement state ̆Tcol n
of |t n–particle (by

generalized von Neumann postulate P.5.3,see section 4 Eq.(4.41) is

̆Tcol n
≃


|L−x|≤l/2

|x〈x|Tcol ndx


|L−x|≤l/2

|〈x|s1,c1Tcol|2 ∗ |〈x|s2,c2Tcol|2 dx
≃


|L−x|≤l/2

|x〈x|s2,c2Tcoldx


|L−x|≤l/2

|〈x|s2,c2Tcol|2 dx
.

3.37

The state ̆Tcol n
again kills Schrödinger’s cat with a probability PTcol death cat  1.

Thus is the collapsed state of the cat always shows definite and predictable outcomes
even if cat also consists of a superposition:

cat  c1 live cat  c2 death cat .
Contrary to van Kampen’s cite: van Kampen88[16] and some others’ opinions, “looking” at

the outcome changes nothing, beyond informing the observer of what has already happened.
We remain: there are widespread claims that Schrödinger’s cat is not in a definite alive or

dead state but is, instead, in a superposition of the two. van Kampen, for example, writes “The
whole system is in a superposition of two states: one in which no decay has occurred and one
in which it has occurred. Hence, the state of the cat also consists of a superposition:
cat  c1 live cat  c2 death cat . The state remains a superposition until an observer looks



at the cat” cite: van Kampen88[16].

4.Generalized Postulates for Continuous Valued Observables.

P.1.Suppose we have an n-dimensional quantum system Qs with continuous observables.
Then we claim the following:
P.1.1.Any given n-dimensional quantum system is identified by a tuple Qs

Qs  〈H,ℑ,,ℒ2,1,G, |t  4.1

where:
(i) H that is some infinite-dimensional non projective complex Hilbert space,
(ii) ℑ  ,ℱ,P that is complete probability space,
(iii)   n, that is measurable space ,
(iv) ℒ2,1 that is complete space of random variables X :  → n such that



‖X‖dP  , 


‖X‖2dP  , 4.2

(v) G : Δ∗H  H → ℒ2,1 that is one to one correspondence such that the following
conditions are satisfied

1 | ∈ H  〈|Q|  


G Q; |  dP  E G Q; |  ,

2 | ∈ S  G

1; |   1,

3 | ∈ S  G Q; |   G

1;Q|  ,

4 | ∈ S, z ∈ ℂ  G Q; z|   |z|2 G Q; | 

4.3

for any Hermitian operator Q : H → H,Q ∈ Δ∗H  C∗H,where C∗H that is C∗

algebra of the Hermitian adjoint operators in the position representation in H and Δ∗H
that is an commutative subalgebra of C∗H,
(vi) |t  is an continuous vector function |t  :  → H which representedthe evolution of
the quantum system Qs.
Remark 4.1.(i) The classical pure states correspond to vectors v ∈ H of norm ‖v‖≡1. Thus

the set of all classical pure states corresponds to the unit sphere S ⊂ H in a Hilbert space H.
(ii)We remind that the projective Hilbert space PH of a complex Hilbert space H is the set

of equivalence classes v of vectors v in H, with v ≠ 0, for the equivalence relation given by
v Pw  v w for some non-zero complex number  ∈ ℂ.The equivalence classes for the
relation P are also called rays or projective rays.

(iii) The physical significance of the projective Hilbert space PH is that in canonical
quantum theory, the states | and | represent the same physical state of the quantum
system, for any  ≠ 0. It is conventional to choose a state | from the ray | so that it has
unit norm 〈|  1.

(iv) In contrast with canonical quantum theory we have used instead P, contrary to P

equivalence relation 
Q

, in a Hilbert space H, see Definition 2.3.

P.1.2. We extend now the set of all classical pure states CLPSH  S, corresponding to



the unit sphere S ⊂ H in a Hilbert space H from the set S to the set

W  
z∈ℂ
z  S ⊃ S. 4.4

The set of all non classical pure states NCLPSH is

NCLPSH  W \S. 4.5

P.1.3. For any |1 , |2  ∈ H and for any Hermitian operator Q : H → H such that

1 Q 2  2 Q 1  0, 4.6

the following conditions are satisfied

G Q; |1   |2    G Q; |1    G Q; |2  . 4.7

P.1.4. Suppose that the evolution of the quantum system is represented by continuous
vector function |t  :  → H.
Then we claim the following:
(i) any process of continuous measurements on measuring continuous valued observable

Q ∈ Δ∗H for the system Qs in state |t  can be represented by an continuous n-valued
stochastic processes

Xt  Xt ;Q  Xt ;Q; |t   G Q; |t    G

1;Q|t   , 4.8

given on probability space ℑ  ,ℱ,P and a measurable space   n,;
(ii) any continuous valued observable Q ∈ ℑ∗H for the system Qs in state | ∈ W is
equivalent to continuous random variable X :  → n

X  X ;Q  G Q; |   G

1;Q|  , 4.9

given on probability space ℑ  ,ℱ,P and a measurable space   n,;
We assume now for a short but without loss of generality that n  1.
Remark 4.2.Let X be a random variable X ∈ ℒ2,1

X  X ;Q  G Q; |   G

1;Q|  , 4.10

given on probability space ,ℱ,P and a measurable space , and | ∈ W.
Then we denote such random variable by X

Q|
.The probability density of the random

variable X
Q|

 we denote by p
Q|

q,q ∈ .

Remark 4.3.Let X1 be a random variable X1 ∈ ℒ2,1

X1  X1 ;Q  G Q; |1    G

1;Q|1  , 4.11

given on probability space ,ℱ,P and a measurable space , and |1   z| ∈ W,
where | ∈ S.Then from Eq.(2.10) and postulate P.1.1 (v) follows that

X1  |z|2X. 4.12

Remark 4.4.The probability density of the random variables X
Q|1 

  X1 and

X
Q|

  X we denote by p1q  p
Q|1 

q and by pq  p
Q|

q correspondingly.

From Eq.(2.12) by change of variables we obtain



p1q  |z|−2p1|z|−2q. 4.13

Remark 4.5.(1) Let |1 , |2  ∈ S and let Q be Hermitian operator Q : H → H such that

1 Q 2  2 Q 1  0, 4.14

and let |12  be the vector |12   z1|1   z2|2 , z1, z2 ∈ ℂ.Then from postulate P.1.1 (v)
and from postulate P.1.3 follows that

〈12 |Q|12   |z1 |2 1 Q 1  |z2 |2 2 Q 2 




G Q; z1|1   dP  


G Q; z2|2   dP 

|z1 |2 


G Q; |1   dP |z2 |2 


G Q; |2   dP 

|z1 |2 


X
Q|1 

dP |z2 |2 


X
Q|2 

dP

|z1 |2 


X1dP |z2 |2 


X2dP,

|z1 |2 
−



p1qqdq  |z2 |2 
−



p2qqdq 


−



|z1 |2p1q  |z2 |2p2qqdq 

 
−



p1
#q  p2

#qqdq,

p1
#q  |z1 |−2p1|z1 |−2q,p2

#q  |z2 |−2p2|z2 |−2q,

4.15

where X1  X
Q|1 

 and X2  X
Q|2 

 and p1q and p2q are probability

density
of the random variables X1 and X2 correspondingly.
(2) Assume that random variables X1 and X2 are independent. Then from Eq.(2.15)

we obtain

〈12 |Q|12   |z1 |2 1 Q 1  |z2 |2 2 Q 2 


−



p1
#q  p2

#qqdq 


−




−



p1
#q − q1p2

#q1qdq1dq  
−



p1
#q ∗ p2

#qqdq,

p1
#q  |z1 |−2p1|z1 |−2q,p2

#q  |z2 |−2p2|z2 |−2q.

4.16

P.2. Suppose we have an observable Qℱ of a quantum system that is found through an
exhaustive series of measurements, to have a set ℱ of values q ∈ ℱ such that



ℱ  i1
m Θi  i1

m 1
i ,2

i ,m ≥ 1, 1
i ,2

i  ∩ 1
j ,2

j  , i ≠ j.

Note that in practice any observable Qℱ is measured to an accuracy q determined by the
measuring device. We represent now by |q the idealized state of the system in the limit
q → 0, for which the observable definitely has the value q.

Then we claim the following:
P.2.1. The states |q : q ∈ ℱ form a complete set of -function normalized basis states for

the state space Hℱ ⊃ Sℱ
 of the system.

That the states |q : q ∈ ℱ form a complete set of basis states means that any state
|ℱ ∈ Sℱ

 of the system can be expressed as:

|ℱ  
ℱ

cℱq|qdq, 4.17

where suppcℱq ⊆ ℱ and while -function normalized means that 〈q|q′   q − q′
from which follows

cℱq  〈q|ℱ  q;ℱ 4.18

so that |ℱ  
ℱ

|q〈q|ℱdq.The completeness condition can then be written as


ℱ

|q〈q|dq 

1Hℱ .

P.2.2.For the system in the state |ℱ ∈ Sℱ
 , the probability Pq,q  dq; |ℱ of

obtaining the result q ∈ ℱ lying in the range q,q  dq ⊂ ℱ on measuring observable Q is
given by

Pq,q  dq; |ℱ  p
Qℱ

qdq 4.19

for any |ℱ ∈ Hℱ, and where p
Qℱ

is a probability density of the random variable given

by formula

G Q; |ℱ   G

1;Q|ℱ  4.20

Remark 4.6. Note that in general case

p
Qℱ

q ≠ |cℱq|
2. 4.21

It will be shown later.

P.2.3.The observable Qℱ is represented by a Hermitian operator Qℱ : Hℱ→ Hℱ whose

eigenvalues are the possible results q : q ∈ ℱ, of a measurement of Qℱ, and the associated

eigenstates are the states |q : q ∈ ℱ, i.e. Qℱ|q  q|q,q ∈ ℱ.

Remark 4.7. Note that the spectral decomposition of the operator Qℱ is then

Qℱ  
ℱ

q|q〈q|dq. 4.22

Definition 4.1. A connected set in  is a set X ⊂  that cannot be partitioned into two
nonempty subsets which are open in the relative topology induced on the set. Equivalently, it is
a set which cannot be partitioned into two nonempty subsets such that each subset has no
points in common with the set closure of the other.

Definition 4.2.Well localized pure states |Θ with a support Θ  1,2 corresponds to
vectors in SΘ

 or to vectors in WΘ
 ⊃ SΘ

 and such that a set: suppcΘq  Θ is a



connected set in  Thus the set of all well localized pure states WΘ
 ⊃ SΘ

 with a support Θ lies
in the Hilbert space HΘ  H.

P.3.Suppose we have an observable QΘ of a system that is found through an exhaustive
series of measurements, to have a continuous range of values q : 1  q  2.
Then we claim the following:
P.3.1.For the system in well localized pure statestate |Θ such that:
(i) |Θ ∈ SΘ

 and
(ii) suppcΘq  q|cΘq ≠ 0 is a connected set in , then the probability
Pq,q  dq; |Θ of obtaining the result q lying in the range q,q  dq ⊂ Θ on

measuring
observable QΘ is given by

Pq,q  dq; |Θ  |〈q|Θ|2dq  |cΘq|
2dq. 4.23

P.3.2.

p
QΘΘ

qdq  |〈q|Θ|2dq  |cΘq|
2dq. 4.24

P.3.3.Let |1Θ1  ∈ SΘ1
 and |2Θ2  ∈ SΘ2

 be well localized pure states with
Θ1  1

1,2
1, and Θ2  1

2,2
2 correspondingly. Let

X1  X
QΘ1

1Θ1 
 and X2  X

QΘ2
2Θ2 



correspondingly. Assume that:
(i) Θ1 ∩ Θ2   (here the closure of Θi, i  1,2 is denoted by Θi, i  1,2),

(ii) the result a measurement of QΘ1
at instant t in any point A ∈ Θ1 does not perfectly

predict the result a measurement of QΘ2
at instant t in any point B ∈ Θ2,i.e.states is not

entangled.

Remark 4.8.Notice that on performing a measurement of QΘ1
in point A ∈ Θ1 and

performing a measurement of QΘ2
in point B ∈ Θ2 simultaneously, i.e. in spacelike

configurations (see Pic.2.1) due to measurements made on system in point A, without the
slightest possibility of system in point B being physically disturbed. Therefore by postulate
P.1.4(ii) random variables X1 and X2 are independent.



Pic.2.1.Spacetime diagrams for spacelike

(i) c2t2 − q2  0 and timelike (ii) c2t2 − q2  0

configurations. A ∈ Θ1 and B ∈ Θ2

represent the locations of the detectors.

DAand DB represent the detection events.

P.3.4. If the system is in well localized pure state |Θ ∈ SΘ
 the state |Θ described

by a wave function q;Θ  〈q|Θ  q;Θ and the value of observable QΘ is
measured once each on many identically prepared system, the average value of all the
measurements will be

〈QΘ  


Θ

q|q;Θ|2dq


Θ

|q;Θ|2dq
.

4.25

The completeness condition can then be written as 
Θ

|q〈q|dq 

1HΘ . Completeness means

that for any state |Θ ∈ SΘ
 it must be the case that 

Θ
|〈q|Θ|2dq ≠ 0, i.e. there must be a

non-zero probability to get some result on measuring observable QΘ.
P.3.5.(von Neumann measurement postulate) Assume that
(i) |Θ ∈ SΘ

 and (ii) suppcq  Θ is a connected set in . Assume that the particle
is initially in the state |Θ. If on performing a measurement of QΘ with an accuracy q, the
result q ∈ Θ is obtained in the range q − 1

2 q,q  1
2 q ⊂ Θ, then the system will end up in

the state



Pq,q|Θ

〈|Pq,q|Θ



q−q′ ≤q/2
|q′ 〈q′ |Θdq′


q−q′ ≤q/2

|〈q′ |Θ|2dq′
. 4.26

where the term in the denominator is there to guarantee that the state after the measurement is
normalized to unity.

P.4. Let Qs be the system in an non classical pure state |aΘ  a|Θ ∈ WΘ
  HΘ,

where:
(i) |Θ ∈ SΘ

, |a| ≠ 1,Θ  1,2,
(ii) suppcΘq is a connected set in  and
(iii) |Θ  

Θ
cΘq|qdq  

1

2 cΘq|qdq.

Then we claim the following:
P.4.1.

G QΘ, |aΘ  |a|2G QΘ, |Θ . 4.27

P.4.2.The system in non classical state |aΘ  a|Θ ∈ WΘ
 described by a wave

function

aq;Θ  a−1 q
|a|2

Θ , 4.28

and the value of observable QΘ is measured once each on many identically prepared
system, the average value of all the measurements will be

〈QΘ   |a|2 
Θ

q|cΘq|
2dq  |a|−2 

|a|2Θ

q′ cΘ
q′

|a|2

2

dq′ 

 
|a|21

|a|22

q′|aq′;Θ|2dq′.

4.29

The probability Pq,q  dq; |aΘdq of obtaining the result q lying in the range
q,q  dq ⊂ Θ on measuring QΘ is

Pq,q  dq; |aΘ  |a|−2|cΘq|a|−2|
2dq  |aq;Θ|2dq

4.30

Remark 2.9.Notice that Eq.(2.28) follows from Eq.(2.13),Eq.(2.22) and Eq.(2.25).
Definition 4.3.Let |aΘ be a state |aΘ  a|Θ ∈ WΘ

, where |Θ ∈ SΘ
,

a ∈ ℂ, |a| ≠ 1 and |Θ  
1

2 cΘq|qdq.Let |a  be an state such that

|aΘ ∈ SΘ
. States |aΘ and |aΘ is a QΘ-equivalent: |aΘ 

QΘ
|aΘ iff



Pq,q  dq; |aΘ  |a|−2|cq|a|−2|
2dq 

Pq,q  dq; |aΘ.
4.31

It is clear that

|aΘ 
QΘ

|aΘ  
|a|21

|a|22

aq;Θ|qdq. 4.32

We set now |aΘ 
QΘ

|1
bΘ iff |aΘ 

QΘ
|aΘ and |aΘ 

QΘ
|1

bΘ, i.e.

|aΘ 
QΘ

|1
bΘ  |a|−2|cq|a|−2|

2  |b|−2 c1q|b|−2 2

Remark 4.10.(i) Notice that the equivalence relation 
QΘ

devided a set WΘ
 by classes

|aΘ
QΘ
 |Θ ∈ WΘ

 ||Θ 
QΘ

|aΘ . 4.33

(ii)The physical significance of the factor set WΘ
 /

Q
is that the non classical pure states

|aΘ and |1
bΘ represent the same physical state of the quantum system,described by a

wave function given by Eq.(2.28) and therefore such states equivalent an classical pure state
|aΘ ∈ SΘ

.
P.4.3. (Generalized von Neumann measurement postulate I) Assume that the particle is

initially in the state |aΘ ∈ WΘ
 If on performing a measurement of observable QΘ with an

accuracy q, and the result q ∈ |a|2Θ is obtained in the range q − 1
2 q,q  1

2 q ⊂ |a|2Θ,
then the system immediately after measurement will end up in the state

Pq,q|aΘ

〈|Pq,q|aΘ



q−q′ ≤q/2
|q′ 〈q′ |aΘdq′


q−q′ ≤q/2

|〈q′ |aΘ|
2dq′

. 4.34

P.5. Let |a1,a2Θ1,Θ2   |1
a1Θ1   |2

a2Θ2  ∈ W1,2
  WΘ1

 ⊕WΘ2
 , where

(i) |i
aiΘi  

ai|iΘi  ∈ WΘi
 , |i   |iΘi  ∈ SΘi

 ,Θi  1
i ,2

i ,ai ∈ ℂ,ai ≠ 0, i  1,2;
(ii) suppciΘi q, i  1,2 is a connected sets in ;
(iii) Θ1a1 ∩ Θ2a2  , where

Θ1a1  |a1 |2  suppc1Θ1 q ,Θ1a1  |a1 |2  suppc1Θ1 q 4.35

and

(iv) |iΘi   
1

i

2
i

ciΘi q|qdq, i  1,2.

Then we claim the following:
P.5.1. The system in a state |a1,a2Θ1,Θ2  described by a wave function

a1,a2q;Θ1,Θ2  1
a1q;Θ1  2

a2q;Θ2, 4.36

where



1
a1q;Θ1  a1

∗−1 q
|a1 |2

1Θ1  ,

2
a2q;Θ2  a2

∗−1 q
|a2 |2

2Θ2  ,

4.37

and the value of observable Q is measured once each on many identically prepared
system, the average value of all the measurements will be

〈Q  |a1 |2 
Θ1

|c1Θ1 q|
2qdq  |a2 |2 

Θ1

|c2Θ2 q|
2qdq 


|a1 |2Θ1

|1
aq;Θ1|2qdq  

|a2 |2Θ2

|2
aq;Θ2|2qdq 


Θ1Θ2

q|a1,a2q;Θ1,Θ2|2dq

4.38

P.5.2. The probability of getting the result q ∈ Θ1,2  Θ1a1  Θ2a2 with an accuracy q
such that q − 1

2 q,q  1
2 q ⊂ supp |1

a1q′;Θ1|
2 ∗ 2

a2q′;Θ2  Θ1,2 
Θ1a1  Θ2a2, given by formula


q−q′ ≤q/2

|1
a1q′;Θ1|

2 ∗ |2
a2q′;Θ2|

2 dq′.


q−q′ ≤q/2

|〈q′ |1,a1Θ1|
2 ∗ |〈q′ |2

a2Θ2|
2 dq′.

4.39

where 1
a1q′;Θ1 and 2

a2q′;Θ2 given by Eq.(2.37) and

|1,a1Θ1  
|a|21

1

|a|22
1

1
a1q′;Θ1|q′ dq′,

|2,a2Θ2  
|a|21

2

|a|22
2

2
a2q′;Θ2|q′ dq′.

4.40

P.5.3. (Generalized von Neumann measurement postulate II)Assume that the system is

initially in state |a1,a2Θ1,Θ2 . If on performing a measurement of Q with an accuracy q,
the result q  q1  q2 ∈ Θ1,2  Θ1a1  Θ2a2, where q1 ∈ Θ1a1,q2 ∈ Θ2a2 is
obtained in the range q − 1

2 q,q  1
2 q ⊂ Θ1,2, then the state of the system immediately

after measurement given by



Pq,q|a1,a2Θ1,Θ2 

〈|Pq,q|



q1−q′ ≤q/2

|q′ 〈q′ |1,a1Θ1 dq′  
q2−q′ ≤q/2

|q′ 〈q′ |2,a2Θ2 dq′


q−q′ ≤q/2

|〈q′ |1,a1Θ1 |
2 ∗ |〈q′ |2,a2Θ2 |

2 dq′
.

4.41

Definition 4.4.A measure algebra ℱ  B,P with a probability measure P, is a
Boolean algebra B with a countably additive probability measure.
Definition 4.5.(i) A measure algebra of physical events ℱph  Bph,P with a
probability measure P, is an Boolean algebra of physical events Bph with an countably
additive probability measure. We assume that such physical events corresponds to

performing a measurements of Q with an accuracy q, and Q ∈ Δ∗H.
(ii) A Boolean algebra of physical events Bph can be formally defined as a set Bph of
elements a,b, . . . with the following properties:
1. Bph has two binary operations, ∧ (logical AND, or "wedge") and ∨ (logical OR, or "vee"),
which satisfy:
the idempotent laws:
(1) a ∧ a  a ∨ a  a,
the commutative laws:
(2) a ∧ b  b ∧ a,
(3) a ∨ b  b ∨ a,
and the associative laws:
(4) a ∧ b ∧ c  a ∧ b ∧ c,
(5) a ∨ b ∨ c  a ∨ b ∨ c.
2. The operations satisfy the absorption law:
(6) a ∧ a ∨ b  a ∨ a ∧ b  a.
3. The operations are mutually distributive
(7) a ∧ b ∨ c  a ∧ b ∨ a ∧ c,
(8) a ∨ b ∧ c  a ∨ b ∧ a ∨ c.
4. Bph contains universal bounds 0 and 1 which satisfy
(9) 0 ∧ a  0,
(10) 0 ∨ a  a,
(11) 1 ∧ a  a,
(12) 1 ∨ a  1.
5. Bph has a unary operation a (or a′) of complementation (logical negation), which
obeys the laws:
(13) a ∧ a  0,
(14) a ∨ a  1.
All properties of negation including the laws below follow from the above two laws alone.



6. Double negation law: a  a.
7.De Morgan’s laws: (i) a ∧ b  a ∨ b, (ii) a ∨ b  a ∧ b.
8.Operations composed from the basic operations include the following importent
examples:
The first operation, a → b (logical material implication):
(i) a → b  a ∨ b.
The second operation, a ⊕ b, is called exclusive. It excludes the possibility of both a and b
The third operation, the complement of exclusive or, is equivalence or Boolean equality:

(iii) a ≡ b  a ⊕ b
9. Bph has a unary predicate Occa, which meant that event a has occurred, and which
obeys the laws:
(i) Occa ∧ b  Occa ∧ Occb,
(ii) Occa ∨ b  Occa ∨ Occb,
(iii) Occa  Occa.
Definition 4.6.(i) Let B be a Boolean algebra of physical events. A Boolean algebra BM4

ph

of physical events in Minkowski spacetime M4  1,3 that is cartesian product
BM4  BphM4.
(ii) Let BM4

ph be a Boolean algebra of physical events in Minkowski spacetime. A measure
algebra of physical events ℱM4

ph  BM4

ph ,P in Minkowski spacetime that is a Boolean

algebra BM4

ph with a probability measure P.
(iii) Let BM4 be Boolean algebra of the all physical events in Minkowski spacetime and let
ℱM4

ph be an measure algebra ℱM4

ph  BM4

ph ,P with a probability measure P.We denote
such physical events by Ax,Bx, . . . etc.,where x  t,x1,x2,x3 ∈ M4 or A,B, . . . etc.
(iv) We will be write for a short AOcx,BOcx, . . . etc., instead
OccAx,OccBx, . . . etc.
Definition 4.7. Let AutP BM4

ph be a set of the all measure-preserving automorphism of

BM4

ph .This is a group,being a subgroup of the group Aut BM4

ph of all Boolean

automorphism of BM4

ph .Let P ↑


be Poincaré group.We assume that any element Θ 

,a ∈ P ↑


induced an corresponding element Θ ∈ AutP BM4

ph by formula ΘAx 
Ax  a ∈ BM4

ph .
Definition 4.8.Events A1,A2, . . . ,An ∈ ℱM4

ph  BM4

ph ,P are said to be exactly mutually
exclusive if the occurrence of any one of them implies the non-occurrence of the remaining
n − 1 events. Therefore, two mutually exclusive events cannot both occur. Formally said, the
conjunction of each two of them is 0 (the null event): A ∧ B  0. In consequence, exactly
mutually exclusive events A and B have the property:

PA ∧ B  0. 4.42

Then we claim the following:

P.6. There exist isomorphism  : ℱM4

ph  ℑ  M4  ,,P  M4,where ℑ is a

probability measure algebra ℑ  ,,P corresponding to quantum system Qs by postulate
P.1 such that for any event Ax ∈ ℱM4

ph ,x  t,x1,x2,x3 ∈ M4



Ax  Ax,

PAx  PAx  PAx.
4.43

Definition 4.9.Let Ax1  At1,r1 and Bx2  Bt2,r2 be an events Ax1 ∈ ℱM4
#

which occurs at instant t1 and Bx2 ∈ ℱM4
# at instant t2 correspondingly.

Let x1,2 be a vector: x1,2  ct1 − t2,r1 − r2  ct1,2,r1,2, t1,2  t1 − t2,r1,2  r1 − r2.
Vectors x1,2  ct1,2,r1,2 are classified according to the sign of c2t1,2

2 − r1,2
2 . A vector x1,2 is

(i) timelike if c2t1,2
2  r1,2

2 , (ii) spacelike if c2t1,2
2  r1,2

2 , and null or lightlike if (iii) c2t1,2
2 

r1,2
2 .

Pairs of events At1,r1,Bt2,r2 ∈ ℱM4
# ℱM4

# are classified according to the sign of
c2t1,2

2 − r1,2
2 :

(i) a pair At1,r1,Bt2,r2 is timelike separated if c2t1,2
2  r1,2

2 ,
and we denoted such pairs by At1,r1,Bt2,r2t.l.s.
(ii) a pair At1,r1,Bt2,r2 is spacelike separated if c2t1,2

2  r1,2
2 ,

and we denoted such pairs by At1,r1,Bt2,r2s.l.s.
(iii) a pair At1,r1,Bt2,r2 is null or lightlike separated if c2t1,2

2  r1,2
2 .

and we denoted such pairs by At1,r1,Bt2,r2l.l.s.
Definition 4.10. Let At1  Ax1  At1,xA and Bt2  Bx2  Bt2,xB be a symbols
such that At1 and Bt2 represent there is detection events Ax1 ∈ ℱM4

# at instant t1 and
Bx2 ∈ ℱM4

# at instant t2 correspondingly, where symbols xA and xB represent the
locations of the detectors A and B correspondingly (see Рiс.4.2).
Einstein’s 1927 gedanken experiment revisited
During the famous 5-th Solvay conference in 1927, Einstein considered a single particle

which, after diffraction in a pin-hole encounters a “detection plate” (e.g. in the case of photons,
a photographic plate). We simplify this thought experiment, though keeping the essence, by
replacing the “detection plate” by two detectors. Einstein noted that there is no question, that
only one of them can detect the particle, otherwise energy would not be conserved. However,
he was deeply concerned about the situation in which the two detectors are space-like
separated, as this prevents - according to relativity - any possible coordination among the
detectors: “It seems to me,” Einstein continued, “that this difficulty cannot be overcome unless
the description of the process in terms of the Schrӧdinger wave is supplemented by some
detailed specification of the localization of the particle during its propagation. I think M. de
Broglie is right in searching in this direction.”



Рiс.4.2.

A and B are points on the photographic plate, for which the events of detection can be
spacelike separated from each other.

Let |x be a state vector of the particle immediately after diffraction. From postulates
P.1.1 follows that there exist unique random variable X given on a probability space
ℑ  ,ℱ,P and a measurable space n, by formula

X  X |xx  Gx; |x. 4.44

Рiс.4.3.The plot of the random variable

X  X xph .

At  A
pht,xA,Bt  B

pht,xB,At ∩ Bt  .

Now we go to explain Einstein’s 1927 gedanken experiment. Let Apht,xA and Bpht,xA be

events such that detectors A and B detect photon at an instant t correspondingly. By properties
(4.31) we obtain



P A
pht,xA  PAph t,xA  PApht,xA,

P B
pht,xB  PBph t,xB  PBpht,xB.

4.45

Note that by definition of random variable we obtain

At  A
pht,xA  |xA −  ≤ X |xx ≤ xA − ,

Bt  B
pht,xB  |xB −  ≤ X |xx ≤ xB − ,

 ∈ 0,,  1,

4.46

(see Рiс.4.3), where a small parameter   |xA − xB | dependent on measuring device. Thus
we obtain

A
pht,xA ∩ B

pht,xB   4.47

and therefore

P A
pht,xA ∩ B

pht,xB  0. 4.48

6mm . Conclusion 3mm

A new quantum mechanical formalism based on the probability representation of quantum
states is proposed cite: FoukzonPotapovMen'kovaPodosenov16[15]. This paper in particular
deals with the special case of the measurement problem, known as Schrödinger’s cat paradox.
We pointed out that Schrödinger’s cat demands to reconcile Born’s rule. Using new quantum
mechanical formalism we find the collapsed state of the Schrödinger’s cat always shows
definite and predictable outcomes even if cat also consists of a superposition (see
cite: FoukzonPotapovMen'kovaPodosenov16 [15], cite: FoukzonPotapovPodosenov14[17],
cite: FoukzonPotapovPodosenov15[18])

cat  c1 live cat  c2 death cat

|c1 |2  |c2 |2  1.

Using new quantum mechanical formalism the EPRB-paradox is considered successfully. We
find that the EPRB-paradox can be resolved by nonprincipal and convenient relaxing of the



Einstein’s locality principle.

6mm . Appendix 3mm

5mm . Appendix A ref: lem:conv_K-M_ESS 2mm

The time-dependent Schrodinger equation governs the time evolution of a quantum
mechanical system:

i
∂x, t
∂t

 Hx, t.
A. 1

The average, or expectation, value 〈xi  of an observable xi corresponding to a quantum
mechanical operator x i is given by:

〈xi t,x0, t0; 


d

xi|x, t,x0, t0;|2ddx


d

|x, t,x0, t0;|2ddx
.

i  1, . . . ,d.

A. 2

Remark A.1. We assume now that: the solution x, t,x0, t0; of the time-dependent

Schrödinger equation (A.1) has a good approximation by a delta function such that

|x, t,x0, t0;|2 ≃ 
i1

d

xi − xit,x0, t0,

xit,x0, t0  xi,0,

i  1, . . . ,d.

A. 3

Remark A.2. Note that under conditions given by Eq.(A.3) QM-system which governed by

Schrödinger equation Eq.(A.1) completely evolve quasiclassically i.e. estimating the position
xit,x0, t0;i1

d at each instant t with final error  gives
|〈xi t,x0, t0; − xit,x0, t0| ≤ , i  1, . . . ,d with a probability

P|〈xi t,x0, t0; − xit,x0, t0| ≤  ≃ 1.



Thus from Eq.(A.2) and Eq.(A.3) we obtain

〈xi t,x0, t0; ≃

≃


d

xi
i1

d1

xi − xit,x0, t0ddx


d


i1

d1

xi − xit,x0, t0ddx

 xit,x0, t0.

i  1, . . . ,d.

A. 4

Thus under condition given by Eq.(A.3) one obtains

〈xi,t t,x0, t0; ≃ xit,x0, t0,

i  1, . . . ,d.

A. 5

Remark A.3.Let ix, t,x0, t0, i  1,2 be the solutions of the time-dependent Schrödinger

equation (A.1). We assume now that x, t,x0,y0, t0 is a linear superposition such that

x, t,x0,y0, t0  c11x, t,x0, t0  c22x, t,y0, t0.

|c1 |2  |c2 |2  1.

A. 6

Then we obtain

|x, t,x0,y0, t0|
2  x, t,x0,y0, t0∗x, t,x0,y0, t0 

 c11x, t,x0, t0  c22x, t,y0, t0 

c1
∗1

∗x, t,x0, t0  c2
∗2

∗x, t,x0,y0, t0 

 |c1 |2 |1x, t,x0, t0|2  c1
∗c21

∗x, t,x02x, t,y0, t0 

|c2 |2 |2x, t,y0, t0|
2  c1c2

∗1x, t,x02
∗x, t,y0, t0.

A. 7



Definition A.1. Let 〈xt,x0,y0, t0 be a vector-function

〈xt,x0,y0, t0 : 0,T  d  d  0,T → d

〈xt,x0,y0, t0  〈x1 t,x0,y0, t0, . . . , 〈xd t,x0,y0, t0, A. 8

where

〈xi t,x0,y0, t0  
d

xi|x, t,x0,y0, t0|
2ddx 

 |c1 |2 
d

xi|1x, t,x0, t0|2ddx 

|c2 |2 
d

xi|2x, t,y0, t0|
2ddx 

c1
∗c2 

d

xi1
∗x, t,x0, t02x, t,y0, t0ddx 

c1c2
∗ 
d

xi1x, t,x0, t02
∗x, t,y0, t0ddx.

A. 9

Definition A.2. Let Δt,x0,y0, t0 be a vector-function

Δt,x0,y0, t0 : 0,T  d  d → d

Δt,x0,y0, t0  1t,x0,y0, t0, . . . ,dt,x0,y0, t0, A. 10

where



 it,x0,y0, t0  xit,x0,y0, t0 

 c1
∗c2 

d

xi1
∗x, t,x0, t02x, t,y0, t0ddx 

c1c2
∗ 
d

xi1x, t,x0, t02
∗x, t,y0, t0ddx.

A. 11

Substituting Eqs.(A.11) into Eqs.(A.9) gives

〈xi t,x0,y0, t0  
d

xi|x, t,x0,y0, t0|
2ddx 

 |c1 |2 
d

xi|1x, t,x0, t0|2ddx 

|c2 |2 
d

xi|2x, t,y0, t0|
2ddx   it,x0,y0, t0 

 |c1 |2〈xi t,x0, t0  |c2 |2〈xi t,y0, t0   it,x0,y0, t0.

A. 12

Substitution equations (A.5) into equations (A.12) gives



〈xi t,x0,y0, t0  
d

xi|x, t,x0,y0, t0|
2ddx 

 |c1 |2〈xi t,x0, t0  |c2 |2〈xi t,y0, t0   it,x0,y0, t0

≃ |c1 |2xit,x0, t0  |c2 |2xit,y0, t0   it,x0,y0, t0.

A. 13

5mm . Appendix B ref: thm:conv_lambda0mle 2mm

The Schrödinger equation (2.1) in region I  x|x  0 has the folloving form

2 ∂2Ix
∂x2  2mEIx  0. B. 1

From Schrödinger equation (B.1) it follows

2 
−

0
∂2Ix
∂x2 dx  2mE 

−

0

Ixdx  0. B. 2

Let I
#x be a function

I
#x  xIx, B. 3

where

x  rc
2−1/4 exp x2

2rc
2 B. 4

see Eq.(2.9). Note that



∂2xIx
∂x2  ∂

∂x
Ix

∂x
∂x

 x
∂Ix
∂x



2
∂Ix
∂x

∂x
∂x

 Ix
∂2x
∂x2  x

∂2Ix
∂x2 .

B. 5

Therefore substitution (B.2) into LHS of the Schrödinger equation (B.1) gives

2 
−

0
∂2I

#x
∂x2 dx  2mE 

−

0

I
#xdx 

2 
−

0
∂2xIx

∂x2 dx  2Em 
−

0

xIxdx 

22 
−

0
∂Ix
∂x

∂x
∂x

dx  2 
−

0

Ix
∂2x
∂x2 dx 

 
−

0

x 2 ∂2Ix
∂x2  2Em 

−

0

Ix dx.

B. 6

Note that


−

0

x 2 ∂2Ix
∂x2  2Em 

−

0

Ix dx  0. B. 7

Therefore from Eq.(B.6) and Eq.(2.3)-Eq.(2.4) one obtains



2 
−

0
∂2I

#x
∂x2 dx  2mE 

−

0

I
#xdx 

2 
−

0
∂2xIx

∂x2 dx  2Em 
−

0

xIxdx 

 22 
l


∂Ix
∂x

∂x
∂x

dx  2 
l



Ix
∂2x
∂x2 dx.

B. 8

From Eq.(B.6) one obtains

∂x
∂x

 rc
2−1/4 ∂

∂x
exp − x2

2rc
2  −rc

2−1/4rc
−2xexp − x2

2rc
2 ,

∂2x
∂x2  −rc

2−1/4rc
−2 exp − x2

2rc
2 

rc
2−1/4rc

−4x2 exp − x2

2rc
2 .

B. 9

From Eq.(B.9) and Eq.(2.3)-Eq.(2.4) one obtains



2 
−

0
∂Ix
∂x

∂x
∂x

dx 

− 2

rc
21/4rc

2

−

0
∂expikx
∂x

xexp − x2

2rc
2 dx 

− 2 2mE 
rc

21/4rc
2

−

0

xexp i
2 2mE


x exp − x2

2rc
2 dx,

k  2


2mE .

B. 10

and

2 
−

0

Ix
∂2x
∂x2 dx  − 2

rc
23/4rc

2

−

0

expikxexp − x2

2rc
2 dx 

 2

rc
21/4rc

2

−

0

x2 expikxexp − x2

2rc
2 dx.

B. 11
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