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Abstract
A new way of factorizing the Klein-Gordon equation is proposed, which applies to fields of any type. 
The spin one-half case leads essentially to the Dirac equation. However, a new interpretation is given, 
in which the occurrence of anti-particles is a consequence of the two-valuedness of the representations 
of the Lorentz group in Hilbert space. Boosts have in these representations an anti-unitary component 
which leads to a change of the norm of wave functions. Under a boost, a state originally at rest 
develops a positive-frequency component. While the mass of a wave packet is a conserved quantity, its 
energy transforms according to the law of special relativity.

Introduction
This note is motivated by the observation that many fundamental problems in Cosmology [1] might 
find a solution, if the concept of a negative gravitational mass is introduced [2].

The Klein-Gordon equation

∂∂m2x =0=P P−m2x  (1)

governs the behavior wave functions, ψ , in relativistic, non-interacting situations. It is invariant under 
inhomogeneous Lorentz transformations. It's abelian translational part implies the standard space-time 
dependence

e±i p x

, (2)

a pair of independent solutions, which can be characterized by the sign of the zero component of the 
wave vector p0. They are usually referred to as positive- and negative-frequency solutions.

For spin ½, Dirac achieved a full treatment by 'factorizing' the Klein-Gordon equation into two first-
order equations. However, for bosons no analogous treatment has been made, because there seemed to 
be no need to do so.

In this note we propose an analogous procedure for systems of arbitrary spin, which draws from, and 
modifies the structure of Dirac's treatment.
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Factorizing the Klein-Gordon Equation
The Klein-Gordon equation is quadratic in the infinitesimal time translation operator

 ∂0=−i P0 , (3)

but one would like to have an equation linear in P0 which would allow to obtain time dependence by a 
single integration. For a particle at rest this can be achieved directly and there are two solutions of 
positive and negative mass, which are the zero-momentum representatives of negative-and positive-
frequency states, respectively. At this point we refer to the concept that time translation is provided by a  
mass operator with a spectrum unbound for positive as well as negative values [3, 4] (see also below). 

To include moving particles we have first to consider these states in more detail. For the free states we 
have

m  p , n=e−i p x un p , (4)

where un(k) is a finite-dimensional spinor, which depends on the spatial components of p alone, 
because we have pμpμ =1. Conventionally, the time translational operator (3) is considered to be the 
(positive-definite) energy operator such that p0 is bound to be positive, whence the wave functions (4) 
are called negative-frequency states.

However, we have proposed that (3) is actually a mass operator with positive and negative eigenvalues, 
from which the energy operator is obtained by multiplying the mass eigenvalues with their sign [4]. 
Thus, henceforth we also call the negative-frequency states positive-mass states since we associate 
them with matter states. Positive-frequency states, which are conventionally discarded, are also called 
negative-mass states and are associated with anti-matter.

Negative mass states are obtained from (4) by applying the transformation PT, a simultaneous 
inversion of space and time, which is also a symmetry operation of Klein-Gordon equation (1). 
Obviously, it's representation in the complex state space is complex conjugation, Ī , an anti-unitary 
operator. Now consider the anti-hermitean operator,  , the vector of so-called infinitesimal rotations 
(actually basis elements of the Lie algebra of rotations) applied to the wave function. The scalar 
product P  corresponds to a rotation about the direction of the vector P by an amount of it's norm. 
The operator I P  , in addition, switches from positive- to negative-mass states and vice versa. Now 
we can setup the equation we are looking for:

P0−I P =m , with its adjoint P0I P =m . (5)

Here, ψ has a positive-mass component as well as a negative-mass one. With respect to this basis P0 is 
multiplied with the (2 by 2) identity matrix, while τ is also diagonal but multiplies the states with the  
sign of the mass. In contrast, Ī has zero's on the diagonal and one's as off-diagonal elements.

Applying the operator and its adjoint yields

P0−I P P0I P =P0 P0−I P I P =P0 P0− P 2=PP=m2 ,  (6)

which is the Klein-Gordon equation (1). The first equation uses the fact that the pμ's commute among 
themselves,  and with Ī , because they are hermitean, and because P0 commutes with  . The last 
equation uses τ2 = 1. The second equation follows from two facts: firstly, one has P = P , because 
a translation commutes with a rotation about its translation axis; secondly,  is anti-hermitean such 
that P  and I  P  simply undo each others rotation. The remaining Ī2 yields the unit operator. 
Now, the need to add the operator Ī to the space-translational part in (5) becomes evident. It insures that 
the operation of equation (6) yields the relativistic invariant Klein-Gordon equation.



Symmetry Considerations
The symmetry group of (1) is the Poincare group, consisting of translations in space and time and the 
invariant subgroup of Lorentz transformations. The plane wave states (2) are one-dimensional invariant 
states which, under a translation by a 4-vector s, are multiplied by the uni-modular factor

e
−i ps . (7)

That positive- and negative-frequency states combine owing to (5) poses no problem because this 
combination always involves the anti-unitary operation Ī .

The behavior under Lorentz transformations is somewhat more involved. Let us first consider the 
analogous group O(4) of proper rotations in 4-dimensional space, which leave the 4-Euclidean norm 
invariant. In contrast to translations, rotations do not leave plane waves invariant but transform them 
among themselves, such that waves with wave-vectors of equal (Euclidean) norm are exchanged.

O(4) is a direct product of two groups which are each isomorphic to O(3) [5]. For the first one, the 
generators correspond to selecting the three distinct possible double-pairs of coordinate axes and to 
performing an infinitesimal rotation among the axes of the one pair combined with a rotation by the 
same amount among the remaining two axes of the second pair. To obtain the corresponding element of 
the second factor group, the rotation among the two remaining axes has to be in the opposite sense. 
Now, if we introduce circular parameters, φ, in these groups we see, that the effect on the above 
described transformations corresponds to rotations about only half of the value of the circular 
parameter [5]. Thus, considering the representation in Hilbert space, upon completion of a full circle in 
one of these factor groups we end up in a plane wave with inverted k-vector, or equivalently in the 
complex conjugate wave. This signifies that transformations in Hilbert space make up a two-valued 
representation of O(4).

Now, we look at two plane waves, W(p), with p-vectors along a given, say, the 0-direction (p0 = ±l). 
There is the subgroup of rotations (in 1-2-3 space), the so-called little group, L, of p, which do not 
affect these p-vectors. Now consider a rotation, RL,  in an arbitrary plane in 1-2-3-subspace. This 
rotation can be combined with a rotation, Rp, among the orthogonal axis (within 1-2-3 space) to the 
chosen rotation plane (of RL) and the p (i.e. 0) -axis. If the rotation angles in the two planes are equal or 
opposite this combination of rotations is exactly a member of one of the factor groups of O(4).Thus, 
simultaneous rotation by an angle of π, in the two planes, completes a full circle in either of the factor 
groups, which means that we are back to the unit operator of O(4). However, in the space of plane 
waves we end up with the complex conjugate, W(-p), of both waves, which is a purely anti-unitary 
operation. A rotation by 2π, corresponding to two full circles in a factor group, restores the original 
waves and is thus the (unitary) unit-operation. Therefore, rotations by a different value lead to a 
combination of a unitary operator (diagonal part) and a anti-unitary one (off-diagonal part):

cos

2
1 0

0 1I sin 

2
0 −1

1 0  , (8)

where φ is the corresponding circular parameter in a factor group. Here, it is understood that the 
direction of p of the pair of waves follows the O(4) transformation in the usual way.

If the rotations in the two planes are by a different amount, we can always first perform a rotation in the 
chosen plane (in 1-2-3 space) by such an amount that the remaining angle is equal or opposite to the 
second-plane rotation-angle (by a partial rotation RL). This is an element of the little group which 
leaves the p's unchanged. What then remains is a pure transformation of the above described nature.

Now we can also see what happens in the case of Lorentz transformations. Formula (8) changes to



cosh w1 0
0 1I sinh w 0 1

1 0 . (9)

The “rotation” Rp involving the p (i.e. 0) -axis now corresponds to a boost, cos and sin are replaced by 
cosh and sinh with an argument, w, now acyclic, which varies in the interval from minus to plus 
infinity, and which we can conveniently represent by

w= 1
2

artanh v  , (10)

to make connection with the speed, v, with respect to the rest-system.

We call pure-boost transformations those, that also include a simultaneous rotation about the boost 
direction by an amount of  ±πv/2, such that a rotation by  ±π/2 is achieved when v approaches the speed 
of light (v → 1). Loosely speaking, these are the transformations in direction towards the PT-point in 
the space of Lorentz-transformations.

Now, a pure matter state at rest W(l,0,0,0) , W(-l,0,0,0) = 0, is boosted (in 1-direction for simplicity) to

cosh wW l cosh w , l sinh w  ,0,0sinh w W −l cosh w  ,−l sinhw  ,0,0 . (11)

There are a few points to emphasize here:

– Representations of boosts mix positive- and negative-frequency states.

– Complex conjugation is a naturally occurring operation in Hilbert space, compare (5).

– The conventional norm, N, in Hilbert space is not conserved with boosts.

– Instead we have N 2=cosh2 wsinh2 w =cosh 2w = 1

1−v 2
= (12)

The last points are especially remarkable, because they lead to a new interpretation of the wave 
function. Consider the mass operator M =P0=i∂0 which produces a value p0 in the negative-
frequency subspace and -p0 in the positive-frequency one, such that its expectation value for a pure 
matter state (no positive frequency component at rest) wave packet is (appreciate the Lorentz 
contraction!)

〈M 〉=
p0


[cosh2 w−sinh2 w ]=m , (13)

where we have used

p0=m  . (14)

This is precisely the rest mass m of the particle, a scalar conserved under orthochronous Lorentz 
transformations. For an antiparticle (pure positive-frequency state at rest) the result is <M> = -m. Here 
we can also see the effect of splitting the proper Lorentz transformations into an orthochronous and a 
space-time reversing part which involves the space-time inversion (PT). The orthochronous 
transformations mix positive and negative-frequency components of the wave function but conserve the 
scalar rest-mass (including it's sign) which is expressed in the “Pythagorean”-formula of the hyperbolic 
functions in (13).

The energy is obtained by multiplying the contribution of  the antimatter component by minus one [4],  
which yields



〈E〉=
p0


cosh2 w sinh2 w = p0=m , (15)

equally for matter and antimatter states.

The interpretation of the wave function is now such, that there is a matter- and an antimatter 
component. Under the acceleration of a boost, a particle originally at rest develops an anti-matter  
component, according to the above described transformation. One may object, that a boost just 
switches to a new inertial state, and there is no way to decide whether the particle has been accelerated.  
However, this is an incomplete view, because every mass at rest has associated with it a stationary 
gravitational field and an acceleration brings it locally out of equilibrium with that field.

Incidentally, this consideration clarifies (in our view) the so-called twin paradox [6] of special relativity  
because the differing world lines of two bodies (twins) can only be brought together more than once by 
intermediate acceleration. But acceleration decreases the length of a world line (local-time interval) [6]  
between the two crossing events, and we can distinguish the acceleration of  each body.

Particles with Internal Degrees of Freedom
Up to now we have just considered the case of a scalar particle. However, elementary particles may 
have internal degrees of freedom, which are described by an irreducible representation under Lorentz 
transformations. These representations are characterized by a pair of non-negative half-integers (k, l) 
and have dimension (2k+1)(2l+1), while (l, k) is the complex-conjugated representation. Thus, when 
positive-mass states transform according to a (k, l) representation, the associated negative-mass states 
transform with a (l, k) representation, e.g. for spin ½ we have k = ½, l =0. For this latter example 
exponentiation of an infinitesimal pure boost is still rather simple owing to the properties of Pauli-
matrices, σi

2 = 1, which yields

v 2=v2 . (16)

Transformation (9) becomes in this case

cosh w1 0
0 1I sinh w  0 1

1 0  . (17)

This may be compared with the conventional treatment (Dirac-spinor formalism, see e.g. [7]) which 
insists in having strictly negative-frequency states. This, at the cost of introducing particles and anti-
particles as separate entities, the latter having unphysical negative energies.

Obviously, for higher-dimensional representations exponentiation of infinitesimal boosts becomes 
rather tedious and a thorough treatment is not within the scope of this short note.

Zero-Mass Case
The zero-mass case is more delicate, because there is no direct analog in the O(4) situation. Here, we 
restrict ourselves to a few remarks.

The time-translational operator  must also have an unbounded spectrum. There must be positive and 
negative frequency states. However, there are no states at rest. Furthermore, it appears that no half-odd-
integer (fermion) zero-mass fields are found in nature. It is an interesting question, whether this might 
be a consequence of the Lorentz symmetry of the wave equation (5).

Regarding negative-mass states of zero rest-mass systems, we may just mention, that the wave equation 



for photons has two types of solutions, in which the Poynting vector is either parallel or anti parallel to 
the wave vector. On the grounds that the Poynting vector describes the energy flow, the latter are 
conventionally dismissed as unphysical. However, if the Poynting vector is interpreted as mass flow, 
the energy flow of the negative-mass states points in the opposite direction to the Poynting vector and, 
hence, also in the direction of the wave vector. Thus, in the view presented here, anti-photons are to be 
expected in nature, though they would only be emitted or absorbed by anti-matter and not by matter.  
Consequently, one might speculate that the conspicuous cosmic voids, which fill about half the 
universe, may just be occupied by an anti-matter equivalent to the observed Cosmos [8].
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