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Abstract

This paper is concerned with a generalization of the Heisenberg’s uncertainty principle 
which I developed in 2012 and that I called the universal uncertainty principle. This 
principle takes into account the quantized nature of space-time (granularity) and the 
quantum fluctuations of the empty space. I have successfully applied the special version 
of these relations to calculate the thermodynamic properties of black holes, the 
approximate size of the electron and to derive the Einstein's formula of equivalence of 
mass and energy. This formulation can change the standard model of particle physics by 
introducing gravity into the model through the Planck length and the Planck time. 

Keywords: quantum fluctuations, zero point momentum, zero point energy, entropy, 
Planck length, Planck time, GUUP, SUUP.

1. Introduction

In 1927 the German physicist Werner Heisenberg discovered a principle known as the 
Heisenberg uncertainty principle [1] which are normally written as

Heisenberg momentum-position uncertainty relations 

                                                             Δ px Δ x≥
ℏ

2
                                              (1-1a)

                                                             Δ py Δ y≥
ℏ

2
                                              (1-1b)

                                                             Δ pz Δ z≥
ℏ

2
                                              (1-1c)

Heisenberg energy-time uncertainty relation 

                                                               Δ E Δ t≥
ℏ

2
                                               (1-2)

In the article entitled “The Special Quantum Gravitational Theory of Black Holes” [2], 
which I published online in 2014, I applied the special universal uncertainty principle to 
black holes to derive their thermodynamics properties: temperature and entropy. The 
surprising result of that research was that the equation for the black hole entropy was part 
of the equation for the temperature of the black hole. This meant that the black hole 
entropy emerged naturally from this theory as there was no need to introduce any 
additional physical concepts or postulates. In a second paper entitled “The Size of 
Fundamental Particles” [3], I applied the same principle again to calculate the diameter 
of the electron. As a result the size of the electron turned out to be smaller than 10.166 
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times the Planck length. Despite of not including the quantum fluctuations of the empty 
space, the special version of the universal uncertainty principle turned out to be an 
invaluable quantum mechanical principle. 

2. Abbreviations

In order to refer to these two principles I shall use the following abbreviations:

(a)   GUUP or “general UUP”: stands for General Universal Uncertainty Principle.
       This is the most general uncertainty principle, and

(b)   SUUP or “special UUP”: stands for Special Universal Uncertainty Principle [2].
        This is a special version of the GUUP principle.

3. Rationale

The universal uncertainty principle has to satisfy the following conditions

            1) The principle must be quadratic in Δ pxΔ x

2) When 0=ZP and 0=ZL the principle will reduce to Δ px Δ x≥
ℏ

2

3) When Δ px =0 and Δ x = 0 the principle will reduce to PZ LZ≥
ℏ

2

Let’s consider these three conditions separately

1) We shall adopt a second order uncertainty principle. We want this principle to be as 
general as possible to ensure an accurate description of nature for all phenomena 
including black holes. One of the most exciting aspects of this principle is that the entropy
of the black hole emerges naturally without introducing any additional postulates. This is 
not possible using a linear principle. Based on this observation we can postulate that the 
universal principle will have the following form

         (Δ px Δ x)
2
≥( ℏ

2)
2

+ other terms                        (3-1)

Hence taking the square root on both sides yields the following relation

                                              Δ px Δ x≥√(ℏ2)
2

+ other terms                                (3-2)

2) When the effects of quantum fluctuations of space-time are neglected. 
(mathematically means that 0=ZP and 0=ZL ), the relation will be identical to the 
Heisenberg uncertainty principle (HUP). Thus, under these conditions, the relation will 
reduce to

                                                 Δ px Δ x≥
ℏ
2

                                              (3-3)
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The reason of this is that a wave packet representing the wave function ψ(x,y,z,t) of the 
particle is formed by the addition of a number of different wavelengths that produce 
interference (the superposition principle in quantum mechanics gives rise to interference).
The more wavelengths we add the more localized the wave function will be and therefore 
the probability of finding the particle in a cubic box of volume dV = dx dy dz will be 
higher. This is so because the square of the wave function |ψ(x,y,z,t) |²  is the probability 
density of a measurement of the finding the particle in the cubic volume dV. Thus the 
probability )(2,1,2,1,2,1 tP zzyyxx  of finding the particle in a cubic volume defined as 

]2,1[]2,1[]2,1[ zzzandyyyandxxx ∈∈∈ )
where 21;21;21 zzyyxx <<<

at time t will be

                                  dxdydztzyxtP z
z

y
y

x
xzzyyxx  | ),,(∫∫∫= 2

2,1,2,1,2,1 ,|)( 2

1

2

1

2

1
ψ                    (3-4)

For the special case one spatial dimension and a time-independent wave function, the 
above expression reduces to

                                           P (x1 ≤ x ≤ x2)=∫
x1

x2

∣Ψ( x) ∣ 2 dx                                  (3-5)

The integral (3-4) shows that the more localized the wave function the higher the 
probability of finding the particle in a given volume. However, this mechanism will make
the momentum of the particle more uncertain. The reason is that, according to de Broglie, 
each individual wavelength has a momentum associated with it which is given by

                                                       
λ
h

p =                                                       (3-6)

Because the wave function of the particle is composed of a large number of different 
wavelengths of different amplitudes (only the de Broglie relationships are shown here):

                          
n

n

h
p

h
p

h
p

h
p

h
p

λλλλλ
===== ;...;;;;

4
4

3
3

2
2

1
1             (3-7)

the momentum of the particle becomes more uncertain (which is the momentum of the 
particle nporpppp ,...,,, 4321 ?) From this approximate analysis we see that the HUP 
relates to the wave nature of the wave packet and not to the quantum fluctuations of the 
vacuum (See Fig 1).
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Fig 1: A wave packet is made of an infinite number of sine waves. Graphics credits: Copyright R.
           Nave, Hyperphysics (http://hyperphysics.phy-astr.gsu.edu/hbase/uncer.html)

3) When the effects of the uncertainties due to the wave nature of the wave packet 
describing the particle are neglected (mathematically means that 0=∆ p and 0=∆ x ),  the 
principle will reduce to

π4

h
LP ZZ ≥ (3-8)

4. The General Momentum-Position Universal Uncertainty
    Relations (Momentum-Position GUUP)

The only way of satisfying all three conditions given in the previous section 
simultaneously is to define the general momentum-position universal uncertainty 
relations as follows:

                              Δ px Δ x ≥√ ℏ2

4
−

ℏ

4
PZ (Δ x + LZ )−

ℏ

4
(Δ px + PZ ) LZ                   (4-1a)

                              Δ py Δ y ≥√ ℏ
2

4
−

ℏ

4
P Z (Δ y + LZ )−

ℏ

4
(Δ p y + PZ )LZ                  (4-1b)

                              Δ pz Δ z ≥√ ℏ
2

4
−

ℏ
4

PZ (Δ z + LZ )−
ℏ
4

(Δ p z + PZ )LZ                   (4-1c)

Where

h = Planck's constant

ℏ = reduced Planck's constant ( ℏ =
h

2π
)

Δ px = Uncertainty in the momentum of a particle along the x axis due to its wave 
nature (wave packet representing the particle). This uncertainty does not include the 
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uncertainty in the zero point momentum, PZPM or P Z , due to the quantum fluctuations 
of space-time.

Δ py = Uncertainty in the momentum of a particle along the y axis due to its wave 
nature (wave packet representing the particle). This uncertainty does not include the 
uncertainty in the zero point momentum, PZPM or P Z , due to the quantum fluctuations 
of space-time.

Δ pz = Uncertainty in the momentum of a particle along the z axis due to its wave 
nature (wave packet representing the particle). This uncertainty does not include the 
uncertainty in the zero point momentum, PZPM or P Z , due to the quantum fluctuations 
of space-time.

Δ x = Uncertainty in the position of the particle along the x axis due to the wave packet
representing the particle. This uncertainty does not include the uncertainty in the position,

LZ , due to the granularity of space.

Δ y = Uncertainty in the position of the particle along the y axis due to the wave packet
representing the particle. This uncertainty does not include the uncertainty in the position,

LZ , due to the granularity of space.

Δ z = Uncertainty in the position of the particle along the z axis due to the wave packet
representing the particle. This uncertainty does not include the uncertainty in the position,

LZ , due to the granularity of space.

PZPM or P Z = Uncertainty in the momentum of the particle in the direction of the 
movement of the wave packet representing the particle (the direction could be either the 
x-axis, the y-axis or the z-axis). This momentum uncertainty is due to the quantum 
fluctuations of space-time and does not include any of the uncertainties in the momentum:
Δ px ,Δ py or Δ pz , defined above. This momentum is also know as zero point 

momentum.

LZ = Uncertainty in the position of the particle due to the granularity of space. This 
uncertainty does not include the uncertainty in the position along any of the three 
Cartesian coordinate axes (this means that it does not include neither Δ x , nor Δ y
nor Δ z ).  It seems logical to assume that LZ  is identical to the Planck length, PL . 
However, these two lengths could be slightly different. We assume that the Planck length 
is the minimum length with physical meaning. It is worthy to remark that the minimum 
value of this length uncertainty cannot be measured experimentally with the present 
technology.

See Appendix 1 for the theoretical verification.
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5. The General Energy-Time Universal Uncertainty Relation
    (Energy-Time GUUP)

In a similar way as we did when we defined relations (4-1a), (4-1b) and (4-1c), we can 
define the general energy-time universal uncertainty relation as follows

                                      Δ E Δ t≥√ ℏ
2

4
−

ℏ

4
EZ (Δ t +T Z )−

ℏ

4
(Δ E + EZ )T Z               (5-1)

where

Δ E = Uncertainty in the energy of a particle or energy of a particle whose lifetime is
Δ t . This energy uncertainty does not include the zero point energy uncertainty,
EZ = EZPE , due to the quantum fluctuations of space-time.

Δ t =  Time uncertainty. We can interpret Δ t in several ways: 
a) Time uncertainty in the duration of a given energy state of the particle; or the lifetime 
of a particle of a given energy, Δ E .
b) Time needed to measure the energy of a system to within an uncertainty of Δ E .
c) Time taken by the particle to travel a distance equal to the uncertainty, Δ x (or
Δ y or Δ z ), in its position. The nature of a given phenomenon determines the 

interpretation to adopt.

EZPE or E Z = Uncertainty in the energy of a particle due to the quantum fluctuations of 
space-time. This uncertainty does not include the energy uncertainty, Δ E , defined 
above. EZPE is also known as zero point energy.

T Z = Time uncertainty of the particle due to the granularity of time. This uncertainty 
does not include the time uncertainty, Δ t , defined above.  It is worthy to remark that 
the value of this time granularity cannot be measured experimentally with the present 
technology. However, it seems logical to assume that this uncertainty is identical to the 
Planck time, T P . However, these two time uncertainties could be slightly different. We
assume that the Planck time is the minimum time with physical meaning. 

See Appendix 2 for the theoretical verification.

6. The Special Universal Uncertainty Principle

The special universal uncertainty relations can be derived from the general universal 
uncertainty relations by making 0=ZP  in the momentum-position relations; and taking

EZ = 0 in the energy-time relation as shown in the following two subsections.

6a) The special momentum-position universal uncertainty relations

Let us consider the GUUP principle given by relation (4-1a)
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                             Δ px Δ x ≥√ ℏ
2

4
−

ℏ

4
PZ (Δ x + LZ )−

ℏ

4
(Δ px + PZ ) LZ                  (6-1)

Let us make 0=ZP  . This yields

                             Δ px Δ x ≥√ ℏ2

4
−

ℏ

4
0 (Δ x+ LZ )−

ℏ

4
(Δ p x + 0) LZ                       (6-2)

                                   Δ px Δ x ≥√ ℏ
2

4
−

ℏ

4
Δ px LZ                                    (6-3)

This is the special momentum-position universal uncertainty principle (momentum-
position SUUP). The same analysis can be applied to relations (4-1b) and (4-1c) to obtain 
the corresponding special relations. Thus the three special momentum-position universal 
uncertainty relations turn out to be

Momentum-position SUUP

                                               Δ px Δ x ≥√ ℏ
2

4
−

ℏ
4

Δ px LZ                                     (6-4a)

                                               Δ py Δ y ≥√ ℏ
2

4
−

ℏ

4
Δ py LZ                                    (6-4b)

                                               Δ pz Δ z ≥√ ℏ2

4
−

ℏ

4
Δ pz LZ                                     (6-4c)

6b) The special energy-time universal uncertainty relation

Let us consider the GUUP principle given by relation (5-1)

                               Δ E Δ t≥√ ℏ
2

4
−

ℏ

4
EZ (Δ t +T Z )−

ℏ

4
(Δ E + EZ )T Z                    (6-5)

Let us make EZ =0 . This yields

                               Δ E Δ t≥√ ℏ
2

4
−

ℏ

4
0 (Δ t + T Z )−

ℏ

4
(Δ E + 0)T Z                         (6-6)

Energy-time SUUP

                                          Δ E Δ t≥√ ℏ2

4
−

ℏ

4
Δ E T Z                                      (6-7)

This is the special energy-time universal uncertainty principle (energy-time SUUP).
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7. Comparison

In this section we compare, side by side, the Heisenberg uncertainty relations with the 
corresponding special universal uncertainty counterparts.

Description of the
uncertainty

Heisenberg uncertainty
relations

Special universal uncertainty
relations

Momentum-position
uncertainty relation

(x axis)

 

Δ px Δ x≥
ℏ

2
 

 

   Δ px Δ x ≥√ ℏ2

4
−

ℏ

4
Δ px LP

 

Momentum-position
uncertainty relation

(y axis)

Δ py Δ y≥
ℏ

2 Δ py Δ y ≥√ ℏ
2

4
−

ℏ
4

Δ py LP

Momentum-position
uncertainty relation

(z axis)

Δ pz Δ z≥
ℏ

2 Δ pz Δ z ≥√ ℏ2

4
−

ℏ

4
Δ pz LP

Energy-time uncertainty
relation 

Δ E Δ t≥
ℏ

2 Δ E Δ t ≥√ ℏ2

4
−

ℏ

4
Δ E T P

Table 1: Comparison of the Heisenberg uncertainty relations with the special universal uncertainty 
relations. Note that LZ has been replaced by LP and T Z by T P .

8. Conclusions

In summary, this paper introduced the General Universal Uncertainty Principle (GUUP) 
which is an extension to the legendary Heisenberg Uncertainty Principle (HUP). The 
special universal uncertainty principles help us to make the following three predictions:

1) The law for the temperature of the black hole. This law turned out to be [2]

Black Hole temperature formula derived from the SUUP

                               T =
1

8√π  

hc3

16π 2 k B GM (√ LP
2

π R2
+ 64π −

LP

√π R)                   (8-1)

Thus the universal principle, in its special version, has already shown that the Hawking 
formula for the black hole temperature is a special case of equation (8-1) when we make 
the Planck length, LP , equal to zero, as shown below:
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                                               T =
1

8√π  

h c3

16π 2 k B GM
√64π                               (8-2)

After simplification the above equation transforms into the Hawking formula

Hawking formula for the temperature of a black hole

                                                    T = T H =
hc3

16π 2 k B GM
                                      (8-3)

Now we can predict the temperature of black holes with higher accuracy. 

2) The size of the electron. The SUUP predicts that there is an upper limit to the
     diameter of the electron [3]. The prediction is that the diameter of the electron is
     smaller than 10.166 times the Planck length.

3) The Einstein's formula of equivalence of mass and energy. I have derived the
     famous Einstein's formula, E = mc2 , from the special universal uncertainty relations
     [4]. This means that quantum physics encompasses not only all of classical physics but
     also all of relativistic physics.

Thus part of the potential of this formulation has already been proven as it passed the 
above three tests. However, it is too early to envisage the extent of the implications of the 
present formulation.

Appendix 1
Theoretical Verification of the Spatial General Universal Uncertainty

Relations

Let us consider the momentum-position relation (4-1a)

Δ px Δ x ≥√ ℏ
2

4
−

ℏ

4
PZ (Δ x + LZ )−

ℏ

4
(Δ px + PZ ) LZ

(a) where we make PZ =0 and LZ = 0

Δ px Δ x ≥√ ℏ
2

4
−0 −0

Δ px Δ x ≥
ℏ

2

This is the momentum-position Heisenberg uncertainty relation along the x-axis. 
A similar analysis proves the other two momentum-position uncertainty relations:
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Δ py Δ y ≥
ℏ
2

This is the momentum-position Heisenberg uncertainty relation along the y-axis.

Δ pz Δ z ≥
ℏ

2

This is the momentum-position Heisenberg uncertainty relation along the z-axis.

(b) where we make Δ px = 0 and Δ x = 0

0≥√ ℏ
2

4
−

ℏ

4
PZ (0+ LZ )−

ℏ

4
(0 + PZ ) LZ

0≥√ ℏ2

4
−

ℏ

4
PZ LZ−

ℏ

4
PZ LZ

0≥√ ℏ
2

4
−

ℏ

2
P Z LZ

0≥
ℏ

2

4
−

ℏ
2

PZ LZ

ℏ
2

P Z LZ≥
ℏ

2

4

PZ LZ≥
ℏ

2

Because Heisenberg did not include neither PZ nor LZ in his momentum-position 
uncertainty relations, we could call the last expression the “Zero Point Momentum-Planck
length uncertainty relation”, just to refer to it in the future.

Appendix 2
Theoretical Verification of the Temporal General Universal Uncertainty

Relation

Let us consider the general energy-time relation (5-1)

Δ E Δ t≥√ ℏ
2

4
−

ℏ

4
EZ (Δ t +T Z )−

ℏ

4
(Δ E + EZ )T Z

(a) where we make EZ = 0 and T Z =0
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Δ E Δ t≥√ ℏ
2

4
−0 −0

Δ E Δ t≥
ℏ

2

This is the energy-time Heisenberg uncertainty relation.

(b) where we make Δ E = 0 and ΔT = 0

0≥√ ℏ
2

4
−

ℏ

4
E Z (0+T Z )−

ℏ

4
(0+ EZ )T Z

0≥√ ℏ
2

4
−

ℏ
4

E Z T Z−
ℏ
4

EZ T Z

0≥√ ℏ
2

4
−

ℏ

2
E Z T Z

0≥
ℏ

2

4
−

ℏ
2

EZ T Z

ℏ
2

E Z T Z≥
ℏ

2

4

EZ T Z≥
ℏ

2

Because Heisenberg did not include neither EZ nor T Z in his energy-time uncertainty
relation, we could call the last expression the “Zero Point Energy-Planck time 
uncertainty relation”, just to refer to it in the future.
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