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Abstract

Multipath fading is one of the most common distortions in wireless communications. The simulation

of a fading channel typically requires drawing samples from a Rayleigh, Rice or Nakagami distribution.

The Nakagami-m distribution is particularly important due to its good agreement with empirical channel

measurements, as well as its ability to generalize the well-known Rayleigh and Rice distributions. In this

paper, a simple and extremely efficient rejection sampling (RS) algorithm for generating independent

samples from a Nakagami-m distribution is proposed. This RS approach is based on a novel proposal

density composed of three pieces of well-known densities from which samples can be drawn easily

and efficiently. The proposed method is valid for any combination of parameters of the Nakagami

distribution, without any restriction in the domain and without requiring any adjustment from the final

user. Simulations for several parameter combinations show that the proposed approach attains acceptance

rates above 90% in all cases, outperforming all the RS techniques currently available in the literature.

Index Terms

Multipath fading, Nakagami random variables, rejection sampling.

I. INTRODUCTION

The Nakagami-m probability density function (PDF) was proposed in 1960 by Nakagami as

an empirical model for the amplitude of the received samples in wireless radio communications

subject to multipath fading [1]. This PDF is characterized by two parameters: the fading or shape

parameter, m, which indicates the fading depth, and the average received power, Ω. Nakagami’s

This work has been partly financed by the ERC Grant SEDAL, ERC-2014-CoG 647423.
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fading model has been widely used to describe the wireless fading channel due to its good

agreement with empirical channel measurements for some urban multipath environments [2],

[3]. Moreover, the Nakagami PDF can be used to generalize or approximate several situations

and densities common in wireless communications: worse-than-Rayleigh fading for 0.5 ≤ m < 1,

Rayleigh fading for m = 1, and less severe fading (e.g., Rice fading) for m > 1.

On the one hand, several schemes for simulating the correlated Nakagami fading channel have

been proposed [4]–[8], but all of them present limitations that may restrict their use in some

practical situations. On the other hand, the generation of independent Nakagami RVs is also

frequently required, e.g., to simulate the performance of channel estimators, systems operating

under slow fading conditions or independent fading branches in diversity systems [9]. Moreover,

several approaches for the generation of bivariate or multivariate Nakagami random variables

(RVs) are based on drawing a sequence of independent samples first and then performing some

transformation [8], [10]. Hence, several simple acceptance-rejection methods using different

proposal densities with increasing accuracy have been recently proposed [9], [11], [12]. Currently,

the best results are provided by [12] using a Gaussian PDF as the proposal density. This approach

achieves acceptance rates close to one for small values of m, that fall down to 70% for m ≥ 4

without truncation and 80% truncating the proposal in the range [0, 4Ω]. Unfortunately, this

truncation prevents their approach from drawing samples from the tail of the Nakagami PDF,

which can be important for some applications, such as co-channel interference problems [6].

In this paper we build on this work, designing an extremely efficient acceptance-rejection

method for Nakagami RVs using a piecewise monotonic proposal density composed of three

different pieces: two truncated Gaussian PDFs and a decaying exponential PDF. Our proposal

density is based on well-known PDFs, from which samples can be easily and efficiently drawn

[13], is valid for arbitrary average power and fading factors, and provides a very good fit of

the target PDF, obtaining acceptance rates above 90% in all cases, which are the best ones ever

reported in the literature. Furthermore, unlike previous approaches (e.g., [9], [12]), we attain this

high acceptance rate without any truncation (i.e., our proposal provides truly Nakagami RVs) and

without requiring any adjustment from the final user (i.e., the algorithm proceeds automatically

once the parameters of the Nakagami distribution are provided).
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The rest of the paper is organized as follows. First of all, Section II briefly reviews the

standard RS algorithm and the Nakagami PDF. Then, Section III details the construction of the

novel proposal density specifically designed for the Nakagami PDF. In Section IV, the practical

implementation of the novel RS technique is introduced. In Section V, we derive an expression

for the theoretical acceptance rate of the proposed RS method and provide some considerations

about the optimal construction of the proposal density. Section VI shows numerical results for

several parameters of the Nakagami target PDF. Finally, Section VII provides the conclusions

and future lines.

II. REJECTION SAMPLING AND BACKGROUND

Rejection sampling (RS) is a classical technique for generating samples from an arbitrary

target PDF, po(x) = Cpp(x), known up to a proportionality constant Cp, using an alternative

simpler proposal PDF, πo(x), such that

Kπo(x) ≥ p(x), for some K > 0. (1)

Note that the application of RS requires the knowledge of a suitable value K in order to satisfy

the inequality above. Indeed, RS works by drawing samples from the proposal, x′ ∼ πo(x), and

accepting or rejecting them on the basis of the ratio p(x′)/[Kπo(x′)]. The standard RS algorithm,

which allows us to draw samples exactly from the target PDF, is the following:

1) Draw x′ ∼ πo(x) and w′ ∼ U([0, 1]).

2) If w′ ≤ p(x′)
Kπo(x′)

, then x′ is accepted. Otherwise, x′ is discarded.

3) Repeat steps 1–2 until the desired number of samples has been obtained from the target.

The key performance measure for RS is the acceptance rate (i.e., the average number of candidate

samples accepted out of the total number of samples generated),

ηa =

∫ +∞

−∞
pa(x)πo(x)dx =

∫ +∞

−∞

p(x)

Kπo(x)
πo(x)dx =

1

CpK
,

where pa(x) = p(x)
Kπo(x)

. The acceptance rate depends on how close the proposal is to the target

PDF: in the ideal case that πo(x) = po(x), then we can set K = 1/Cp and ηa = 1 (note

that 0 ≤ ηa ≤ 1). The acceptance rate determines the efficiency of an RS algorithm, since the
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number of samples required on average to obtain N valid samples is Na = N/ηa. Hence, low

values of ηa lead to a large number of samples being required on average, thus wasting time

and computational resources.

A. Nakagami Target PDF

In this work we concentrate on developing an extremely efficient RS algorithm for generat-

ing independent unidimensional Nakagami-m random variables. The Nakagami target PDF is

po(x) = Cp p(x), with normalizing constant

Cp =
2mm

ΩmΓ(m)
, (2)

and unnormalized target function

p(x) = x2m−1 exp

(
−mx

2

Ω

)
for x ≥ 0, m ≥ 1

2
, Ω > 0, (3)

where Γ(x) indicates the gamma function. Given a random variable X ∼ po(x), then Ω =

E{X2} (with E{·} denoting the mathematical expectation) represents the average received power,

and m = (E[X2])2

Var{X2} = Ω2

Var{X2} , (with Var{·} denoting the variance), is a fading parameter that

characterizes the fading depth of the channel: the smaller the value of m the higher the fading

depth. Note that m is a real number, greater than 1
2
. In the limit case of m = 1

2
, then po(x)

coincides with an half-Gaussian pdf.

III. PROPOSAL DENSITY FOR EFFICIENT REJECTION SAMPLING OF NAKAGAMI PDFS

As the proposal density, in this work, we consider a simple piecewise monotonic approximation

composed of three PDFs from which samples can be easily drawn. The motivation behind this

proposal comes from the shape of the Nakagami PDF, which can be seen in Figure 1. On the

one hand, the Nakagami target PDF is unimodal, but asymmetric w.r.t. the mode. Thus, we use

two different pieces for the proposal PDF on the left and right hand side of its mode in order

to better accommodate the different decay rates of the target on both sides. On the other hand,

providing a good proposal for the tail is critical in order to obtain a good acceptance probability

[13]. Hence, we introduce a third piece of the proposal PDF that provides a good fit of the target

as x→∞. From Figure 1, it can be seen that the number of intervals (three) is not arbitrarily
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chosen, but corresponds to the natural choice given the shape of the target, thus providing the

optimal trade-off between performance and computational cost. The full proposal PDF is then

given by πo(x) = Cππ(x), i.e., π(x) ∝ πo(x), with

π(x) = π1(x)I1(x) + π2(x)I2(x) + π3(x)I3(x), (4)

where πi(x) (1 ≤ i ≤ 3) is an exponential type function,

πi(x) = βi exp (−αi(x− µi)γi) , (5)

and Ii(x) (1 ≤ i ≤ 3) is an indicator function, that determines whether x belongs to an interval

Ei = [ei−1, ei) or not, i.e.,

Ii(x) =


1, x ∈ Ei,

0, x /∈ Ei.
(6)

The intervals used for the target PDF are the left hand side of the mode, E1 = [0, e1), its right

hand side, E2 = [e1, e2), and the tail, E3 = [e2,∞). In the first two intervals, we use a truncated

Gaussian density (i.e., γ1 = γ2 = 2), whereas in the third interval we use a decaying exponential

(i.e., γ3 = 1). The determination of the interval limits (e1 and e2), the remaining parameters

(αi, βi and µi for 1 ≤ i ≤ 3), and the normalizing constant, Cπ, in such way that we obtain a

proposal function suitable for applying the RS method, i.e., K = 1/Cπ, so that Kπo(x) = π(x)

and

π(x) ≥ p(x), (7)

is detailed in the following section. We build an hat function π(x) for the target p(x).

A. Proposal around the mode

First of all, note that, since the first two pieces of the proposal PDF are two truncated Gaussian

densities defined in E1 = [0, e1) and E2 = [e1, e2), the optimum choice for e1 is clearly the mode

of the Nakagami target PDF. Differentiating p(x) and equating it to zero, it is straightforward

to show that this mode is given by

xmax =

√
Ω(2m− 1)

2m
, (8)
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and we set e1 = xmax. Then, in order to have π(x) as close as possible to p(x) within E1 and E2,

while ensuring that π(x) ≥ p(x), we must have π1(xmax) = π2(xmax) = p(xmax). This implies

setting µ1 = µ2 = xmax and

β1 = β2 = p(xmax) = exp

(
−2m− 1

2

)(
Ω(2m− 1)

2m

) 2m−1
2

. (9)

Finally, in order to specify completely the proposal within the first two intervals we need to

determine α1 and α2. This can be easily done by noting that, π(x) ≥ p(x) within E1 and E2

implies that

ln πi(x) = ln p(xmax)− αi(x− xmax)2 ≥ ln p(x), (10)

for any x ∈ Ei with i ∈ {1, 2}. Hence, in order to obtain a valid proposal we must choose

αi ≤ L(x), (11)

for any x ∈ Ei with i ∈ {1, 2}, and

L(x) =
1

(x− xmax)2
ln
p(xmax)

p(x)
=

(2m− 1) ln(xmax/x)

(x− xmax)2
+
m

Ω

x+ xmax

x− xmax

. (12)

It is easy to check that L(x) is a strictly decreasing function, with L(0) → ∞ and L∞ =

limx→∞ L(x) = m/Ω. Therefore, in order to obtain the best possible fit between the proposal

and the target (while ensuring that π(x) ≥ p(x)) within the range covered by each piece of the

proposal, we must set α1 = L(e1) and α2 = L(e2). Regarding α1, recalling that e1 = xmax, with

xmax given by (8), it can be obtained explicitly as

α1 = lim
x→xmax

L(x) = lim
x→xmax

(2m− 1)[lnxmax − lnx] + m
Ω

(x2 − x2
max)

(x− xmax)2
. (13)

Applying L’Hôpital’s rule twice to remove the indeterminacies in the limit, (13) becomes

α1 = lim
x→xmax

−2m−1
x

+ 2mx
Ω

2(x− xmax)
= lim

x→xmax

2m− 1

2x2
+
m

Ω
=

2m

Ω
.

With respect to α2, it is obtained similarly, evaluating L(x), as given by (12), at x = e2:

α2 = L(e2) =
1

(e2 − xmax)2
ln
p(xmax)

p(e2)
, (14)

with e2 given by (20), as discussed in the sequel. Note that the conditions for αi, given by (11)

and (12), were derived in [12]. However, in [12] a single Gaussian is used for the proposal,
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π(x) = p(xmax) exp(−α(x − xmax)2). Hence, in order to obtain a valid proposal they need to

set α = L∞ = m/Ω, thus achieving a looser fit of the target and lower acceptance rates. In

order to improve the efficiency of their approach, they propose to truncate the target PDF within

the range [0, 4Ω]. This allows them to use α = L(4Ω), thus improving the efficiency of the

RS approach at the expense of generating truncated Nakagami random variables, which may

produce misleading results in the simulation of wireless communication channels, especially for

large values of m and small values of Ω. As an alternative, here we introduce a third piece in

the proposal that allows us to attain higher acceptance rates without resorting to truncation.

B. Proposal for the tail

The last piece, the truncated exponential PDF, is used to obtain a good approximation of the

tail of the Nakagami target PDF. The proposal considered is based on the fact that the function

V (x) = ln p(x) = (2m− 1) lnx− m

Ω
x2, (15)

is convex for any m ≥ 0.5 and Ω > 0, since V̈ (x) = −2m−1
x2 − 2m

Ω
< 0 for x ≥ 0, with

V̈ (x) denoting the second derivative of V (x). Furthermore, setting β3 = 1 we have ln π3(x) =

−α3(x−µ3) for x ≥ e2, and we can guarantee that π3(x) ≥ p(x) for x ≥ e2 simply by adjusting

lnπ3(x) to become the tangent line to V (x) at x = e2. It is straightforward to show that this

tangent line is obtained setting

α3 = V̇ (e2) =
2m− 1

e2

− 2m

Ω
e2, (16)

with V̇ (e2) indicating the first derivative of V (x) evaluated at x = e2, and

α3µ3 = V (e2)− V̇ (e2)e2 = (2m− 1)(ln e2 − 1) +
m

Ω
e2

2, (17)

so that finally

µ3 =
(2m− 1)(ln e2 − 1) + m

Ω
e2

2
2m−1
e2
− 2m

Ω
e2

. (18)
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C. Suggested choice of e2

The last element required for the complete definition of the proposal is the limit between the

second and third intervals, e2. A discussion about the optimal choice e∗2 is given in Section V

and Appendix A. Unfortunately, a closed-form expression for e∗2 cannot be found. However, an

efficient sub-optimal approximation can be easily obtained by noting that:

1) The point e2 should correspond to the beginning of the tail of the Nakagami PDF.

2) The right hand side tail of a density is necessarily convex by definition.

Therefore, we argue that e∗2 must satisfy the inequality e∗2 ≥ xin, with xin denoting the largest

inflection point in the Nakagami PDF, which guarantees that p(x) is convex for x > xin. It can

be easily found as the largest solution of d2p(x)
dx2 = 0, i.e.,

xin =
1

2

√
Ω(4m+

√
16m− 7− 1)

m
. (19)

Moreover, although setting e2 = xin provides satisfactory results, we have found out empirically

( by an exhaustive regression study) that an approximation of the optimal value e∗2 is given by

e2= ê∗2 = xin +
Ω

4m
+ amb + c, (20)

with a = −0.8, b = 0.1 and c = 1.2. This approximation is simple enough to be used in practice,

and provides an improvement in acceptance probability of 4 – 9 % w.r.t. using e2 = xin. The

loss w.r.t. the approximately optimal solution derived numerically is usually less than 2%. See

Section V and Appendix A for a comparison with the optimal value e∗2 and the alternative choice

e2 = xin (see Figures 2 and 9).1

1 Indeed, we have only noticed differences above 2% for very large values of Ω and small values of m, e.g., Ω = 100 and

m ≤ 2, where the difference in acceptance probability can rise up to 4 % (see Figure 9).
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IV. IMPLEMENTATION OF THE PROPOSED RS SCHEME

A. Drawing samples from the proposal PDF

First of all, we recall that the unnormalized proposal function is given by

π(x) =


π1(x) = β1 exp(−α1(x− µ1)γ1), 0 ≤ x < e1;

π2(x) = β2 exp(−α2(x− µ2)γ2), e1 ≤ x < e2;

π2(x) = β3 exp(−α3(x− µ3)γ3), x ≥ e2.

(21)

The parameters required to construct this proposal function, which have been derived in the

previous sections in order to be an hat function w.r.t. p(x), i.e., π(x) ≥ p(x), are summarized in

Table I. Note that all the parameters can be easily calculated and stored, the whole process is

automatic (i.e., it can be performed automatically given the values of m and Ω, without requiring

the user to adjust manually any parameter) and has to be performed only once before drawing

all the samples required. As an example, Figure 1 shows the target, p(x), our proposal, π(x),

and the proposal used in [12] for an unbounded domain, which fits the target PDF in a much

looser way, thus leading to worse acceptance rates.

i βi αi µi γi ei

1 x2m−1
max exp

“
−mx

2
max
Ω

”
2m
Ω

xmax 2 xmax

2 x2m−1
max exp

“
−mx

2
max
Ω

”
1

(e2−xmax)2
ln p(xmax)

p(e2)
xmax 2 xin + Ω

4m
− 0.8m0.1 + 1.2

3 1 2m−1
e2
− 2m

Ω
e2

(2m−1)(ln e2−1)+m
Ω e22

2m−1
e2
− 2m

Ω e2
1 —

TABLE I

PARAMETERS REQUIRED TO CONSTRUCT THE PROPOSAL PDF FOR THE REJECTION SAMPLING ALGORITHM.

Once the proposal PDF, πo(x) ∝ π(x), has been defined, one of the three truncated functions

with non-overlapping supports must be selected with probabilities proportional to their areas,

which can be easily obtained in a closed form. For the first region we have

A1 =
p(xmax)

2

√
π

α1

erf (
√
α1xmax) , (22)
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e1 e2

p(x)

π(x)

m = 1
Ω = 1

(a)

p(x)

π(x)

e1 e2

m = 2
Ω = 1

(b)

Fig. 1. Target function p(x) (continuous line), our proposal function π(x) (dashed line) and the proposal used in [12] for the

unbounded domain (dotted line). (a) Construction for m = 1 and Ω = 1. (b) Construction for m = 2 and Ω = 1.

where erf (x) denotes the error function.2 Similarly, for the second region we have

A2 =
p(xmax)

2

√
π

α2

erf (
√
α2(e2 − xmax)) , (23)

and for the last region

A3 =
1

α3

exp(−α3(e2 − µ3)). (24)

Finally, samples must be drawn from the selected piece of the proposal PDF. For the truncated

Gaussians there are many techniques available in the literature (see e.g. [14], [15]) that allow

us to draw samples efficiently, whereas samples can also be obtained easily from the truncated

exponential using the inversion method [13].

B. Proposed RS scheme

In this section, we outline in details the novel RS algorithm. Let us define the normalized

version of each piece, π̄i(x) = 1
Ai
πi(x). Hence, the complete proposed RS approach is the

following:

1) Given m and Ω construct the proposal PDF, given by (21), using the parameters in Table I.

2It is important to remark that the error function can be always evaluated with the accuracy required.
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2) Compute the selection probability for each piece of the proposal, Pi = Ai/(A1 +A2 +A3)

for 1 ≤ i ≤ 3.

3) Select the i-th interval of the proposal (1 ≤ i ≤ 3) with probability Pi.

4) Draw x′ ∼ π̄i(x) and w′ ∼ U([0, 1]).

5) If w′ ≤ p(x′)
πi(x′)

, then x′ is accepted. Otherwise, x′ is discarded.

6) Repeat steps 3–5 until the desired number of samples has been obtained from the target.

V. ACCEPTANCE RATE OF THE PROPOSED SCHEME AND OPTIMAL CHOICE e∗2

In this section, we show the expressions for the acceptance rate of the proposed algorithm.

First of all, note that the acceptance rate can be expressed as

ηa(e2) =

∫ ∞
0

pa(x)πo(x) dx,

=

∫ ∞
0

p(x)

π(x)
πo(x) dx,

= Cπ(e2)

∫ ∞
0

p(x) dx =
Cπ(e2)

Cp
, (25)

where pa(x) = p(x)
π(x)

denotes the probability of accepting a sample x drawn from πo(x),3 since

we have built π(x) such as π(x) ≥ p(x) for any value of x, Cp is given by Eq. (2), and

1

Cπ(e2)
=

∫ ∞
0

π(x) dx,

=

∫ xmax

0

π1(x) dx+

∫ e2

xmax

π2(x) dx+

∫ ∞
e2

π3(x) dx,

= A1 + A2(e2) + A3(e2). (26)

Hence, the acceptance rate finally becomes

ηa(e2) =
C−1
p

A1 + A2(e2) + A3(e2)
. (27)

Then the optimum value, e∗2, can be obtained by minimizing the discrepancy between the target

and the proposal within E2 and E3 , i.e., maximizing the acceptance rate ηa in these two intervals.

3Recall also that K = 1
Cπ(e2)

by design.
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Since π(x) ≥ p(x) ∀x > 0 by construction, and p(x) is fixed, e∗2 is given by

e∗2 = arg max
e2

{ηa(e2)},

= arg min
e2

{A2(e2) + A3(e2)},

= arg min
e2

{∫ e2

xmax

p(xmax) exp(−α2(x− xmax)2)dx+

∫ ∞
e2

exp(−α3(x− µ3))dx

}
,

= arg min
e2

{
p(xmax)

2

√
π

α2

erf (
√
α2(e2 − xmax)) +

1

α3

exp(−α3(x− µ3))

}
, (28)

where ηa(e2) denotes the acceptance rate considering E2 and E3 expressed as a function of e2,

A2(e2) and A3(e2) are the areas of the second and third pieces of the hat function given by (22)

and (23) respectively, and erf (x) denotes the well-known error function [16], [17]:

erf (x) =
2√
π

∫ x

0

exp(−t2) dt. (29)

Unfortunately, a closed-form expression for e∗2 cannot be found, since e2 appears in the limits of

the integrals and several parameters (α2, α3 and µ3) also depend on it. An approximately optimal

solution can be found through grid search and/or numerical integration (see also Appendix A).

By setting e2 = e∗2 the optimum value of the acceptance rate, ηa(e∗2), would be obtained.

Unfortunately, we cannot obtain an analytical expression for e∗2, but we can easily provide a

lower bound by using e2 = xin, with xin given by (19), or e2 = ê∗2 with ê∗2 given by (20). Fig.

2 displays the optimum acceptance rate and these two lower bounds as a function of m for

different values of Ω, showing that ηa(ê∗2) is quite close to ηa(e∗2), especially for the frequently

used normalized value Ω = 1.

VI. SIMULATION RESULTS

A. Histograms of the generated samples

First of all, in order to analyze the performance of the proposed algorithm we have generated

N = 5 · 105 samples using the hat function given by (21). Fig. 3 depicts two examples of the

Nakagami PDF, po(x) ∝ p(x): for m = 0.6 and Ω = 1 in Fig. 3(a), and for m = 2 and Ω = 1 in

Fig. 3(b). Fig. 3 also displays the normalized histogram obtained using the samples generated by

the RS algorithm. In both cases the histogram closely resembles the target density, both around
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Fig. 2. Optimum acceptance rate ηa(e∗2) [continuous line] and two lower bounds, ηa(xin) obtained using e2 = xin [dashed

line] and ηa(ê∗2) obtained using e2 = ê∗2 [dotted line], as a function of m for different values of Ω. (a) Ω = 0.1. (b) Ω = 1.

(c) Ω = 10. (d) Ω = 100.

the mode and the tails, showing that our approach is able to produce samples from the true PDF

without resorting to a truncated approximation, as required by certain methods to improve the

efficiency (e.g., the ones proposed in [9], [12]).

B. Approximation of the cumulative distribution

In order to confirm the good performance of our approach for the tails, Fig. 4 displays the

complementary cumulative distribution function (CCDF), F̄ (x) = 1 − F (x), for the same two
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examples in logarithmic scale. Fig. 4 shows the good match between the generated samples and

the Nakagami CCDF, with the discrepancies for F̄ (x) < 10−4 due to the limited number of

samples available. Indeed, the RS algorithm guarantees that samples are drawn from the target

PDF as long as π(x) ≥ p(x) for any value of x [13], [18]. Thus, in order to obtain a better

approximation of the tails, all what is required is a larger number of samples.

0 1 2 3 40
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0.4

0.6

0.8

x

Ω = 1
m = 0.6

po(x) ∝ p(x)

(a)

0 1 2 3 40
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0.6

0.8

1

1.2

x

m = 2
Ω = 1

po(x) ∝ p(x)

(b)

Fig. 3. Normalized histogram of the generated samples (N = 5 · 105) and the normalized Nagakami PDF, po(x) ∝ p(x). (a)

m = 0.6, Ω = 1. (b) m = 2, Ω = 1.

C. Acceptance Rate: comparison with [12]

We compute on the acceptance rate ηa (i.e., the number of samples accepted out of the total

number of samples generated), which is the efficiency measure commonly used to characterize

RS algorithms. Figure 5 shows the estimated acceptance rate η̂a (obtained drawing N = 106

samples from the Nakagami PDF; clearly, the number Np of samples from πo is a random

variable, and varies at each run)4 for several values of the fading parameters m and Ω. We

compare with the approach described in [12], which is the most efficient one currently available.

4 In order to generate N samples from the target via the RS technique, we need to draw Np ≥ N from the proposal PDF

πo(x). Hence, the simplest approximation of acceptance rate can be computed as bηa = N
Np

. More refined approximations are

discussed in Appendix B. For instance, we consider bηa = 1
Np

PNp
i=1

p(x(i))

π(x(i))
, where x(i) ∼ πo(x).
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Fig. 4. Empirical complementary cumulative distribution function (CCDF) obtained using N = 5 · 105 (continuous line) and

theoretical Nagakami CCDF (dashed line). (a) m = 0.6, Ω = 1. (b) m = 2, Ω = 1.

It can be seen that our technique is extremely efficient, providing the best results ever reported

in the literature, with acceptance rates above 90% in all cases and up to 97% in some cases,

whereas the efficiency of [12] falls down to 80% for m ≥ 4 in the truncated case (not shown),

and to 70% without truncation. This means that in order to generate N samples our approach

will never need more than 1.11 × N iterations on average for any combination of the fading

parameters, whereas the approach in [12] will need 1.25 × N iterations on average for m ≥ 4

in the truncated case, and 1.43×N without truncation.

D. Acceptance Rate: comparison with random samples generators from a Gamma PDF

Let us consider the Gamma density, go(x) = C1g(x), with G1 = βα

Γ(α)
,

g(x) = xα−1 exp (−βx) , x ≥ 0, (30)

where α > 0 is the shape parameter, β > 0 is the rate parameter and Γ(α) is the Gamma

function. Note that, if we are able to draw samples from go(x), then we can generate samples

from the Nakagami PDF po(x), indeed, if X ∼ go(x) we have that Z =
√
X ∼ po(x) with

m = α and Ω = α
β

. Thus, the problem is converted into finding an efficient Gamma random

number generator.
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Fig. 5. Acceptance rates bηa obtained using the proposed proposal (continuous line) and the one from [12] for an unbounded

domain (dashed line). (a) Fixing Ω (Ω ∈ {0.1, 1, 50}) and varying m. (b) Fixing m (m ∈ {0.6, 1, 10}) and varying Ω.

When α is an integer, an exact direct sampler is available (using α uniform random variables

and a logarithmic transformation) [13], [19]. However, for the general case when α is not an

integer, the problem of generating a Gamma random variable X is usually solved using also

a RS scheme. Several RS methods have been introduced [13], [19]. We compare the proposed

technique with the more efficient RS algorithms in literature for drawing from a Gamma PDF

[20], [21], [22]. Namely, we use the RS techniques [20], [21], [22] for drawing N samples x(i)

from the Gamma PDF and then obtain z(i) =
√
x(i). Thus, we also apply our technique for

generating directly z(i) for the corresponding Nakagami density. For the sake of simplicity we

consider β = 1, since, given X̃ ∼ G(α, 1), it can be easily shown that X = 1
β
X̃ ∼ G(α, β).

Therefore, after the square root transformation, we will have samples distributed according a

Nakanmi PDF with parameters m = α and Ω = α = m. The results are provided in Figure 6.

The proposed RS technique (shown with solid line) again obtains the greatest acceptance rate.

E. Variance of the acceptance rate estimator η̂a

Let us define the random variable Z = p(X)
π(X)

with X ∼ πo(x) (see also Appendix B), and

the estimator of the acceptance rate η̂a = 1
Np

∑Np
i=1

p(x(i))

π(x(i))
with x(i) ∼ πo(x). Then, we have
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Fig. 6. Acceptance rates bηa as function of m (recall that α = m, β = 1 so that Ω = m) obtained using the method introduced

in this work (continuous line) and three alternative RS samplers based on a Gamma random variable generation, [22] (squares),

[21] (triangles) and [20] (circles).

E[Z] = ηa and

var[η̂a] =
1

N2
p

Np∑
i=1

var
[
p(x(i))

π(x(i))

]
=

1

Np

var[Z]. (31)

Observe that Z is an estimator of ηa using only sample. Furthermore, note that var[Z] is a measure

of the discrepancy between π and p(x) (a smaller variance corresponds to a smaller discrepancy).

Hence, the value of var[Z] can be considered another index of performance. We have computed

approximately var[Z] (with N = 106) with the proposed method and the technique in [12], for

different values of m and Ω of the Nakagami density.5 The results are shown in Figure 7. The

proposed algorithm always provides a smaller value of var[Z].

VII. CONCLUSIONS AND FUTURE LINES

In this paper we have proposed an automatic rejection sampling (RS) algorithm to generate

independent samples from Nakagami random variables, which are required for simulating the

Nakagami-m fading channel, with arbitrary fading parameters. Our approach is based on a

novel proposal density composed of three pieces: two truncated Gaussians around the mode and

5 Given var[Z], we can obtain var[bηa] as 1
Np

var[Z]. Since Np ≥ N = 106, then we have directly an upper bound, var[bηa] ≤
1
N

var[Z].
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Fig. 7. The curve of the var[Z] in log-scale, where Z = p(X)
π(X)

and X ∼ πo(x) (see Eq. (31)) obtained with the proposed

method (continuous line) and with the technique in [12] for an unbounded domain (dashed line). (a) Fixing Ω ∈ {0.5, 1, 10}

and varying m. (b) Fixing m ∈ {1, 10} and varying Ω.

an exponential for the tail. The resulting algorithm is simple and extremely efficient, providing

acceptance rates above 90% for any value of the fading parameters (m and Ω), which are the best

ones ever reported in the literature. Furthermore, for certain values of m and Ω the proposed RS

scheme attains acceptance rates up to 97%, thus providing virtually exact sampling (i.e., sampling

without any rejection). Moreover, unlike some previous approaches, these high acceptance rates

are obtained without any truncation of the domain (i.e., we always provide samples from the true

target density) and without requiring any adjustment from the final user. Future research lines

include extending the method to the generation of multiple correlated Nakagami RVs. Another

possible extension is the design of an adaptive scheme for adjusting online the choice of e2, in

the same fashion of the techniques introduced in [23], [24].
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[18] W. Hörmann, J. Leydold, and G. Derflinger, Automatic nonuniform random variate generation. Springer, 2003.

[19] J. Dagpunar, Principles of random variate generation. New York: Clarendon Press (Oxford and New York), 1988.

[20] J. H. Ahrens and U. Dieter, “Computer methods for sampling from Gamma, Beta, Poisson and binomial distributions,”

Computing, vol. 12, pp. 223–246, 1974.

[21] D. J. Best, “Letter to the editors,” Appl. Stat., vol. 29, pp. 181–182, 1978.

[22] R. C. H. Cheng, “The generation of Gamma variables with non-integral shape parameter,” Appl. Stat., vol. 26, pp. 71–75,

1977.

[23] L. Martino and F. Louzada, “Adaptive rejection sampling with fixed number of nodes,” Communications in Statistics -

Simulation and Computation (to appear), pp. 1–11, 2017.

[24] L. Martino, “Parsimonious adaptive rejection sampling,” IET Electronics Letters, vol. 53, no. 16, pp. 1115–1117, 2017.

2017 DRAFT



20

[25] A. H. Sayed, Adaptive Filters. New Jersey, NJ (USA): John Wiley & Sons, 2008.

[26] S. O. Haykin, Adaptive Filter Theory (5th Edition). New Jersey, NJ (USA): Prentice Hall, 2013.

APPENDIX

A. Gradient descent approach for obtaining the optimal e∗2

Since the cost function to be minimized, J(e2) = A2(e2) + A3(e2), is convex, the optimal

acceptance rate can always be attained through a gradient descent minimization algorithm [25],

[26]. Mathematically, we can find an extremely close approximation to e∗2 iteratively as

ê2[n+ 1] = ê2[n]− ρn∇J(ê2[n]), (32)

where ρn is the step size parameter and ∇J(ê2[n]) denotes the gradient of J(e2) evaluated at

e2 = ê2[n], which is provided in Appendix A1. Note that, although the expressions for this

gradient are quite involved, this process has to be performed only once, during the initialization

stage of the algorithm. Therefore, the increase in acceptance rate obtained may be worth the

effort when a large number of samples have to be drawn, as it often happens in the evaluation

of wireless communication systems under fading conditions.

Fig. 8 shows two examples of the performance of the gradient descent algorithm using ê2[0] =

xin and ρn = 0.2×0.999n. In both cases the optimum value of e2 (obtained numerically through a

grid search) is attained after a moderate number of iterations (around 500 and 1600 respectively

for a stopping condition |ê2[n + 1] − ê2[n]| < 10−5). On the one hand, in the first case the

acceptance rate is only improved marginally w.r.t. using the value of e2 given by (20) (0.02 %

improvement), as shown in Fig. 9(a), so the optimization is not worth the effort. On the other

hand, in the second case the acceptance rate is improved substantially w.r.t. using e2 = ê∗2 (3.85

% improvement), as shown in Fig. 9(b), so the optimization is clearly worth the effort when the

number of samples to be drawn is large enough. Note that in both cases the improvement in

acceptance rate of using either e2 = ê∗2 or the gradient descent w.r.t. setting e2 = xin as given

by (19) is remarkable: around 6.71 % in the first case and up to 7.73 % in the second one.

1) Gradient of the cost function: The cost function that has to be minimized in order to obtain

the optimum value e∗2, is

J(e2) = A2(e2) + A3(e2), (33)
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Fig. 8. Convergence of the gradient descent algorithm using ê2[0] = xin and ρn = 0.2 × 0.999n (continuous line) to the

optimum value e∗2 obtained numerically through a grid search (dashed line). (a) m = 1.5 and Ω = 1. (b) m = 0.8 and Ω = 100.
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Fig. 9. Average acceptance rate as a function of e2 and acceptance rates obtained using e2 = xin as given by (19) (square),

e2 = ê∗2 as given by (20) [triangle] and the e2 obtained iteratively using the gradient descent algorithm shown in (32) (circle).

(a) m = 1.5 and Ω = 1. (b) m = 0.8 and Ω = 100.

where A2(e2) and A3(e2) are given by (23) and (24) respectively. Hence, the gradient w.r.t. e2

is simply

∇J(e2) = ∇A2(e2) +∇A3(e2). (34)
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The first gradient in (34) is given by

∇A2(e2) =
p(xmax)

2

√
π

α2

[
−erf (

√
α2(e2 − xmax))

∇α2(e2)

2α2

+∇erf (
√
α2(e2 − xmax))

]
, (35)

where

∇α2(e2) =
α3(e2)− 2α2(e2 − xmax)

(e2 − xmax)2
(36)

and

∇erf (
√
α2(e2 − xmax)) =

2√
π

(
(e2 − xmax)∇α2(e2)

2
√
α2

+
√
α2

)
exp(−α2(e2 − xmax)2). (37)

Regarding the second gradient, it is given by

∇A3(e2) = −
(

1 +
∇α3(e2)

α2
3

)
exp(−α3(e2 − µ3)), (38)

where

∇α3(e2) =
2m− 1

e2
2

+
2m

Ω
. (39)

B. Computation and variance of the approximated acceptance rate η̂a

Let us recall that the acceptance rate is defined as

ηa =

∫ ∞
0

pa(x)πo(x) dx,

=

∫ ∞
0

p(x)

π(x)
πo(x) dx. (40)

where πo(x) is the normalized proposal PDF and π(x) ∝ πo(x). Since, in order to generate N

samples from the target via the RS technique, we need to draw Np ≥ N from the proposal PDF,

a first estimator of the acceptance rate is η̂a = N
Np

. Observe that the Monte Carlo approximation

of the integral defining ηa is

η̂a =
1

Np

Np∑
i=1

p(x(i))

π(x(i))
, with x(i) ∼ πo(x). (41)
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This is a Rao-Blackwellised version of the previous estimator η̂a = N
Np

. Given the expression

in Eq. (41) and since x(i) are i.i.d. (realizations of a random variable X ∼ πo(x)), note that

E[η̂a] = ηa and

var[η̂a] =
1

N2
p

Np∑
i=1

var
[
p(x(i))

π(x(i))

]
=

1

Np

var
[
p(X)

π(X)

]
, X ∼ πo(x). (42)

Thus, if we define a random variable Z = p(X)
π(X)

, then we have E[η̂a] = E[Z] = ηa and var[η̂a] =

1
Np

var[Z]. Note that var[Z] is itself a measure of the performance of the RS sampler since

smaller value of var[Z] means that the hat function π(x) is closer to p(x) (hence the density of

Z accumulates probability mass close to 1). Finally, note that in the proposed RS method, we

can easily compute the theoretical value of the acceptance rate ηa, using Eq. (25) i.e., ηa = Cπ
Cp

,

where 1
Cπ

=
∫∞

0
π(x) dx = A1 + A2 + A3 and Cp = 2mm

ΩmΓ(m)
.
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