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Earlier this year I wrote a paper entitled Scale Factors and the Scale Principle. In this paper
I formulated a Meta Law (Scale Principle or Scale Law) which describes a number of 
fundamental laws. This paper provides the derivation of the Lorentz transformations and 
shows that these transformations obey the Scale Law. 
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1. Introduction

The Lorentz transformations were derived before Einstein’s theory of special relativity by the
Dutch physicist Hendrix Lorentz and they are in agreement with Einstein’s theory.

The transformations are equations that relate the measurements of space and time carried out 
by two observers which move at a constant speed with respect to the other.

2. The Scale Principle or Scale Law (Summary)

The following table summarizes two forms of the Scale Law: the Meta form and the explicit 
form
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(1)

(1a) Meta Form
(Meta Quantities)

(1b) Explicit Form
(ratio, exponents and scale

factor)

21 MSM ℜ

1M = dimensionless Meta Quantity 1

2M = dimensionless Meta Quantity 2

S = dimensionless Meta scale factor

ℜ = Meta Relationship Type 
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(See details below)

The above symbols stand for

a) Quantities: 
(i) 1Q , 2Q , 3Q  and 4Q are physical quantities of identical dimension (such as 
Length, Time, Mass, Temperature, etc), or 
ii) 1Q  and 2Q  are  physical quantities of dimension 1 or dimensionless constants 

while 3Q  and 4Q  are physical quantities of dimension 2 or dimensionless 

constants. However, if 1Q  and 2Q  are dimensionless constants then 3Q  and 4Q  
must have dimensions and viceversa.
 (e.g.: 1Q  and 2Q could be quantities of Mass while 3Q and 4Q  could be quantities 
of Length). 
The physical quantities can be variables (including differentials, derivatives, 
Laplacians, divergence, integrals, etc.), constants, dimensionless constants, any 
mathematical operation between the previous quantities, etc.

b) Relationship type: The relationship is one of five possibilities: less than or equal to 
inequation ( ≤ ), or less than inequation (<), or equal to - equation (=), or a greater 
than or equal to inequation ( ≥ ), or a greater than inequation (>). 

c) Scale factor: S is a dimensionless scale factor. This factor could be a real number, a 
complex number, a real function or a complex function (strictly speaking real 
numbers are a particular case of complex numbers). The scale factor could have more
than one value for the same relationship. In other words a scale factor can be a 
quantum number.

d) Exponents: n and m are integer exponents: 0, 1, 2, 3, …
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Some examples are:
example 1: n = 0 and m = 1; 
example 2: n = 0 and m = 2; 
example 3: n = 1 and m = 0; 
example 4: n = 1 and m = 1; 
example 5: n = 1 and m = 2;   
example 6: n = 2 and m = 0; 
example 7: n = 2 and m = 1;
It is worthy to remark that:
i) The exponents, n and m, cannot be both zero in the same relationship.
ii) The number n is the exponent of both 1Q  and 2Q while the number m is the 

exponent of  both 3Q  and 4Q  regardless on how we express the equation or 
inequation (1c). This means that the exponents will not change when we express the 
relationship in a mathematically equivalent form such as
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iii) So far these integers are less than 3. However we leave the options 
open as we don’t know whether we shall find higher exponents in the future.   

The Scale Law describes fundamental laws such as the Heisenberg’s uncertainty principle, 
the black hole entropy, the fine structure constant, Einstein’s relativistic energy equation, the 
formula for the Schwazschild radius, the Bohr Postulate, the De Broglie wavelength-
momentum relationship, Newton’s law of universal gravitation, the Schrödinger equation, the
Friedmann equation, and maybe many others. 

References [1] and [2] provide a more complete explanation on the Scale Law. 

3. Derivation of the Lorentz Transformations

From the Scale Law we shall derive the following Lorentz’s transformation’s equations

3.1) Space transformations
 x’ = f(x,  t) Direct transformation
 x  = f(x’, t’) Reverse transformation

3.2) Time Transformations
  t’ = f(x,  t) Direct transformation
  t  = f(x’, t’) Reverse transformation

3.1 Space Transformations

The data we have is what we call “all the necessary information” for this particular case:

i) the Galilean transformations, and 
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ii) For low speeds, the Lorentz transformations (the transformation we are 
looking for) have to yield the Galilean transformation, and 

iii) Einstein’s postulate: “Any ray of light moves in the “stationary” system of co-
ordinates with the determined velocity c, whether the ray is emitted by a 
stationary or by a moving body” [3].

This information is necessary and sufficient to find the Lorentz transformation through the 
Scale Law. Let us see how.

Let us imagine two Cartesian coordinate systems: the x, y, z, t reference system (or system 
A); and the x’, y’, z’, t’ reference system (or system B). . We assume that reference system B 
moves with respect to system A at a constant speed denoted by v towards the direction of the 
the positive x-axis. We also imagine that we have a body (called X) moving along the x axis 
at constant speed. An observer from system A measures the speed of this body as xw , while 

an observer from system B measures '
xw  for the same body. The body can also be a ray of 

light or photon.

We don’t need the scale table in this specific case because the transformations’ equations are 
mathematically very simple (but not necessarily the physical concepts behind them). Thus, 
according to the Scale Law, and assuming that system B moves in the direction of the 
positive x-axis of system A, we can write

S
vtx

x =
−

'
(Assumption) (2)

Where S is a dimensionless scale factor whose value we intend to derive.
The corresponding equation for the x co-ordinate of the inverse transformation is

S
vtx

x =
+ ''

(Assumption) (3)

It is worthy to remark the minus sign of the denominator of equation (2) was replaced by a 
plus sign in equation (3) to account for the fact that, for an observer from system B, system A
moves towards the direction of the negative x’-axis of system B .
 
We can write the above relationship as follows

( )vtxSx −=' (4)

( )'' vtxSx += (5)

To find the expression for the scale factor we start from equation (4) where we substitute x 
with the second side of equation (5), this gives

( )[ ]'vtvtxSSx +−= (6)
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Solving for t’

( ) 'vtvtxS
S

x +−= (7)
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Now we differentiate with respect to time t 
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But dx/dt is the velocity wx of a body X with respect to the system A

dt

dx
wx ≡ (11)

Thus equation (12) can be expressed as
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Now we differentiate equation (4) with respect to t’ 

'''

'

dt

dt
Sv

dt

dx
S

dt

dx −= (13)

Now we multiply the first term of the second side by dt/dt

'''

'

dt

dt
Sv

dt

dt

dt

dx
S

dt

dx −= (14)

But the velocity of the body X with respect to system B is '
xw , which is given by

'

''

dt

dx
wx ≡ (15)

Thus substituting dx’/dt’ and dx/dt in equation (14) with the second side of equations (11) 
and (15), respectively, yields
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Now eliminating dt’/dt from equations (12) and (17)
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Now, we assume that body X is a photon. Then according to Einstein’s postulate (iii) an 
observer in system A and an observer in system B shall measure the same velocity, c, for the 
photon. Mathematically this is expressed as

cww xx == ' (20)

If we replace these two variables in equation (19) with the speed of light, c, we get

c

vc

v

c

S
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Solving for S yields we easily obtain the equation for the scale factor

2

2

1

1
)(

c

v
vS

−
=

(Scale factor for the Lorentz transformations) (22)

In the literature, the scale factor is normally denoted by γ (gamma). However. In the 
literature, there are no references as gamma being the scale factor of the transformation in the
sense we gave it here.

Thus we found the scale factor for this transformation is a function of the speed, v, between 
the two reference systems. Substituting S in equations (2) and (3) with the value given by 
equation (22) we obtain the x’ coordinate and the x coordinate of the Lorentz 
transformations, respectively

2

2

1

1'

c

vtvx

x

−
=

− (x’ coordinate’s equation of the Lorentz transformations) (23)
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+ (x coordinate’s equation of the Lorentz transformations) (24)

We can rewrite these equations, (24) and (25), in a more familiar way as follows

2

2

1

'

c

v

tvx
x

−

−=
(x’ coordinate’s equation of the Lorentz transformations) (25)

2

2

1

''

c

v

vtx
x

−

+=
(x coordinate’s equation of the Lorentz transformations) (26)

Thus we have proved that both the x’ coordinate equation and the x coordinate equation of 
the Lorentz transformations obey the Scale Law and we have also found the expression for 
the scale factor S. The Scale Law works perfectly well in this case because we have all the 
necessary information: i), ii) and iii) about the phenomenon under study.

3.2 Time Transformations

From equation (5)

'' tvx
S

x += (27)

'' xtv
S

x =− (28)

Substituting x’ with the second side of equation (4) we get

( )vtxStv
S

x −=− ' (29)

Multiplying by S both sides we get

( )vtxStvSx −=− 2' (30)

( ) ( ) vtSxSxvtSxSxvtxStvS 22222 1' −−=−−=−−=− (31)

( ) xSvtStvS 1' 22 −−= (32)
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Dividing by Sv both sides
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If we replace S in the above equation by the value of S given by equation (22) we obtain
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Now equation (34) can be expressed as
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In accordance with the Scale Law we can write this equation as follows
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S

c

xv
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2
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(t’ coordinate’s equation of the Lorentz transformations) (41)

Equation (40) can be written in a more familiar form as follows
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Similarly we could prove that
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In accordance with the Scale Law we can write this equation as follows
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Equation (40) can be written in a more familiar form as follows
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= (t coordinate’s equation of the Lorentz transformations) (45)

Thus the derivations of the time transformations are complete.

The Lorentz Transformations and the Scale Principle v1
Copyright © 2012-2014 Rodolfo A. Frino. All rights reserved.

9



4. Conclusions

This paper shows that the Lorentz transformations obey the present formulation: the Scale 
Law. More importantly, the scale factor for the transformation was found from the previous 
knowledge we had: a)  the Galilean transformations were known before the formulation of 
the theory of relativity; b)  the invariance of the speed of light was also known before the 
formulation of Einstein’s theory (Michelson-Morley experiments).  

In summary, the following table shows the Lorentz transformations we derived in the 
previous sections

Transformation
Type

Lorentz transformations
according to the Scale Law

Lorentz transformations

Space 
transformations

2

2

1

1'

c

vtvx

x

−
=

−

yy ='
zz ='

2

2

1

'

c

v
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−
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zz ='

Time
transformation

2

2

2 1
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v
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t

t
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=
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v
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Inverse space 
Transformations

2

2

1
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x

−
=

+
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2

2

1
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c

v
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Inverse time 
Transformation

2

2

2 1

1
'

'
c

v
c

xv
t

t

−
=

+
2

2

2

1

'
'

c

v
c

xv
t

t

−

+
=

Table 1: This table shows the Lorentz transformations
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By observing this table it seems that the Scale Law is just a different way of writing a natural
law such as the Lorentz transformations. However this is not the case for the following 
reasons:

a) The Scale Law was originally a Quantum Mechanical Formulation.

The Scale Law was originally a quantum mechanical formulation that, later on, was extended
to include both special and general relativity (including the following laws: Einstein’s 
relativistic energy, the Lorentz transformations and the Friedmann equation.)

Because special relativity is not explained by any quantum mechanical model, there is not 
known way of expressing the Lorentz transformations in terms of Planck units. However this 
does not means that the Lorentz transformations do not obey the Scale Law. On the contrary, 
it means that all we need to do is to rearrange the normal equations as we did above to show 
them in their fundamental form. Thus, there is much less work to do in cases like this one. 

b) In General the Fundamental Form of the Equation is Different to the Corresponding 
Normal Form.

For example when we apply the Scale Law to find the black hole entropy the corresponding 
equations turned out to be:

Fundamental form of the
law or constant according to
the Scale Law (dimensionless

equation)

How humans formulated
this law or constant

Black Hole
Entropy Formula 

B

BH

P k

S

L

R

π
1

2

2

= H
B

BH A
G

ck
S

4

3

=

Where 

R = black hole radius 

PL = Planck length

BHS = Berkenstein-Hawking’s black hole entropy

Bk = Boltzmann’s constant

Thus according to this Meta Law, the law for the black hole entropy is explained in terms of 
the two ratios: 22

PLR  and BBH kS  and a scale factor, 1/π (for the derivation of the formula 
see [4]). 
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The conclusion is that, in general, the fundamental form for the equation (in this case the 
equation shown on the second column of the above table) looks very different to the 
corresponding normal form (in this case the Berkenstein-Hawking formula, third column of 
the above table). It is only when we carry out simple algebraic steps that we discover that the 
two forms are identical. 

c) The Interpretation is Different. 

This new interpretation means that all laws of physics and the mysterious fine structure 
constant were spawned by Meta Laws. In other words the laws of physics exist because of 
the existence of Meta Laws. 

This is a similar situation we encountered in the past with respect to the Lorentz 
transformations. Both Lorentz and Einstein found the same transformations but they 
interpreted these transformations differently. Lorentz derived these equations assuming a 
contraction of the objects that were moving through the ether, while Einstein derived the 
same equations assuming that the speed of light was invariant. Because of this conceptual 
difference Einstein’s theory was a more general formulation.

One interpretation is to think we have hundreds of natural laws with no connection 
whatsoever among them. On the other hand, the other interpretation is to consider that behind
these laws there is a common origin - a Meta Law - that unifies the laws of physics and 
provides a deeper understanding of nature. We think that the latter interpretation is the 
correct one.
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