
Trillion by Trillion Matrix Inverse: Not actually that crazy

Alexander Fix

Cornell University

Misha Collins

GISHWHES Institute of Technology

August 8, 2014

Abstract

A trillion by trillion matrix is almost unimaginably
huge, and finding its inverse seems to be a truly im-
possible task. However, given current trends in com-
puting, it may actually be possible to achieve such
a task around 2040 — if we were willing to devote
the the entirety of human computing resources to a
single computation. Why would we want to do this?
Perhaps, as Mallory said of Everest: “Because it’s
there”.

1 Introduction

An intriguing computational task was recently posed
in [1]: find the inverse of a trillion by trillion matrix.
At face value, this seems like an insane task. A tril-
lion by trillion matrix is almost impossibly large, con-
taining 1024 elements. Using single-precision floating
point numbers, this requires 4 Yottabytes of storage,
rougly a thousand times the current size of the entire
internet.

However, even truly ridiculous computational tasks
are no match for exponential growth. As of 2007, the
current total computational resources of humanity to-
tal 6 · 1018 Flops, with 3 · 1021 bytes of storage [2].
Assuming optimistic growth rates following Moore’s
law, by 2040, this will have expanded to 6·1027 Flops,

mostly in highly parallel processors such as GPUs.
Storage and internet bandwidth are growing at even
faster rates. As we’ll see, even Yottabyte-sized matrix
inverse tasks become feasible with years of increasing
computing technology.

2 Background

Due to numerical stability issues, it is typical not to
compute the matrix inverse A−1, but instead a fac-
torization A = LU where L is lower-triangular and
U us upper-triangular. Then, A−1 can by evaluated
by A−1x = U−1L−1x, with U−1 and L−1 being com-
puted by forward and backward substitution.

Fast LU factorization algorithms are usually based
on the block-Schur decomposition. If we decompose
A into blocks

A =

[
A11 A12

A21 A22

]
(1)

and we wish to get a decomposition[
A11 A12

A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
(2)

then we can multiply out the right hand side to get[
A11 A12

A21 A22

]
=

[
L11U11 L11U12

L21U11 L21U12 + L22U22

]
.

(3)

1



In particular, we have A11 = L11U11 is the LU-
decomposition of A11; U12 = L−1

11 A12 and L21 =
A21U

−1
11 ; and L22U22 = A22 − L21U12.

Therefore, we can compute the LU-decomposition
of A by the following

1. Compute the LU decomposition L11U11 of A11

(recursively).

2. L11 and U11 are invertible, so compute U12 =
L−1
11 A12 and L21 = A21U

−1
11 .

3. Set S = A22 − L21U12 and recursively compute
the LU-decomposition of S to get L22 and U22.

Previous parallel algorithms for LU-decomposition,
such as [3] mostly consider the case with n proces-
sors for an n × n matrix. Since we have the sum
total of every computing device on the planet to
work with, we’ll instead consider the massively par-
allel case, where there are O(n2) parallel threads of
execution.

3 Massively parallel algorithm

Our abstraction of this massively parallel machine
will have m2 parallel units of execution. Divide A
into an m×m grid of equal-sized square blocks

A11 A12 · · · A1m

A21 A22 A2m

...
. . .

...
Am1 Am2 · · · Amm

 (4)

Each thread (i, j) will perform all calculations regard-
ing the block Ai,j .

The first step is for thread (1, 1) to compute A11 =
L11U11, an LU-decomposition of a single block. Us-
ing the block-Schur algorithm, we know that Ui1 =
L−1
11 Ai1 and L1i = A1iU

−1
11 . So, the second step is

for thread (1, 1) to send L11 and U11 to each thread
(i, 1) and (1, i), which then compute U1i and Li2 for
each i = 2, . . . ,m.

Then, the next step is to compute the blocks Sij of
S. These are each computed by Sij = Aij − Li1U1j .
The necessary computation is for threads (i, 1) and
(1, j) to send the results of their computation to

A11 = L11U11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

L11

U11

A11 = L11U11 U12 = L11
-1A12 U13 = L11

-1A13 U14 = L11
-1A14

L21 = A21U11
-1 A22 A23 A24

L31 = A31U11
-1 A32 A33 A34

L41 = A41U11
-1 A42 A43 A44

U12 U13 U13

L21

L31

L41

A11 = L11U11 U12 = L11
-1A12 U13 = L11

-1A13 U14 = L11
-1A14

L21 = A21U11
-1 A22 - L21U12 A23 - L21U13 A24 - L21U14

L31 = A31U11
-

1
A32 - L31U12 A33 - L31U13 A34 - L31U14

L41 = A41U11
-1 A42 - L41U12 A43 - L41U13 A44 - L41U14

Figure 1: The 3 steps of the algorithm. (1) Thread
(1, 1) computes the factorization of A11 and passes
the factors horizontally and vertically. (2) Each
thread (i, 1) and (1, i) computes the respective blocks
Li1 and U1i and passes these results to every other
thread in the same column or row (respectively). (3)
Each thread (i, j) subtracts the product of Li1U1j

from Aij .

2



thread (i, j) which can then form their product and
subtract from Aij . Finally, having computed S we
can recurse to find Lij , Uij for i, j > 2.

This process is summarized graphically in Figure 1.
A final note: if the actual inverse matrix is desired,

this can be obtained by backsolving LUx = ei for
each basis vector ei. These can be run in parallel
and pipelined, taking a total time similar to finding
the LU-decomposition.

3.1 Analysis

The basic operations of this algorithm are matrix op-
erations on the individual blocks, and passing mes-
sages from one thread to another. Let b = m/n be
the dimension of each block. Since b << n, we can
assume that all computations involving a single block
take some constant time B to perform. Each of the 3
steps of Figure 1 involve separate matrix operations
in each block, so can be solved in parallel in total
time B. So, each recursion takes time 3B for a total
of 3Bn for the whole algorithm.

We also need to be able to broadcast messages
between the threads. The requirements are that a
thread (i, j) must be able to send an identical mes-
sage to each other node in its row or column. The
messages are the same size b× b as the blocks, so we
need total bandwith of b× b per basic step (time B)
between the threads.

4 Implementation

For a trillion by trillion matrix, we’ll use a block
structure with blocks of size 106 × 106, so that the
blocks also form a 106 × 106 grid. That is, we have a
trillion blocks with a trillion elements each. Within
each block, the dominating calculation is the LU-

decomposition which takes 2n3

3 floating point oper-
ations, for a total of 6 · 1017 operations.

With the total 2040 world computational resources
of 6 · 1027 Flops organized into a trillion independent
units (each of which may be inherrently parallel, e.g.,
a GPU), we have 6·1015 Flops per block, so each block
operation B takes rougly 100 seconds. The total exe-
cution of the algorithm is 3B ·106 for a total of 3 ·108

seconds, or 9.5 years — almost reasonable, for using
the entire computational resources of humanity on a
single task.

4.1 Alternate implementation:
Matrix inverse via the Matrix

The above analysis relies on continued growth of tra-
ditional computing resources via Moore’s law, hardly
a given with the several barriers to further minitur-
izing transistors on silicon chips. However, an even
greater computational resource can be found in every
single human: it’s estimated that the human brain is
capable of an Exa-Flop (1018 Flops). With mod-
est growth of the human population to 10 billion,
this gives total resources of 1030 flops, allowing the
task to be completed in only 3.5 days. Harvesting of
these computational resources presents a challenge,
but based on the work of [4], we propose large towers
of bio-vats, each holding individual humans plugged
into a virtual reality environment simulating the year
1995.

References

[1] Misha Collins. personal communication, 2014.

[2] Martin Hilbert and Priscila Lpez. The worlds
technological capacity to store, communicate, and
compute information. Science, 332(6025):60–65,
2011.

[3] Zhiyong Liu and D.W. Cheung. Efficient paral-
lel algorithm for dense matrix {LU} decompo-
sition with pivoting on hypercubes. Computers
and Mathematics with Applications, 33(8):39 – 50,
1997.

[4] A. Wachowski and L. Wachowski. The Matrix.
1999.

3


