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We propose the normalization of some holographic dark energy (HDE) models. Applying the normalization method, we derive the 

general equation of normalization of original HDE model and General HDE (GHDE) model; obtain that the coefficient 𝑤𝑑𝑒 is 

inversely proportional to the square of the parameter 𝑐𝐿 which is variable; get the normalized equations of original HDE model, 

GHDE model, agegraphic dark energy (ADE) model and New HDE (NHDE) model; obtain n = 2.894 which is in good agreement with 

n = 2.886−0.163
+0.169 in ADE model and 𝑐𝐿n= 3 which agrees well with 1.41 < c < 3.09 in NHDE model; and interpret the physical 

meaning of the ratio 𝑓𝑑𝑒  and its average value by dimensional analysis. We suggest that the normalization of some HDE models is 

interesting and significant. 

 

PACS: 95.36.+x, 98.80.-k. 

 

 

1. Introduction 

The holographic dark energy (HDE) model [1] [2] [3] [4] [5] 

is one of the competitive and promising models to explain the 

cosmic accelerated expansion [6]. In order to determine the 

numerical value of the parameter c [1] [2] [3] [4] in it, 

parameterization and data fitting are applied widely [2] [7] [9]. 

However the normalization method is used by Y. Bao to the 

original HDE model and General HDE (GHDE) model [8], the 

value of parameter 𝑐𝐿 is in good agreement with c = 0.495 ± 

0.039 obtained from Planck+WP+ BAO+HST+lensing [9]. This is 

an interesting and significant method, but the physical meaning of 

the ratio 𝑓𝑑𝑒  and its average value isn’t interpreted. In this paper, 

we apply the same method to some HDE models. 

The paper is organized as follows. In Sec. 2, we derive the 

general equation of normalization of original HDE model [1] and 

GHDE model [3]; obtain the normalized equations of them. In Sec. 

3, we get the normalized equations of the agegraphic dark energy 

(ADE) model [5] and New HDE (NHDE) model [4]; obtain n =  

2.894 in ADE model and 𝑐𝐿n= 3 in NHDE model. In Sec. 4, we 

interpret the physical meaning of 𝑓𝑑𝑒  and its average value  𝑓𝑑𝑒  . 

We conclude in Sec. 5. 

 

2. Normalization of Original HDE Model and GHDE 

Model 

In this section, we review [8]; derive the general equation of 

normalization of original HDE model and GHDE model by the 

normalization method; determine the relation between the 

coefficient 𝑤𝑑𝑒  and parameter 𝑐𝐿 ; and obtain the normalized 

equations of original HDE model and GHDE model.  

 

2.1. General equation 

First let us briefly review [8]. The equation of HDE model [1] 

[2] [3] can be rewritten as (we work with ħ = c = 1 units)        

𝜌𝑑𝑒= 3𝑐𝐿
2Mpl

2 𝐿−2                  (1) 

where 𝜌𝑑𝑒  is the HDE density, 𝑐𝐿 ≥ 0 is a dimensionless model 

parameter, MPl ≡ 1／ 8πG is the reduced Planck mass and L is 

the cosmic cutoff. From Eq. (1), using p = wρ, we obtain 

 𝐿2𝑝𝑑𝑒  =𝑤𝑑𝑒𝐿
2𝜌𝑑𝑒= 3𝑤𝑑𝑒𝑐𝐿

2Mpl
2           (2) 

where 𝑝𝑑𝑒 is the negative pressure of HDE, 𝑤𝑑𝑒< 0 is  the 

coefficient of state. From (2), we can define  

𝑓𝑑𝑒= 𝐿2𝑝𝑑𝑒／Mpl
2  = 3𝑤𝑑𝑒𝑐𝐿

2            (3) 

where 𝑓𝑑𝑒  is a ratio. 
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   Applying the normalization method, we can define 

 𝑓𝑑𝑒   =∣(  𝑓𝑑𝑒 i
𝑛
i=1  )／n∣, i =1, 2, 3… n   (4) 

where  𝑓𝑑𝑒   is the average ratio, 𝑓𝑑𝑒 i is the ratio of each halo. 

In order to calculate properly,  𝑓𝑑𝑒   equals to unity [8] 

 𝑓𝑑𝑒   =∣(  𝑓𝑑𝑒 i
𝑛
i=1  )／n∣= 1              (5) 

Using (3) to (5), we obtain 

 𝑤𝑑𝑒i𝑐𝐿i
2n

i=1   = – n／3            (6) 

where 𝑤𝑑𝑒 i is the coefficient of state of each halo, 𝑐𝐿i is the 

dimensionless model parameter of each halo. This is the general 

equation of normalization of original HDE model and GHDE 

model.  

 

2.2. Normalized equations of original HDE model 

For the original HDE model, 𝑐𝐿i= 𝑐𝐿 is constant, we have 

 𝑤𝑑𝑒i
n
i=1  = – n／3𝑐𝐿

2             (7) 

Substituting 𝑤𝑑𝑒 i = – (1／3) – 2 𝛺𝑑𝑒 i／3𝑐𝐿 [1] into (7), where 

𝛺𝑑𝑒 i is the fractional dark energy density  of each halo, we obtain 

𝑐𝐿
2＋[(2 𝑐𝐿／n)  𝛺𝑑𝑒i

n
i=1  ] = 1          (8) 

It is the normalized equation in [8].  

 

2.3. Relation between 𝒘𝒅𝒆𝐧 and 𝒄𝑳𝐧 

In general 𝑐𝐿i is variable [3], we need to solve the Eq. (6) by 

the similar subtraction in [8]. When n = 1, we have 

𝑤𝑑𝑒 1𝑐𝐿1
2  = – 1／3                (9) 

Then Eq. (6) can be rewritten as  

𝑤𝑑𝑒 n𝑐𝐿n
2 ＋  𝑤𝑑𝑒i𝑐𝐿i

2n−1
i=1  = – n／3     (10) 

When i =1, 2, 3… n – 1, we have 

  𝑤𝑑𝑒i𝑐𝐿i
2n−1

i=1  = – (n – 1)／3, n ≥ 2  (11) 

Taking (11) to (10), we obtain 

𝑤𝑑𝑒 n𝑐𝐿n
2  = – 1／3                (12) 

So 𝑤𝑑𝑒n  is inversely proportional to the square of 𝑐𝐿n, when 

𝑐𝐿n= 1, 𝑤𝑑𝑒n= – 1／3; 𝑐𝐿n  =  1/3 = 0.577,  𝑤𝑑𝑒n= – 1. 

 

2.4. Normalized equations of GHDE model  

For the GHDE model, substituting 𝑐𝐿n = 𝑐𝐿(z) and 𝑤𝑑𝑒 n= 

𝑤𝑑𝑒 (𝑧) = – (1／3) – 2 𝛺𝑑𝑒 n(𝑧)／3𝑐𝐿(𝑧) [3] into (12), where z 

is the redshift, we have 

  𝑐𝐿(𝑧)2 ＋2 𝑐𝐿(𝑧) 𝛺𝑑𝑒 (z)  = 1        (13) 

That is the normalized equation of z in [8].  

 

3. Normalized Equations of ADE Model and NHDE 

Model 

In this section, we redefine the ratio 𝑓𝑑𝑒  in ADE model and 

NHDE model respectively; obtain the normalized equations of 

them. 

 

3.1. Normalized equations of ADE model 

For the ADE model, because of 𝜌𝑑𝑒= 3𝑛2Mpl
2 𝑡−2, we can 

redefine 

 𝑓𝑑𝑒= 𝑤𝑑𝑒𝜌𝑑𝑒 𝑡
2／8πMpl

2 = 3𝑤𝑑𝑒𝑛
2／8π     (14) 

Substituting 𝑤𝑑𝑒  = −1＋2 Ωde／3na [5] into it, where n is a 

numerical factor, t is the time, a is the scale factor, Ωde = 𝜌𝑑𝑒／

𝜌𝑐  is the fractional dark energy density, 𝜌𝑐 = 3Mpl
2 𝐻2  is the 

critical density of the universe, and H is the Hubble constant, we 

obtain 

 𝑓𝑑𝑒   = ∣(1／n)  (3𝑤𝑑𝑒
𝑛

i=1
𝑛2／8π)∣= 1   (15) 

Solving (15) we have 

3𝑛2 –2n Ωde／a – 8π = 0           (16) 

This is the normalized equation of ADE model. Solving it we 

obtain  

n = ( Ωde /𝑎2 + 24π ＋ Ωde／a)／3     (17) 

When a → ∞, n →  24π／3 = 2.894, it is in good agreement  

with n = 2.886−0.163
+0.169 [10]. 

 

3.2. Normalized equations of NHDE model 

For the NHDE model, because 𝑝𝑑𝑒= [λ−λ(0)]／48π𝑎4 − 𝑐𝐿

／24π𝑎2𝐿2 [4], we redefine 

 𝑓𝑑𝑒= 𝑝𝑑𝑒𝑎
2𝐿2／Mpl

2  = λ𝐿2／6𝑎2 − 𝑐𝐿／3, (λ(0) = 0)  (18) 

where L is a decreasing function and 𝜆  = − 4α𝑐𝐿／𝐿3, we have 

 𝑓𝑑𝑒   = ∣(1／n)  [𝜆i𝑌
2/6 − 𝑐𝐿i/3

𝑛

i=1
]∣= 1   (19) 

where Y = L／a, from (19), we obtain 

  [𝜆i𝑌
2/2 − 𝑐𝐿i

𝑛

i=1
 ] = – 3n        (20) 

It is the normalized equation of NHDE model. Solving Eq. (20) 

we have 

𝑐𝐿n = 3＋𝜆n𝑌
2/2                (21) 

To solve 𝑐𝐿n we need to know the numerical value of 𝜆n  and Y.  

If 𝜆n< 0, 𝑐𝐿n < 3; 𝜆n  ≥ 0, 𝑐𝐿n ≥ 3. When a → ∞, Y → 0, 𝑐𝐿n

→ 3, that agrees well with 1.41 < c < 3.09 [7].  
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4. Physical Meaning of 𝒇𝒅𝒆 and Its Average Value 

In this section, we interpret the physical meaning of the ratio 

𝑓𝑑𝑒  and its average value by dimensional analysis. 

Clearly 𝑓𝑑𝑒  is the key. From (3), (14) and (18), the 

definability is different. So what is the physical meaning of 𝑓𝑑𝑒  

and  𝑓𝑑𝑒  ? By the dimensional analysis, we know [𝐿2𝑝𝑑𝑒 ] = 

[𝑤𝑑𝑒𝜌𝑑𝑒𝑡
2] = [𝑝𝑑𝑒𝑎

2𝐿2] = [MLT−2], where M, L, and T are the 

dimension of mass, dimension of length and dimension of time 

respectively, so it is the force 𝐹𝑑𝑒  which is produced by the 

HDE on the cosmic cutoff. We can call it the HDE force. Because 

𝑓𝑑𝑒  is dimensionless, FPl  = c3  MPl
2 ／ ħ =  MPl

2  is called the 

reduced Planck force. The physical meaning of 𝑓𝑑𝑒  is the ratio 

between the HDE force and reduced Planck force. In ADE model, 

FP  = 8πc3MPl
2 ／ħ = 8πMPl

2 = MP
2  is called the Planck force, 

where MP ≡ 1／ G is the Planck mass, so 𝑓𝑑𝑒  is the ratio 

between HDE force and Planck force.  The physical meaning of  

 𝑓𝑑𝑒   is that the HDE average force  𝐹𝑑𝑒   is assumed to equate 

to the negative reduced Planck force or negative Planck one 

statistically. This is the basis for its normalization. 

 

5. Conclusion 

In this paper, we have derived the general equation of 

normalization of original HDE model and GHDE model; 

obtained the coefficient 𝑤𝑑𝑒 being inversely proportional to the 

square of the parameter 𝑐𝐿 which is variable; got the normalized 

equations of original HDE model and GHDE model; redefined 

the ratio 𝑓𝑑𝑒  in ADE model and NHDE model respectively; 

obtained the normalized equations of them; gave the expression 

of n in ADE model and one of 𝑐𝐿n in NHDE model; obtain n = 

2.894 which is in good agreement with n = 2.886−0.163
+0.169 [10] in 

ADE model and 𝑐𝐿n= 3 which agrees well with 1.41 < c < 3.09 

[7] in NHDE model; and interpreted the physical meaning of 𝑓𝑑𝑒  

and its average value  𝑓𝑑𝑒  . 

Non-all HDE models can be normalized; only the models 

which their HDE density  is inversely proportional to the square 

of the cosmic cutoff or time can be. So we investigate original 

HDE model, GHDE model, ADE model and NHDE model only. 

Our method can give the better results with data-fitting. The 

problem is that we can’t explain why 𝑓𝑑𝑒  is the ratio between the 

HDE force and reduced Planck force in original HDE model, 

GHDE model and NHDE model, but between HDE force and 

Planck force in ADE model; and can’t explain  𝑓𝑑𝑒   also. We 

will research them in after work. At last, we suggest that the 

normalization of some HDE models is interesting and significant. 

 

References  

[1] M. Li, Phys.Lett. B, 603 (2004) 1; arXiv: 0403127 [hep-th]; 

K.Ke, M. Li, Phys. Lett. B 606 (2005) 173-176; Q-G. Huang 

and M. Li, arXiv: 0404229 [astro-ph]. 

[2] H. Wei, R-g. Cai, Science & Technology Review, 23, 12 

(2005) 28-32; M. Li, X-D. Li, Sh. Wang and Y. Wang, 

Commun. Theor. Phys. 56 (2011) 525-604; arXiv: 1103. 

5870 [astro-ph]. 

[3] Z. H. Zhang, M. Li, X-D. Li, S. Wang, and W-S. Zhang, 

arXiv: 1202.5163 [astro-ph]; H-C. Kim, J-W. Lee and J. Lee,  

EPL, 102 (2), p.29001, doi: 10.1209／0295-5075／102／

29001; arXiv: 1208.3729 [gr-qc]; M. Li et al., arXiv: 1209. 

0922 [astro-ph]; X. Lei et al., Commun. Theor. Phys. 2013, 

59 (02) 249-252. 

[4] M. Li, R-X. Miao, arXiv: 1210.0966 [hep-th]. 

[5] A. G. Cohen, D. B. Kaplan and A. E. Nelson, Phys. Rev. Lett. 

82 (1999) 4971; arXiv: 9803132v2 [hep-th]; H. Wei and R. 

G. Cai, Phys. Lett. B 660, 113  (2008); arXiv: 0708.0884 

[astro-ph]. 

[6] A. G. Riess et al., Astron. J, 116 (1998) 1009, Astrophys. J, 607 

(2004) 665; S. Perlmutter et al., Astrophys. J, 517 (1999) 565; 

R. A. Knop et al., Astrophys. J, 598 (2003) 102; C. L. Bennett 

et al., Astrophys. J. Suppl, 148 (2003) 1; arXiv: 0302207 

[astro-ph]; D. N. Spergel et al., Astrophys.J.Suppl, 148 (2003) 

175; arXiv: 0302209 [astro-ph]; H. V. P. Peiris et al.,  arXiv: 

0302225 [astro-ph]; M. Tegmark et al.,  Phys. Rev. D, 69 

(2004) 103501; M. Tegmark et al., Astrophys. J, 606 (2004) 

702; S. W. Allen et al., Mon. Not. Roy. Astron. Soc. J, 353 

(2004) 457. 

[7] Zh. h. Zhang, S. Li, X-D. Li, X. Zhang, and M. Li, arXiv: 

1204.6135 [astro-ph.CO]; M. Li, X-D. Li, Sh. Wang, Y. Wang, 

arXiv: 1209.0922 [astro-ph.CO]; M. Li, X-D. Li, J. Meng, and 

Zh. h. Zhang, arXiv: 1211.0756 [astro-ph.CO]. 

[8] Y. Bao, viXra: 1407.0172.  

[9] M. Li, X-D. Li, Y-Zh. Ma, X. Zhang, and Zh.H. Zhang, JCAP 



 

 

4 

09 (2013) 021, doi: 10.1088／1475-7516／2013／09／021; 

arXiv: 1305.5302 [astro-ph.CO]. 

[10] Ch-Y. Sun and R-H. Yue, arXiv: 1012.5577 [gr-qc]. 


