
_____________________________________________________________________________________________________ 
 
*Corresponding author: Email: eytansuchard@gmail.com, eytan_il@netvision.net.il; 
 
 

 
 
 
 
 
 

Electro-Gravity Via Geometric Chronon Field 
 

Eytan H. Suchard1* 
 

 

ORIGINAL PAPER AT: PHYSICAL SCIENCE INTERNATIONAL JOURNAL 
DOI: 10.9734/PSIJ/2015/18291 
http://sciencedomain.org/abstract/9858 
THANKS TO THE PROFESSIONAL PEER REVIEW PROCESS THAT HAD 
SIGNIFICANTLY IMPROVED THE PAPER. INCLUDED: SMALL CORRECTION AND 
REMARK ON THE MAJORANA CHARGELESS FIELD 
 
ABSTRACT 
 

Aim: To develop a model of matter that will account for electro-gravity. 
Interacting particles with non-gravitational fields, can be seen as clocks whose trajectory is not 
Minkowsky geodesic. A field in which a small enough clock is not geodesic, can be described by a 
scalar field of time whose gradient has non-zero curvature. The scalar field is either real which 
describes acceleration of neutral clocks made of charged matter or imaginary, which describes 
acceleration of clocks made of Majorana type matter. This way the scalar field adds information to 
space-time, which is not anticipated by the metric tensor alone. The scalar field can’t be realized as 
a coordinate because it can be measured from a reference sub-manifold along different curves. In 
a “Big Bang” manifold, the field is simply an upper limit on measurable time by interacting clocks, 
backwards from each event to the big bang singularity as a limit only. In De Sitter / Anti De Sitter 
space-time, reference sub-manifolds from which such time is measured along integral curves, are 
described as all events in which the scalar field is zero. The solution need not be unique but the 
representation of the acceleration field by an anti-symmetric matrix, is unique up to SU(2) x U(1) 
degrees of freedom. Matter in Einstein Grossmann equation is replaced by the action of the 
acceleration field, i.e. by a geometric action which is not anticipated by the metric alone. This idea 
leads to a new formalism of matter that replaces the conventional stress-energy-momentum-tensor. 
The formalism will be mainly developed for classical but also for quantum physics. The result is that 
a positive charge manifests small attracting gravity and a stronger but small repelling acceleration 
field that repels even uncharged particles that measure proper time, i.e. have rest mass. Negative 
charge, manifests a repelling anti-gravity but also a stronger acceleration field that attracts even 
uncharged particles that measure proper time, i.e. have rest mass. 
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1. INTRODUCTION 
 
The motivation of this theory is to show matter is 
an acceleration field i.e. prohibition of inertial 
motion/free-fall of every small particle that can 
measure proper time. The scalar field is either 
real which describes acceleration of neutral 
clocks made of charged matter or imaginary, or 
partially imaginary with some condition which 
describes acceleration of clocks made of 
Majorana type matter. 
 
Non-geodesic motion as a result of interaction 
with a field, is not a geodesic motion in a 
gravitational field, i.e. it is not free fall.  Moreover, 
material fields by this interpretation prohibit 
geodesic motion curves of particles moving at 
speeds less than the speed of light and by this, 
reduce the measurement of proper time! The 
expression of such a field is thus by a field of 
time that is not part of the geometry of space-
time but rather adds new information to the 
space-time manifold by expressing how material 
force fields bend the curve of a small enough 
clock. This bending is not anticipated by general 
relativity but can account for a complementary 
field to the gravitational field and it offers a new 
expression of matter. In this paper, the author 
replaces the notion of a force field by an 
acceleration field. In fact, the covariant 
description of such an acceleration field is by an 
anti-symmetric matrix that is multiplied by the 
velocity vector in order to point to a perpendicular 
direction i.e. to an acceleration 4-vector. A 4-
vector of acceleration is only a representative of 
such a field, which as we shall see, leaves an 
SU(2)xU(1) degrees of freedom in the definition 
of the matrix. An acceleration can be seen as 
curvature of a particle's trajectory, however, we 
seek a formalism that will be independent of any 
specific trajectory. This goal can be achieved by 
an introduction of a very special scalar field, 
namely, a field of time. By the principles of 
General Relativity, no coordinate of time should 
be preferable and therefore any such scalar field 
should not lead to a realizable preferable 
coordinate of time. Also, because more than one 
curve can measure the same maximal proper 
time between a predefined reference sub-
manifold and an event, a definition of maximal 
time may not lead to unique integral curves. The 
theory that will be presented is a geometric 
interpretation of Sam Vaknin’s Chronon Theory 
[1] by a Godbillon-Vey [2],[3] curvature vector / 
Reeb vector. This vector is a part of the 
Godbillon-Vey 3rd order form and it belongs to 
the De Rham Cohomology. Locally, it offers 

foliations which their tangent bundle is the kernel 
of a 1-Form, namely the gradient of a scalar field 
of time. 
 
By the principle of parsimony, even the maximum 
time requirement is not necessary if the scalar 
field that defines proper time along curves, is 
emergent out of a mathematical formalism. Here 
we should introduce an equivalence relation. 
 
1.1 Avoidance of Closed Time-like Curves 
 
In this paper, the curves along which maximal 
proper time is measured do not contain 

backward travel in time. If two events  and  

are on a curve such that  is in the future 

relative to  then no geodesic exists between 

 and  such that  is in the future in 

relation to , otherwise the curve is excluded 

from the calculation of maximal time. 
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The equations of the presented theory may 
render this definition redundant. 
 
1.2 Geodesic Equivalence between 

Events 
 
Given a sub-manifold  in 1M M . Events in a set 

of events  are equivalent, if for each event 

 in  there exists an event  in  

such that the maximal proper time 

2M

2M2 Me

Max

1 Me 1M

 measured along curves that connect  to 

events in  is the same for each other event in 

, i.e. If the maximal proper time from event 

2 Me

1M

2M

2
~

Me  to  is to event 1M 11 
~ MeM  then the curve 

length in proper timer is also Max . The main 

interest of this paper is that for each Max , there 

exists a class  such that e  is a 

surjective map. 

2M

Max

1 M2 M e
  is subject to acceleration 

fields, i.e. to fields that prevent any small test 

particle from moving along geodesic curves.  

may not be unique and all such  sub-

manifolds of 

1M

1M
M  should be dictated by a physical 

law, i.e. a minimum action principle.  
Before we continue, we have to define the “big 
bang” as it embodies the most simple case of 

. Please note that  may not be a neat 1M 2M
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geometric object as a 3D sub-manifold. It can be 
a countable unification of such sub-manifolds. 
Big Bang: The Big Bang in this paper is a 
presumed event or manifold of events, such that 
if looking backwards from any clock -  “Test 
Particle”, at an event ‘e’ - that measures the 
maximum possible time up to ‘e’ then such clock 
must have started the measurement from the big 
bang as a limit. The Big Bang synchronizes all 
possible such clocks that measure the maximal 
time to any event from the past. The definition 
allows prior time even before such a manifold of 
events but requires that clocks will be 
synchronized on the "big bang" manifold or that 
the synchronization will be done by measuring 
the limit of time backwards to a "big bang" 
singularity. 
 
The idea of a test particle measuring time and 
even transferring time is not new, thanks to Sam 
Vaknin's dissertation from 1982 in which he 
introduced the Chronon field [1] in an 
amendment to Dirac's equation. Instead of 
defining the maximal time backwards to a single 
event, the definition can be to a sub-manifold, but 
to which sub-manifold and what if small test 
particles are not allowed to move along geodesic 
curves due to interactions with force fields ? 
 
The physical law that we reach will have to solve 
that problem too. 
 
An earlier incomplete paper of the author about 
this inertial motion prohibition in material fields, 
can be found [4]. 
 
In general, the Euler number of the gradient of 
the time field may not be zero [5]. To avoid such 
singularities, this paper harnesses some of the 
results known to belong to Lars Hormander by 
using Distribution Theory [6]. If our time field is 

 , we may consider a new scalar field P  

such that   is complex. ** PP
*

 avoids 

gradient field singularities where   becomes 

zero if the derivatives of   are discontinuous. 
 
If test particles are forced to move along non-
geodesic curves, i.e. experience trajectory 
curvature due to an external field, a 
mathematical formalism of such curvature will 
have to be developed and will replace matter in 
Einstein-Grossmann’s field equations, as such 
curvature fields become a new description of 
matter. It is quite known that acceleration can be 
seen as a curvature and therefore acceleration 
field is another interpretation of a curvature 

vector perpendicular to 4-velocity [7] though it 
leaves SU(2)xU(1) degrees of freedom. An 
acceleration field that acts on any particle, can't 
be expressed as a 4-vector because a 4-vector 
does depend on a specific trajectory and by Tzvi 
Scarr and Yaakov Friedman, such a field is 
expressible by an anti-symmetric matrix 

 AA   such that if is the normalized 4-

velocity and  then the 4-acceleration is 

actually  such that is the 

speed of light. 

V



1
VV

AC 2
a / V C

 
2. THE CLASSICAL NON-RELATIVISTIC 

LIMIT – MASS AT REST IN A 
GRAVITATIONAL FIELD 

 
2.1 Definitions 
 
Gravity: Gravity is the phenomenon that causes 
all forms of energy to be inertial if and only if they 
freely fall, including a projectile that starts 
upwards. All forms of energy including light 
appear to accelerate towards the source of 
gravity. Gravity is seen as a phenomenon that 
influences the metrics of space-time. 
 
Mass Dependent Force: A mass dependent 
force is a presumed force that accelerates any 
massive object that does not propagate at the 
speed of light and the force is mass dependent. 
The mass dependent force does not change the 
metrics of space-time. i.e. clocks in the field will 
not tick slower than clocks far from the field 
unless gravity coincides. 
 
An Acceleration Field / Non-Inertial Field: An 
acceleration Field is Mass Dependent Force that 
is not intrinsic to an object but rather appears as 
a property of space-time. Unlike gravity, it does 
not affect photons or any particle that propagates 
at the speed of light. The idea is that such a field 
affects measurement of time by prohibition of 
inertial motion of particles that can measure 
proper time. Non geodesic curves in Minkowsky 
space-time measure less time between events. 
As was already mentioned, an acceleration field 

is expressible as  and 


 VAca 2/

 AA   is locally similar to the Tzvi Scarr 

and Yaakov Friedman matrix [7]. 
 
Very important:  The acceleration field need not 
represent an interaction of a small test particle 
with the matter in which the field appears. As a 
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property of space-time, it can represent an 
interaction with the entire space – time.  
 
Caution: Although throughout the classical non-
relativistic limit sections of this paper, the author 
uses vectors to describe trajectory dependent 
representative acceleration vectors, an 
acceleration field can’t be described as a 
covariant field without the Scarr-Friedman [7] 

formalism  and . As 

an author, it is important to me to make sure that 
the reader fully understands that classical limit 
calculations are nothing more than classical limit 
calculations and the author is fully aware of and 
does not mix non relativistic and covariant 
formalisms!  


 VAca 2/ 1

VV

 
Motivation beyond this section: For the pedant 
physicist there is no point in presenting a 
potential intrinsic to a massive object and a non-
relativistic potential energy as the classical limit 
of a covariant theory. To such a reader, the 
author will say that the purpose of this paper is to 
replace the conventional energy momentum 
tensor  –  which is part of Einstein-

Grossmann’s field equation – by a tensor with 
fully geometric meaning. Recall Einstein-
Grossmann’s field equations in his writing 

convention as 

T




RgRT
C

K

2

18
4

  such 

that K  is the gravity constant, , the speed of 

light,   the Ricci tensor,  the metric 

tensor,  the Ricci scalar.  The 

replacement will be with a totally geometric 
tensor and thus will achieve a gravity equation 
which is geometric on both sides. To give a 

further clue, the author will say that  will be 

replaced by a tensor which is the result of a 

representative acceleration 

C
gR

R 



 Rg

T

2C

a .  
2C

a  seems as 

a curvature vector of a particle’s trajectory with 
units of 1/length but as such, it is an intrinsic 
property of the particle and not of a field. So 
eventually, we will have to derive our curvature 
vector from the gradient of a scalar field and not 
from the velocity of any specific particle. Since 
our new tensor is purely geometric, the constant 

4

8

C

K
 will be replaced by 1. To be more precise, 

the equation will be written as  8 or another 

value e.g.  4 and 







RgR
K

termsotheraa

C

K

2

1
)

_
(

8
4




 and in some special cases, where electric 
charge is not involved i.e. , a simple 

equation will be valid, 

0Q

R
a


4

a


C
  . In any 

case this implies that 
K

aa

K 


2a





can be 

construed as energy density and hopefully the 

reader is not annoyed by the sloppy notation .   2a
 
Using a potential field intrinsic to an object 
instead of correct covariant formalism and using 
gravitational pseudo-acceleration, the following 
will shed some light on the general intuition as to 
the expected relation between energy and 
acceleration fields although as a physical 
argument, it is not fully acceptable. We will now 
consider classical non-relativistic gravity and 
classical non-relativistic acceleration as 
qualitative limits that will hint at the relationship 
between non - inertial and non - geodesic 
acceleration fields and energy. Estimates will be 
discussed in the next section. The classical non-
relativistic and non-inertial acceleration caused 
by material fields will be denoted by 

),,( zyx aaaa  . By the principle of 

equivalence, we will calculate the integral of the 
square acceleration of a particle at rest which is 
accelerated because it is prevented from inertial 
motion, i.e. from falling in a gravitational field of a 
ball of mass. We will see how this value is 
related to classical potential energy. The 
qualitative hint starts with integration. K  is the 
constant of gravity, M  mass,  r  radii of a 
hollowed ball quite the way it is done in the 
electromagnetic theory  
 

 
4

Kdr









0

0 0

2
2

2

2
2  4

r

VolumeV r

KM
r

r

KM
dVa

    (1) 

 
Now we calculate the negative potential energy 

gE , 

 
M

E
r

KM
dm

r

Km










0 0

2

0 2 g                        (2) 

 
So from (1) and (2) 
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g

VolumeV

EdVa
K




2

8

1


                              (3) 

 
(3) qualitatively implies the following relation 
between energy and non-inertial acceleration 

where  is the energy density and 2 C   is the 

mass density 
 

K

a

K

a

DensityEnergy
C

K

C

a





842

1

_
 8

22

24

2




             (4) 

 
In special relativity, the square norm of a 
normalized by C , 4-velocity of a particle is 

constant  and also 1i
iuuN 2 

0
)(

),(,2 
k

i
ii

ik dx

uud
uuN k  such that 

Cd

dx
u

i
i   and the normalized by , 4-

acceleration is 

C

22

2

dC

xd
ai 

2

i

which is 1/length in 

units which is the curvature of a specific particle’s 

trajectory.  If was not the norm of a particle’s 
velocity, we could think of another way to 
describe acceleration. More or less, that will be 
the subject of more advanced sections of this 
paper. 

N

 
3. THE CLASSICAL NON-RELATIVISTIC 

LIMIT  – THE ELECTROSTATIC FIELD 
 
The following uses the standard definitions of 
electric and electrostatic fields. 
 
What can we say about the density of the 
electrostatic field?  We know it is 
 

20

2
_ EDensityEnergy


                      (5) 

such that 0  is the permittivity of vacuum 

and E is the electrostatic field.  (4) has a very 
deep meaning which is, that acceleration of 
neutral charge-less test particles should appear 
also within an electric field. That is because 
acceleration of all small enough rest mass due to 
the existence of a field, is assumed in this paper 
to be the reason of all energy densities including 

the electric field. Prohibition on geodesic 
Minkowsky motion can be concentrated as an 
acceleration field in some areas around electric 
charge and may not be well distributed, however, 
such argument is less appealing if we consider 
the principle of parsimony. 
 

EKaE
K

a
0

20
2

4
28





           (6) 

 
Definition: The constant that divides the non-
geodesic square acceleration is called "Electro-
gravity constant". In this paper we choose as an 
educated guess K8 . In general we can write 

our guess as  8  so (6) becomes: 
 

E
K

aE
K

a

22
020

2 


               (7) 

 
Other constants yield different theories and have 
dramatic cosmic consequences. (6) implies a 
very weak acceleration i.e. mass dependent 
force on small enough charge-less neutral test 

particles, about  in a field of 
1000000 volts over 1 millimeters distance. See 
Timir Datta et. al. work as an elegant way to 
focus field lines by metal cone and plane and to 
observe the effect [8], however, in this paper we 
shall see that there is another effect due to 
gravity and therefore the acceleration in (6) is not 
the only effect that has to be taken into account. 
The acceleration in (6) exposes non-inertial, non-
gravitational acceleration of particles that can 
measure proper time. On its own, it is not an 
interesting acceleration but it can explain the 
electric interaction as repulsive when the 
integration of the square acceleration increases 
and attractive when this integration is reduced. 
The author believes the acceleration of charge-
less particles in an electric field is from positive to 
negative. 

2sec/61.8 cm

 
In “Electro-gravitational thrust, Dark Matter and 
Dark Energy” it will be shown that there is an 
electro-gravitational effect opposite in direction to 
the acceleration of an uncharged particle in an 
electro-static field. There is at least informal 
evidence that the elecro-gravitational effect 
shows thrust of the entire dipole towards the 
positive direction [9] and the author does not 
imply asymmetrical capacitors of 1 - 0.1 Pico-
Farad with 45000 Volts. Such capacitors 
according to the calculations in the section 
“Electro-gravitational thrust, Dark Matter and 
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Dark Energy” in this paper, can’t manifest any 
measurable effect of at least 1 micro Newton 
thrust. Here is a testimony of Hector Luis 
Serrano, a former NASA physicist in reply to 
Peter Liddicoat: “Actually by the generally 
accepted definition of what constitutes high 
vacuum 10^-6 Torr is about in the middle. This 
pressure is about equal to low Earth orbit. More 
importantly at this pressure the ‘Mean Free Path’ 
of the molecules in the chamber is far too great 
to support Corona/Ion wind effects. We’ve tested 
from atmosphere to 10^-7 Torr with no change in 
performance either. However, I’m glad the results 
have you thinking. It looks simple, but trust me 
it’s not”. 
 
3.1 Serious Experimental Problem – 

Electron Mobility 
 
The down side of the non-geodesic acceleration 
is that it is about 10 orders of magnitude smaller 
than the accepted and known electric field 
interaction. For example, negative charge 
suspended above the Earth will cause charge to 
move in the ground. This charge will have a 
much stronger effect than the interaction with the 
acceleration field as is, and will cause a shielding 
effect i.e. the fields will cancel out within the 
Earth. Even the almost ideal insulator, i.e. 
diamond crystals, have impurities such as 
Nitrogen Vacancies [10] that allow charge 
carriers to move in the lattice i.e. high electron 
mobility. In the most pure diamonds the NV 

impurities are about  nodes per  

comparing to  carbon atoms per 

. The donor electrons lie deep in the band 
gap of 5.47ev, at about 1.7 ev.  

1810
2310

3cm
77.1 x

3cm

 
4. THE NON-GEODESIC ACCELERATION 

FIELD 
 
The author’s strategy in developing the idea of 
an acceleration field that is not gravity is as 
follows: 
 

1) The curvature vector of the gradient of a 
scalar field will be developed. If the 
meaning of the scalar field is that it is 
proper time, measured along different 
curves from a reference sub-manifold, then 
non-zero curvature vector means 
acceleration. The trajectory of any small 
enough clock that measures non-zero 
proper time will not be parallel to any 

geodesic field as it interacts with material 
fields. 

2) A specific 4-vector can’t account for an 
acceleration field because we need a 
representation that does not depend on 
any specific velocity 4-vector. Such an 
acceleration is exactly Zvi Scarr and 
Yaakov Friedman matrix [7]. A basic 
singular matrix will be developed. It is 
singular because 2 vectors are not enough 
to describe rotation and scaling in 
Minkowsky space-time. There are still at 
least two more degrees of freedom and if 
our curvature vector is complex then there 
are SU(2)xU(1) degrees of freedom. 

3) We develop a non-singular acceleration 
matrix in which there is SU(2)xU(1) 
degrees of freedom. 

4) We represent the gradient of our scalar 
field of time by means of the perpendicular 
foliation and show an additional SU(3) 
degrees of freedom. Although 
SU(3)xSU(2)xU(1) is the symmetry group 
of the Standard Model, it is shown in this 
paper to be a result of geometry and not of 
any second quantization technique. 

5) We explore more scaling degrees of 
freedom in the definition of the time field. 

6) We use the square norm – the second 
power of the Minkowsky norm – of the 
curvature field as an action operator that 
can replace the material action in Einstein-
Grossmann-Hilbert action. 

7) We show that the Euler Lagrange 
equations lead to a new term that 
expresses the divergence of the curvature 
field. This divergence is attributed to 
electric charge because an electric field is 
a form of energy for which the simplest 
explanation is a very small acceleration of 
even uncharged small clocks along 
electro-static field lines. So electric 
interaction is predicted as either increasing 
or decreasing the energy of the 
acceleration field. 

8) The interpretation of charge is of having 
two unpredicted fields, an acceleration field 
and an opposite weaker gravitational field. 
Electrons are predicted to manifest 
attractive acceleration field and a weaker 
repulsive gravity. Free intergalactic 
electrons are thus prime candidates for 
Dark Matter. 

9) Warp drive is mentioned as a result of very 
large charge separation. Implementation 
by radio photons as possibly behaving as 
oscillating pairs of virtual +e and –e charge 
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is only briefly discussed though even slight 
imbalance of such virtual charge 
distribution is equivalent to large amounts 
of ordinary separated charge and may 
therefore account for Roger Shawyer’s 
EMDrive, Warp Drive, experiments by Dr. 
David Pares from Nebraska and for 
NASA’s approval in the late news that 
EMDrive indeed involves Warp Drive 
effects. This idea also offers energy 
production promises to developing 
countries by Dennis Sciama inertial 
induction. This idea will be reminded. 

10) The time field in Schwarzschild solution is 
discussed. 

11) Ideas of how to extend this theory to 
quantum mechanics are offered by 
stochastic calculus. 

 
It is first required to achieve a curvature field 
without resorting to Tzvi Scarr and Yaakov 
Friedman representation [7] that is required for a 

general acceleration field.  such that 

if 
 
is the 4-velocity such that 

 
 then 

the 4-acceleration is actually 

 AA 


VVV 1




 VA
2c

a
.  In 

special relativity 
 

22 /1

/,/,/,1

cv

cvcvcv
V zyx


  

such that zyx ,, are the well known three 

dimensional Cartesian coordinates,  

are three dimensional velocity coordinates,  the 
speed of light. The first coordinate is 

zyx vvv ,,
c

2c2 /1/1 v is the speed along the time axis. 
 
The vector field that this paper uses is the 
gradient of the scalar field of 

time,  dx

dP
PP ,  and it will replace the 

velocity vector of specific particles. Please note 
that due to intersection of different curves, 






*PP

P
 is not a velocity, however it is a unit 

vector and 
2*










U

PP

P
A   should 

emerge for some vector  that replaces 

acceleration. The following is simply an exercise 
in differential geometry. Considering a scalar 

field 

U

P

 

and its gradient  dx

dP
P   in covariant 

writing, such that  are the coordinates, find 
the second power of the curvature of the field of 

curves generated by 

dx

 dx

dP
P  . It is a problem 

in differential geometry that can be left for the 
reader as an exercise.  However, if the reader 
wants to get the answer without too much effort 
along with some physical interpretations, he/she 
should read the following. 
 
The idea is to use a scalar field of time - that 
represents the maximum possible time measured 
by test particles - back to the big bang singularity 
as a limit or to a sub-manifold of events - and 
from this non -physical observable, to generate 
observable local measurements. 
 
The square curvature of a conserving vector field 
is defined by an arc length parameterization  
along the curves it forms. 

t

 
Caution:  This  may not be the time measured 
by any physical particle because the scalar field 
from which the vector field is derived may be the 
result of an intersection of multiple trajectories. 
However, a particle that follows the gradient 
curves will indeed measure t even if its trajectory 
is not geodesic. 

t

 

Let our time field be denoted by  and let  

denote the derivative by coordinates 

P P

dx

dP
P   

or in Einstein-Grossmann’s convention 

P P, . Let t  be the arc length measured 

along the curves formed by the vector field  

which may not be always geodesic due to 
intersections. By differential geometry, we know 
that the second power of curvature along these 
curves is simply 

P

 

 g
PP

P

dt

d

Pdt

d

k
k

k
k

)()(2  

P

P
Curv   (8) 

 

such that  is the metric tensor.  For 

convenience we will write 

g

k
k PPNorm    and  

 P
dt

d
P   . For the arc length parameter t . 
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Here it is the main trick,  may not be 

constant because  is NOT the 4-velocity of a 

specific particle, also but not only (see 

“APPENDIX  – The time field in the 
Schwarzschild solution”), due to intersections of 
more than one possible particle trajectory curve. 

Norm

P

 

Let  denote: W







k
k

k
k

gPP
Norm

P

PP

P

dt

d
W 

3
)(  

Norm

P
                                                                   (9) 

 
Obviously  

0
3


Norm

gPP

Norm

gPP
gPP

Norm

gPP

Norm

gPP
gPW

k
k

k
kk

k

s
s

k
kk

k





















                           (10) 

 
Thus 

2
2242

2 )(
Norm

PP

Norm

PP
gPP

Norm

gPP

Norm

gPP
WWCurv k

k

s
s





















                      (11) 

 

Following the curves formed by  dx

dP
PP  , , The term 

Norm

P

dt

dxr
  is the derivative of the 

normalized curve or normalized “velocity”, using the upper Christoffel symbols, 

s
rsrr PP

dx

d
P  ;   . 

 
Caution: Using normalized velocity, here has a differential geometry meaning but not a physical 
meaning because a physical particle will not necessarily follow the lines which are generated by the 

curves parallel to the gradient  unless in vacuum.   may result from an intersection of curves 

along which particles move but may not be parallel to any one of such curves intersecting with an 
event !!! 

P P

 

Norm

P
P

dt

dx
PP

dx

d
P

dt

d r

r

r
s

rsr
);()(     such that  denotes the local coordinates. If  is 

a conserving field then  and thus 

rx P

 ;; rr PP   ,
2

1
, 2NormPP r

r   and 

 

))
,

(
,,

(
4

1

)(

2
3

2

4

22

2
22

2

Norm

gPNorm

Norm

gNormNorm

Norm

PP

Norm

PP
Curv

sr
rs

k
k 














                                                            (12) 

 
We define the Curvature Vector 
 

mmm P
Norm

Norm

Norm

Norm
PU

4

2

2
m

2

2
i

i
i

i
m

P,,

)P(P

P),P(P

PP

),P(P











                               (13) 
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which from [7] and simple calculations, should have the meaning mm B
C

a
U 

22

1
  such that  

denotes a 4-acceleration field that will accelerate every particle, that can measure proper time, by an 

anti-symmetric matrix, and C is the speed of light and  is a rotation matrix, i.e. 

,   is a vector and  is the General Relativity metric tensor. The 

curvature itself does not depend on any specific acceleration since it is a scalar field. 

ma

mB 

k
k

i
i

m
m VVgVBVB 


mV g

 

m
mUUCurv

4

12                                                                                                                 (14) 

 

Obviously
 

 and therefore like 4-acceleration that is perpendicular to 4-velocity  is 

perpendicular to . In its complex form (13) becomes 

0
 PU

P
U

 

2
2 *ˆ and  Zand 

2

P*P*PP
Z

Z

PPZ

Z

Z
U

dx

dZ
N

k
k 







 




                   

(15) 

 

and by using )ˆ*ˆ*ˆˆ(
2

1 k
k

k
k UUUU   

 

))ˆ*ˆ*ˆˆ(
2

1
(

4

12 k
k

k
k UUUUCurv 

                                                                    

 (16) 

 

Obviously
 

. 0* 
 PU

 
Possible sources for an acceleration field: An acceleration field can be represented by the Tzvi 

Scarr and Yaakov Friedman [7] matrix as  
2

* 




U

PP

P
A

k
k

  such that     AA 

 
We may write this matrix explicitly by (15) and (16) and also require an additional scaling and 
reach the following anti-symmetric singular matrix 

2/1

 

2/
2

***

2













 U
Z

PUPPPU

Z

P
A

Z

UPPU
A 





    

 

So 
Z

PUU

Z

P
AA k

k 4

)*(
)*

*
(





  . It easily verifiable that 0)( ADet . What is required, 

however, is that . 0)( ADet
 
So we need a modified . On our path we will see symmetries that are usually achieved by second 

quantization and particle symmetries but with a very different geometric source. 
A
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5. THE STANDARD MODEL SU(3) x SU(2) x U(1) SYMMETRIES VIA THE GODBILLON-
VEY CLASS 

 
Caution: Please note, the following is NOT a quantum theory of the discussed acceleration field . 

The sole purpose of the following equations, is to show the degrees of freedom in the matrix 
representation of the acceleration field action.  

U

 
We now present the curvature quite closely to the Reinhart-Wood metric formula [2], 
 
















 ),(),(),(),()(
2

1

))
*

(
*

(
2

1

2 22

v

k
k

k
k

Z

P

Z

P

Z

P

Z

P

Z

PZ

Z

PZ

Z

Z

PPPZ

Z

PZ

Z

PPPZ

Z

PZ

ZZ

UPPU
A







     (17) 

 
 

For some conserving field . If the divergence of the real part  
  dxd / 02/);*(  

 UU

then we may still  have  which may be crucial if we want to describe Electro-Weak 

interactions.   It is easily verifiable that the exterior derivative

0; 
U

 dx
Z

P
dd )( , can be written with 

 dx
U

2
  by the Godbillon-Vey observation [2][3],  as 

 dxdx ^ 
 dxdx

Z

PU

Z

P
d ij ^

2
),()^(   with coordinates . Another observation 

is the Godbillon-Vey class, on the foliations whose tangent bundle is perpendicular to 

x

)(FT
Z

P
.  

)(^^ dxdx ^
2

,

2
)( 3 MHddx

UU
FGV  

 is closed on .  More important is the 

observation that  is the Reeb cohomology Class 

)(FT

][ U ][  . 

 
From Reeb it follows that the projection of the curvature vector  on the tangent bundle  of 

the foliations  that are perpendicular to , have a vanishing exterior derivative. In other words, 

  is a closed form on  i.e. 

U )(FT

F P

))(FU  F 0)(;(;  FU 

F

FU . . From (6) and the remark after (13) it 

follows that the rotor of the electric field should be zero on , but that is possible only if even photons 
are pairs of charged particles, possibly oscillating with a total zero dipole moment as indeed informally 
predicted by physicists such as Hans W. Giertz [11]. This conclusion, as will be discussed, regards 
very important late findings by NASA. It is worth mentioning that the expansion of the holonomy of the 

foliations is dictated by the norm of the Reeb vector [12] which in the real case is 
UU  and 

therefore this value is of great cosmological interest. 
 
Following is an offered complex form of (17), 
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)
2

**
(

4

1
))**()**((

16

1

...))
2

****
)(

2
((

4

1
)**(

4

1


























UUUU
UUUUUUUU

Z

UPPU

Z

UPPU
AAAA








         (18) 

which is the time field curvature action. In the real case where  *AA  we define  AF
2

1
  

and the action (16) takes the form  which reminds of the electro-magnetic theory but without 

the vector potential. As we shall see, this vector potential is indeed redundant because electric charge 
is a geometric phenomena. From the theory of Lie Algebras, 


 FF

exp()) 1)0(exp())(exp(   ATraceADet

)4()exp( SUA  A

 and therefore either  or 

depending on whether  is real or not. We proved that does 

rotate and scale 

)4()exp( SOA 







k
k gAA 

Z

P *
into . So by the Tzvi Scarr and Yaakov Friedman representation [7], for 

every test particle with rest mass and with velocity   and the speed of light  we have, 

2/U

V C
 








d

dV

CC

V
A

2

1
                                                                                                             (19) 

 

Just like  the term  U




d

dV

C 2

1
represents a curvature vector but of a specific particle related 

trajectory. 
 
We continue with the Tzvi Scarr and Yaakov Friedman acceleration representation [7] matrix and for 
simplicity we restrict our discussion to the real case.  is singular and we can easily define a 

matrix that rotates vectors in a plane perpendicular to both  and to . That is the matrix 

A

U  P
 


  AB     

2

1
                                                                                                          (20) 

 

 Where  is the Levi-Civita tensor (not symbol as the Levi-Civita symbol is a tensor density and 
not a tensor). It is easily verified that 

    

 

  








 
 

 
 

  
  ))(( BBAABABA 

 
and also 
 


























AAAAAAAA

AAAABB

ji
ijji

ji
ij

ji
ij

   

    
 

   
 

 

)(
2

1
))((

2

1
2

1

2

1




 

 

Therefore   









 AABBAABABA  

 
 

 
 

  
  2))(( 

j
i is the Kronecker delta. 
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    BAA 
 
or     BAA   and 

 

0))((   
   
 BABA                                                                                           (21) 

 
 
(21) is the matrix we have been looking for and it also results in an immediate degree of freedom in 

the representation of (16) but not in the matrix itself. In particular, 



~ rotations in [13] that do 

not affect  may be applied to . These rotations are in , 

)4(SU

  A  B )1(xU)2(SU 



 ~~

  BB  

and 





 
~~

 AA  . There is no  degree of freedom in 
 

itself but only in its 

representation vectors, i.e. gradient of a scalar and its curvature vector. 

)2(SU  B

 





  ~~
  BAA                                                                                                    (22) 

 
 

Dirac’s Monopole: If the reduction of  to the foliation tangent space  that  is the kernel of 

changes in relation to the point   in the axis system reduced to  ,then the determinant of 

kU )(FT

)kP



0 (FT





  ~~
 A B  preserves the same sign. 

 

For the real case, where , note that kk UU * 4/)()(
4

1
 

 
 

 2





 BBAAUUCurv k
k  .    

 

SU(3) degrees of freedom result from a way to represent 
Z

P
 with 3 scalar functions 

according to the Frobenius (foliation) theorem. The Lie brackets of 3 vector fields on a 

perpendicular foliation to 

)3(),2(),1( qqq

Z

P
, have to depend on the tangent bundle of the foliation  as 

follows, 

)(FT F

 

0))3(,)2(,)3()2(()3(,)2(,)1( 4)

 0))3(,)1(,)3()1(()3(,)2(,)1( 3)

  0))2(,)1(,)2()1(()3(,)2(,)1( 2)

   0)3()2()1( 1)

).3()3(),2()2(),1()1(

complex. is 0 ,)3()2()1(
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


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
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                                       (23) 

 
Conditions 2,3,4 in (23) define the gradients of , and as Holonomic . )1(q )2(q )3(q
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Vectors  are Holonomic if their Lie brackets depend on them  for some 

coefficients . Condition 1 is a transversality condition. The Lie brackets of each two vectors must 

depend on the vectors that span .  (23) has a deep meaning that our scalar field of time is a 

result of 3 scalar fields of space locally perpendicular to the gradient of the scalar field of time.  

)(sh

jc





3

1

)()](),([
j

j jhckhih

)(FT

 
 
The source of these fields are possibly the Sam 
Vaknin's Chronon field [1]. This implies a simpler 
physics and it is possible that Dirac's equation 
[14] and spinors are an algebraic language that 
was required because concurrent physics 
theories do not have a complete analytic theory 
of space-time. The need for algebraic abstraction 
may not be related to physical reality but rather 
to the way we perceive it. This possibility justifies 
further extensive research and should not be 
dismissed. 

AtomTimenP
n

_))(...)2()1(lim(  


and such that: 

1)(*)(
4

4 


dgkk   

And 

0)(*)(0
4

4  


dgkjkj   

Here are more definitions we will need. 
 

 Energy Conservation: In any physical system 
and its interaction, the sum of kinetic (visible) and 
latent (dark) energy is constant, gain of energy is 
maximal and loss of energy is minimal. See E. E. 
Escultura [15]. 

 
5.1 Dr. Vaknin's Theory – One of Four of 

his Offers 
 
 
The coming definitions will reflect Dr. Sam 
Vaknin's view, that even photons by 
entanglement of wave functions have rest mass. 
Not that a photon as observed on its own has 
rest mass. That is incorrect. Matter by Vaknin's 
theory [1] is a result of interaction of a field of 
time that quite reminds of Quarks in which 
summation results in positive propagation. This 
paper sees Dr. Sam Vaknin's theory as a starting 
point. 

 
Information: Information is a mathematical 
representation of the state of a physical system 
with as few labels as possible. Labels can be 
numbers or any other mathematical object. 
 

Energy Density: We define  2
4

Curv
K

C


 , such 

that is the speed of light and C K  is the gravity 
constant, as the Energy Density of space-time. If 
this value is defined by (14) then P  is the 
upper limit of measurable time from an event 
back to near big bang event or to a sub-manifold 
of events and therefore (14) is intrinsic to the 
space-time manifold because it is dictated by the 
equations of gravity and adds no information that 
is not included in the manifold and in the 
equations. As we shall see, if we choose to write 

P  such that   is a complex scalar field 

then if   is a function of   only then (16) is 

reduced to (14) as if P . Consider the set of 
events for which   is constant. Since   is not a 
coordinate, we can't expect that set to be a sub-
manifold but a unification of such 3 dimensional 

geometric objects  . )0( )0 (3  3

 
Dr. Sam Vaknin's possible description of time: 
"Time as a wave function with observer-mediated 
collapse. Entanglement of all Chronons at the 
exact "monent" of the Big Bang. A relativistic 
QFT with Chronons as Field Quanta (excited 
states.) The integration is achieved via the 
quantum superpositions". 
 
We will now refer to a simple implementation of 
Sam Vaknin’s approach as a quantization idea of 

time, as the action 



4

42
4

dgCurv
K

C


 

 

Where g
 

is the root of the negative metric 

tensor determinant for the volume element, such 
that 

We consider   as a Morse function on the 

space-time M  manifold. That is that M  is 
locally smooth and the differential of this map is 
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of rank 1. In such a case the Morse – Sard 
theorem states that the Lebesgue measure of the 
Critical Points of M is zero [16].  
 
Energy: The following is equivalent to rest mass 
energy. The integration of 

)( 0
3

)(

2 d
4

0
3




 


Curv
K

C
 is defined as the 

Energy of the scalar  0  . This value is locally 

conserved for small neighborhoods in  if 

  as any local integration of the 

squared norm of a vector field is conserved if its 
divergence is zero.  So if there is a possibility of 

 local conservation of the term Energy 

does not hold. Photons too, by entanglement and 
superposition have rest mass but not as an 
isolated electro-magnetic wave. 

)( 0
3 

0; m
mU

0; m
mU

Nice thought experiment – is the use of a 
covariant Gauss Law and the atom of space for 

 8 . After we have these definitions in mind, 
we may want to extend Gauss Law to a covariant 
format and later use the idea that there is an 
atomic structure of space time that can't be 
curved by gravity. If we do allow curvature, it can 
be showed that the area of the sphere around a 

charge will change by 2

16
~ L


  for positive 

charge whose whole energy is electrostatic and 

by 2

48
~ L


  for negative charge whose energy 

is electrostatic, where  is the radius of the 
sphere. In the first case, the area is reduced by 

L

32.63

1
and in the second, it is increased by 

192.0013

1
. This calculation is beyond the scope 

of this paper and it involves holographic 
principles. The implication for elementary 
particles could be that if a particle has an energy 
En then there should be particles with energy 
En/192 or En/64. If for example a particle of 375 
GeV (taken form some CERN statistical noise) 
existed then another particle of 1.95 GeV could 
exist too. For start, a generalized Gauss law 
using the exterior algebra, should look like: 
 

033

^^^ dx

Q

cTaudxdxEdsE
S

kji

S

  (24) 

 

such that E  is the electric field. a surface 
element and 

ds
x denotes the coordinates, but here 

E  is a 4-vector and will have to be defined, 
 is the length of the path of a charge 

enclosed in a 3 dimensional surface ,  

cTau
3S 0  the 

permittivity of vacuum and is the speed of light. 
We also assume that in our local coordinates, the 
metric tensor is 

c

,1 1,1,1 3322 1100  ggg

0

g  

otherwise, 

Tau

g , i.e. flat geometry on the 

hyper-cylinder. Since space-time can be curved, 
we can only discuss small volume  and small 

proper time  in local coordinates. Instead of 
considering the general acceleration field 

3S








d

dV

CC

V
A

2

1
  as in (18), we need a 

representative trajectory dependent boost 4-

acceleration 



a

d

dV





a

 so now we can apply 

(6) as an exact relation as the outcome of the 

energy density  i.e. for the 

previously discussed guess

)/( Ka 8
 8 . 

 



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E

K

a


04
                                          (25) 

 

such that E  is a 4-vector that replaces the 
electrostatic field. Please notice that here 

. Consider a 3 dimensional surface of 4 
dimensional cylinder around a charge Q , i.e. 

00 E

Surface xIS2  around a  

such that both the radius of the sphere  and of 

the ball  and the length of the interval 

xICylinder 3

S

B

2

3B I , is L   

and is small. We may consider L  to be an atom 
of length so by the relation we have from (18), 
acceleration is merely a curvature of a particle's 
trajectory. If there is an atom of length, say L , 
then the maximal curvature would appear in 
loops of radius L  so it would be 

L
Curvature

1
   and by (18) and by the relation 

VA

c

a


2
 such that , the maximal 

acceleration is therefore 

1
VV
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where  is the speed of light. By (6), this 
acceleration can be the underlying acceleration 
field in an electric field. The parameterization in 

polar coordinates of the surface  is 

C

)
xIS2

),sin( l)),cos()sin(),cos(cos(( LLL   

where . It is  Ll 0
)0),sin(),cos()sin(),cos()cos((  rrr

0l
)),sin(),cos()sin(),cos()cos(( Lrrr

 

where  and it is 
  

where , such that Ll 
)2/,2/(),2,0(),,0(   Lr  

and the normal to the surface which for 
 is Ll 0

(cos( )0),sin(),cos()sin(),cos() n


l 
l

 

and at  the normal vector is  

and at  the normal is . 

L 0,0,0(n


0 )1,0,0,0( n


)1,

 

An acceleration field  around a physical 

source is expected to cause 


A


nE


 to cancel out 

on the "top" and "bottom"  and Ll  0l  
boundaries combined together, because 
acceleration changes sign as the time coordinate 
changes sign. So the integration (25) will be by 
(25) and by (26), even though the metric is 
Minkowsky, 
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But what about gravity which results from the 

energy of the acceleration field  and what 
about the influence of such gravity on the metric 
tensor within the cylinder ? 


A

 
Since we consider an atom of length L ,  no field 
can exist below that radius and therefore, (24) is 
valid even if the charge  is not small. Q
 
We now assign the electron charge  to Q  and 

(27) becomes, 

e

 

0
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What is the wave length of a photon that can be 

emitted by the field E  ? We know that the 
energy should be   times smaller than the 
energy of the field, such that   is known as the 
"Fine Structure Constant". Therefore, the 

wavelength is bigger by  /1  than the 

expected wave length if we assume that L  is 
also the wavelength of a photon that has equal 

energy to the field  E  or in its matrix form .  

We have 
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C

e



2

04

1
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Which is known as the "Planck Length". 
 
 
6. INVARIANCE UNDER DIFFERENT 

FUNCTIONS OF P 
 
Here we are about to explore another degree of 
freedom in the action operator of the acceleration 
field as shown by a representative vector field 

idx

dP

 
that curves. 

 
Caution: Although the calculation may have a 
quantum meaning, it is not brought here for the 
purpose of developing a quantum field theory. 
 
We revisit our acceleration field, 
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  s.t.  NP
N
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,N
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 (also found 

as Z in this paper) we can sloppily omit the 
comma for the sake of brevity the same way we 

write  instead of  for iP iP,
idx

dP
and write 

m

μ

P
μm

m N
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N

N 2
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Suppose that we replace by such that  

is positive and increasing, then 
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Consider quantum coupling between the wave function   of a particle and the time field  , 

 as follows. Where does this coupling ** 2PP P  come from ? It is has some common 

sense if we say that the sum of wave functions that intersect/coincide with an event, influence the time 
measurement from near the “big bang” singularity event or from a sub-manifold of events to that 
specific event. A much better choice that will be discussed in the appendix "Appendix - Event Theory 

and Lèvy Process" is P  and ** PP . In that case, *  is a Lèvy measure and time 

itself becomes a stochastic process with events in which time can be measured.  The appendix 
presents an offer of how to quantize (14). 
 
Currently, we defer the quantization of (14) and we define the curvature vector of P , 
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Index k  means derivative by coordinate , ,
  

. kx k
kN *)()(ˆ 2  k

kN 2

 
As a special case, we replace   by a wave function that depends on   only  
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E  is the energy of a coupled particle,  is the Barred Planck constant, so we have 
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From (31), (35) and (36) we have the result 
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7.  GENERAL RELATIVITY FOR THE DETERMINISTIC LIMIT 
 
By General Relativity, We have to add the Hilbert action to the negative sign of the square curvature 
of the gradient of the time field. Negative means that the curvature operator is mostly negative. We 
assume  8 . 
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A reader that still insists on asking on where does   come from, can understand that L can be 

developed also for   and remain invariant if   is only a smooth function of   . If P  then 

)U*U k*U(U
8

1
kk

k L  and an integration constraint can be 

 

 1)(*
)(

3
3

 
 dg                                                                                                (39) 

 

Caution:  is not a sub-manifold because )(3    is not a local coordinate and thus the local 

submersion theorem [17], [18] does not hold. However,  is necessarily a countable unification 

of three dimensional sub-manifolds - Almost Everywhere - on which 

)(3 
  is stationary due to 

dimensionality considerations. 
 

R  is the Ricci curvature [19], [20] and g  is the determinant of the metric tensor used for the 4-

volume element as in tensor densities [21]. 
 

Important: If instead of  P  we choose P  then  in (37) is the same if kU   depends 

only on . Moreover, instead of the constraint in (39) the following 
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leads to a theory in which   represents an event and EventdgPP 
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time of an event, i.e. see "Appendix – Event Theory and Lèvy Process". Now we return to (38). By 
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From (38), (43), (44) and (45), we get two tensor equations of gravity, assuming  8 , where the 
metric variation equations (38) and (43) yield, 
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R  is the Ricci tensor. 

 
In general by (7) (46) can be written as  
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Important: The force represented by  may greatly differ from what conventional physics defines 

as mutual interaction forces. This is because such a force is a property of space-time (although not 
anticipated from the metric alone) and as such, it can be construed as an interaction with space-time 
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itself, i.e. all matter. Please note that  is a curvature vector which means time can't be measured 

along geodesic curves as these curves are prohibited in the field (17),(18). 
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Contraction of (46) by  yields  g
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So from both equations we have, 
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If the divergence  is related to electric charge then this result implies that even photons 

generate pairs of oscillating charge. By the definition of the Ricci tensor 
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Definition: We will call the latter "Charge Holonomy Equation". 
 
Or in its complex form, 
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Where  is a three dimensions scalar curvature in the space perpendicular to  or in the 
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A simpler solution to zero Euler Lagrange equations, is  
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Which results in a special case, “Zero Charge” as charged particles are related to non-zero 

divergences and either  or  . 0
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and  (46) becomes, 
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The reader can either refer to the following calculation or skip it. 
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Recall that , multiplication by 0k
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and as a result of (61), the following term from (46) vanishes, 
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which yields a simpler equation (58). Recall that 
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which proves (57). 
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Question to the reader:  If 
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k   describes the electro-magnetic 

energy momentum tensor, where is the torsion tensor  FF    that is so basic to the electro-

magnetic theory? 
 
Answer:  is not any electro-magnetic field. It is a property of space-time as U P  is dictated by 

the equations of gravity. , however, offers a way to  describe an anti-symmetric tensor which is a 

singular Lie Algebra matrix as an acceleration field via Tzvi Scarr and Yaakov Friedman 

representation [7], 

U

2/)**(

*

2









A

PPPP

PU


AA such that    . See  "Appendix – 

Acceleration field representation".  The field is actually represented by  but it is not an 

electromagnetic field, rather, it is the underlying mechanism that results in what we call, the electric 

field. In the complex formalism either, 

A

*)
2/)*

*




PP*( 
 PP

P


(

2

*




 A

U
  or 

2/)**2





PP

P
A

U




(

*




PP
. Increasing or decreasing )*

UU
K

C
*(

8

14


 U

A

U  results 

in change of Energy density and in the phenomena we call Electro-Magnetism.  represents a 

non-inertial acceleration of every particle that can measure proper time and not of photons as single 
particles. 

Inertia Tensor: We define inertia tensor as 





  


gUUUU k

k2

1
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 this reflects what we know 

as energy momentum tensor. 
 

Question: why is the tensor 

k
kk

k

PP

PP
U ;

4

2
  not included in the Inertia Tensor ? 

Answer: Because the term 

k
k PP

PP 
 is not a material field. 

 

Electro gravity tensor: We define the electro-gravity tensor as 

k
kk

k

PP

PP
U ;

4

2
 . 

As we shall see, k
kU ;

2

1
 is equivalent to electric charge density 

2
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C

K
U k

k 



  or by (7) 

2
02

;
2

1

C

K
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But the sign could be also plus. Charge conservation yields the following: 
 

From, k
kk

k
kk UUUg

Z
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UgUUUU ;2);2

2

1
( kk  
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that 


 dgRdgUUdgUUU k
k

kk
kk 4

1
);2(

4

1
. 

 
Construction and Destruction: We define construction or destruction as local appearance and 

disappearance of non zero k
kU ;

2

1
  neighborhoods of space-time as a function of  . This definition 

alludes to the well known terms of construction and destruction brackets in Quantum Mechanics. 
 
8. RESULTS - ELECTRO-GRAVITATIONAL THRUST, DARK MATTER AND DARK 

ENERGY 
 
Dark Matter: Dark Matter will be defined as additional Gravity not due to the Inertia Tensor. It is 
meant that the cause of such gravity is not inertial mass that resists non-inertial acceleration. It also 
emanates from the acceleration field as expressed by the Scarr-Friedman matrix [7],  AA  . 

This field prohibits Minkowsky geodesic motion of rest mass. 
 
Dark Energy: Dark Energy will be defined as negative Gravity not due to the Inertia Tensor. It is 
meant that the cause of such gravity is not inertial mass that resists non-inertial acceleration. Also in 
this case electro-gravity is not the only cause. The acceleration field  that prohibits 

Minkowsky geodesic motion of rest mass must also be taken into account. The following will describe 
a technology that can take energy from space-time apparently by Sciama Inertial Induction [23] and is 
closely related to Alcubierre Warp Drive [24].  Electro-gravity follows from (6), (46) and (55). For 
several reasons we may assume the weak acceleration of uncharged particles mentioned in (6) is 
from positive to negative charge see also [8], consider the general relativity equation 

 AA 
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k   such that the Ricci tensor is 
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G  is the Einstein-Grossmann’s tensor. From  (4) in a weak gravitational background field and 

 8 , 
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 and also 

2
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2 2 C
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C
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C  is the speed of light, is the non-relativistic 

weak acceleration of an uncharged particle, 

a

0  

is the permittivity constant in vacuum, K  is the 
gravitational constant and E  is a static non-
relativistic electric field in weak gravity, assuming  
that by correct choice of coordinates, 

The reader is requested to notice that (70) is only 
a non-relativistic and non-covariant limit! From 
electro-magnetism 
 

0

;

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Or by (7) if  8  (68) becomes
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From the electro-magnetic theory 
0

;
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such that   is the charge density and so for  

Schwarzschild coordinate time, 
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1
 behaves like mass density and 

therefore we can define an electro-gravitational 
virtual mass as dependent on charge : Q
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Q
Q

K
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
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We will calculate 
K

Q
MassVirtual

02
_




  for 20 Coulombs by assuming 8 , 

Kg
K

Coulomb 9

0

10417128083379310603588885.80233169
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Multiplied by 20 we have  
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16
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Kg
K
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Within 1 cubic meter the effect would be a feasible electro-gravitational field because Newton's 
gravitational acceleration as a rough approximation yields, 

2

211

2

Second

Meter
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1/10683625616675882120717771.16046633

_
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

KgK

radius

MassVirtualK
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Consider parallel metal plates of 10cm x 10cm with a gap of 2cm and with low relative permittivity thin 
slab of 10 grams in the middle, such that the voltage of 37 Kilovolts is applied to the plates. The net 
classical non-relativistic gravitational force on the slab without regarding the non-geodesic 
acceleration field, is less than one third of a micro-Newton. That is a dauntingly small force which is 
very difficult to measure. 

 
The calculations rule out any measurable 
vacuum thrust of Pico-Farad or less, 
asymmetrical capacitors even with 50000 volts 
supply, simply because the net effect depends 
on the total amount of separated charge which is 

far from sufficient in standard Biefeld Brown 
capacitors [25].  
  
Hypothetical use of sub-luminal photons: It is 
yet needed to be demonstrated that sub-luminal 
photons do exist and that if very close to the 
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speed of light can interact with electric currents 
and/or fields as if they are high density electric 
charge distributions. After (17) there is a 
discussion on the vanishing of the Reeb class 
based on [2][3] from which the restriction of  

to the foliation  must have a zero rotor i.e. 

U

F
(; 0)U)(;U  FF 

2410
1600

 . This results in 

electric field which is always a result of electric 
charge, i.e. non vanishing divergence. The idea 
is that even photons can appear as a pair of 
oscillating negative and positive charge. Slight 
imbalance in charge distribution in photons can 
result in alleged effects such as EMDrive [26]. A 
slight 1% imbalance in +e and –e charge of say 

 photons is equivalent to over 
separated Coulombs and therefore if 

Hans Giertz assumption [11] holds, using 
photons for warp drive effects is the most 
feasible technological solution.  
 

The
2

_

radius

MassVirtualK 
shows a gravitational 

acceleration of over 126 gees between 
1600 coulombs separated by a gap of 2 

meters. In such a case, if a photon behaves like 
a dynamic oscillating or rotating dipole, these 
dipoles will be of different dipole moments 
aligned or anti-aligned with relativistic electric 
fields. The result is equivalent to true charge 
separation and can have a great technological 
potential for the development of a feasible warp 
drive thrust.  

Use of plasma: Another idea is to use ionized plasma. Let us see what we can do with one gram of 

ionized hydrogen. The number of atoms by Avogadro's number is . The 

charge of the electron is so 

 and 

2310  6.02214129n 
Coloumbs 1051.60217656 -19

-1-13 seckgm
e 

-1110Coloumbs 105956868859.64853364 4Q 6.67384K

F/m 10  76..8.85418781 -12
0 

ssVirtual_Ma 5.59839925
M Earth 5.97219

 so 1 gram of hydrogen reaches a virtual mass of 

. That is far less than the 

mass of the Earth but the distance between two clouds of positive and 

negative ionized hydrogen can be much less than the average Earth radius and therefore a field that 
overcomes the Earth gravitational field is feasible. 

Kg141081404220844444619768891 
Kg2410 × 

 
Dark Matter and Dark Energy follow immediately from negatively ionized gas in the galaxy and 

positively ionized gas outside or on the outskirts if we assume energy density 
K

aa






8
which means our 

electro-gravity constant is  KConst 8 . In other theories, e.g.  KConst  , the center of the 

galaxy should be positive. Negative charge as in the first case Const K8 , will only behave as 
Dark Matter more at distance because close to stars it is expected to cause induced dipoles within the 
star just as a small negatively charged ball above the Earth will polarize the ground.  We now consider 
the classical non-covariant limit of the summation of two effects, the non-inertial acceleration and 
electro-gravity. Let be the charge of a ball at radius Q r , then by (7) the observed non-relativistic 

classical acceleration of an uncharged particle without any induced diploes is 
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A friend, Mr. Yossi Avni suggested that two marble balls will be suspended on a balance above 
charged balls, left minus and right plus, and that by the checking if the balanced is tipped or not, we 
can decide  4  for unbiased balance and different value else, e.g.  8  . There is a problem, 
however, that charge in the ground below the balls will polarize the ground. 
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Fig. 1.  Avni suggestion, the left lower ball is negatively charged and the right is positively 
charged. The balls above are marble or even of lower dielectric constant 

This theory means that a positive charge manifests attracting gravity but has a repelling acceleration 
field that acts even on uncharged particles that can measure proper time, i.e. have rest mass. The 

curvature  and for positive charge . 0k
kUU 0; k

kU
 
Negative charge manifests a repelling anti-gravity but has an acceleration field that attracts even 
uncharged particles and acts on particles that can measure time, i.e. have rest mass. 
 
The following table describes the relation between  and the Dark Matter and Dark Energy. 
 
 
 

Table 1. The relation between constants and Dark Matter 
 
 and classical non-
relativistic acceleration 

Cause for 
dark matter 

Cause for 
dark energy 

Dark matter causes 

0)
4

11
(

2

4

2
0










r

QK  

Positive charge Negative charge Caused by gravity 

0)
4

11
(

2

4

2
0










r

QK  

Negative 
Charge 

Positive charge Caused only by an Alcubierre 
Warp Drive [24] by induced 
dipoles. Positive side faces 
the negative galaxy center. 

0)
4

11
(

2

4

2
0










r

QK  

Negative Charge Positive charge Caused by the acceleration 
field on particles with rest 
mass 

 
9. CONCLUSION 
 
An upper limit on measurable time from each 
event backwards to the "big bang" singularity as 
a limit or from a manifold of events as in de Sitter 
or anti - de Sitter, may exist only as a limit and is 
not a practical physical observable in the usual 

sense. Since more than one curve on which such 
time can be virtually measured, intersects the 
same event - as is the case in material fields 
which prohibit inertial motion, i.e. prohibit free fall 
- such time can't be realized as a coordinate. 
Nevertheless using such time as a scalar field, 
enables to describe matter as acceleration fields 
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and it allows new physics to emerge as a 
replacement of the stress-energy-momentum 
tensor. The punch line is electro-gravity as a neat 
explanation of the Dark Matter effect and the 
advent of Sciama's Inertial Induction, which  
becomes realizable by separation of high electric 
charge. This paper totally rules out any 
measurable Biefeld Brown effect in vacuum on 
Pico-Farad or less, Ionocrafts due to insufficient 
amount of electric charge [25]. The electro-
gravitational effect is due to field divergence and 
not directly due to intensity or gradient of the 
square norm. Inertial motion prohibition by 
material fields, e.g. intense electrostatic field, can 
be measured as a very small mass dependent 
force on neutral particles that have rest mass 
and thus can measure proper time. Such 
acceleration should be measured in very low 
capacitance capacitors in order to avoid electro-
gravitational effect. The non-gravitational 
acceleration should be from the positive to the 
negative charge. The electro-gravitational effect 
is opposite in direction, requires large amounts of 
separated charge carriers and acts on the entire 
negative to positive dipole. 
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APPENDIX 
 

APPENDIX  – The time field in the Schwarzschild solution 
 
Motivation: To make the reader familiar with the idea of maximal proper time and to calculate the 
background scalar time field of the Schwarzschild solution. 
 

We would like to calculate 



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
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 in Schwarzschild coordinates 

for a freely falling particle. This theory predicts that where there is no matter, the result must be zero. 
The result also must be zero along any geodesic curve but in the middle of a hollowed ball of mass 
the gradient of the absolute maximum proper time from "Big Bang" event or from a sub-manifold of 
events, derivatives by space must be zero due to symmetry which means the curves come from 
different directions to the same event at the center. Close to the edges, gravitational lenses due to 
granularity of matter become crucial. The speed U of a falling particle as measured by an observer in 
the gravitational field is 
 

22

2
2 2

rC

GM

r

R

C

U
V                                                                                                        (72) 

 
Where R  is the Schwarzschild radius. If speed V is normalized in relation to the speed of light then 

C

U
V  . For a far observer, the deltas are denoted by rddt ,' and, 
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because rRrddr /1/  and rRtddt /1 . 
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Which results in, 
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Please note, here t is not a tensor index and it denotes derivative by  !!! t
 On the other hand 
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Which results in 
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Please note, here r is not a tensor index and it denotes derivative by r  !!! 
For the square norms of derivatives we use the inverse of the metric tensor,  
 

So we have 

)1(

1
)1(

r

Rr

R


   and )1(

)1(

1

r

R

r

R



 

So we can write 

2)1)(1(
1

1
)1( 222 




r

R

R

r

R

r

r

R
P

r

R
P

r

R
PPN tr

  

22 
r

R

R

r
N                                                                                                                  (76) 

 


dx

dN
N

2
2   And we can calculate 

 

 
2

2
2

2

22

22

)2(

)
1

()1(

)( 




r

R

R

r
r

R

Rr

R

N

NN



                                                                                       (77) 

 
We continue to calculate 
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Please note, here t is not a tensor index and it denotes derivative by  !!! t
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Please note, here r is not a tensor index and it denotes derivative by r  !!! 
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And finally, from (77) and (81) we have, 
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which shows that indeed the gradient of time measured, by a falling particle until it hits an event in the 
gravitational field, has zero curvature as expected. 
 
 
APPENDIX  – Event Theory and Lèvy Process 
 
Motivation: To present one of several possible quantization offers of (38) without using Stochastic 
Calculus. To provide an alternative integration constraint that leads to a new possible theory – a 

particle is a non-zero curvature vector  and a family of event functions, U  . An interesting 

alternative to (39) is that    is not a particle wave function but an event function, i.e. a collision with a 

particle in a 4 dimensional space-time, 
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And instead of  P  we choose P  . The reader can verify that the same curvature vector 

in (37) is reached by the assignment P  if   depends only on   . 

 

Then from (40) we get a new random variable Event  
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and adding this constraint to the complex form of (38) we have the following variations system,  
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An alternative is by Sam Vaknin’s approach as events as the collapse of the chronon field wave 
function  , 
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(85) is worthy of further research. To prove that (85) is consistent with quantum mechanics, e.g. 
Quantum Field Theory and that no other idea of how to quantize (38) is required, a family of solutions 

to (85) with complex functions   should exist such that Event  will be increasing and will describe 

detection events of the same particle. Because we introduce a scalar field of time  , and use a 
probability function * , if the time  is a Lèvy process [28] then we also need the following to 

hold, 
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s.t. . So actually a particle is a family of parameterized Lèvy measures ts  )(*)( ss   such that  

itself denotes time and such that 

s
  denotes the scalar field of time and such that the curvature vector 

field 
2

*,,

Z

PPZ

Z

Z
U j

j
k

kj   is not zero, s.t. P  and 
jj dx

dP
P   and  are local 

coordinates. This is one of the ways of the ways to try to quantize the theory. Showing that this offer 
works and agrees with Quantum Field Theory should be a subject of international research. 
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The philosophy here is that particles should emerge from geometry, stochastic processes and from 
stochastic calculus and not from algebra and is therefore against the concurrent physics mainstream. 
 
 
APPENDIX  - Conservation, Why Do Different Charges Fall At The Same Speed 
 

Theorem: Conservation law of the real curvature field 

From the vanishing of the divergence of Einstein tensor and (46) in the paper, we have to prove the 
following: 
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Proof: 

From the zero variation by the time field (55) in the paper 
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And we are done. 

 

APPENDIX  -  Majorana – Like fields 

 

By (16) in the paper, we can write 
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Zero charge can be written either as 
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An interesting case is if the curvature vector  is a null vector. U
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Majorana fields revisited 

 

Suppose  is a real geodesic scalar, i.e. its time-like gradient is parallel to geodesic curves. Then we 

can write  and it is easy to show that   for some scalar function . 
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Such that U
~

 is the acceleration vector derived from 
Y

q

. 
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APPENDIX – Planck Area Garvity – Based on a lecture by professor Seth Lloyd of the M.I.T 
combined with the Geometric Chronon model 
 
Suppose we have an atomic length , The speed of light is C  so the maximal acceleration will be L
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The right hand side if multiplied by 
2

1
 and then by   4
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 calculates the missing or added area to the 

sphere perpendicular to  the unit vector 
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Which is either an addition to the area or subtraction from the area due to the divergence term 
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Divide these areas by the area of the two dimensional sphere   and we have ratios, 24 L
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But we didn’t take into account that the geodesic motion prohibition field i.e. acceleration field 
changes its density in accordance with increased or decreased area. 
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(104) can be written as 
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Such that   is either bigger than 1 or smaller than 1 and denotes the increase or decrease in area. 

Note that the term  measures how much the square acceleration field changes as the area grows 
or dwindles. 

2

The resulting equation is a Quartic Equation: 212 )
2

1
(

96

1
1     that can be easily solved 

numerically. 
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The area is increased or decreased by  and the portion of the area that changes is 2
 

1-1
2

..)192.00129.(~)
1

1
(714849691.00260076~ 


 


   

around a negative charge or  

1-1
2

.)63.32398..(~)
1

1
(6364322840.99207267~ 


 


  

around a positive charge. The problem is that there is no spin-less charge and therefore our 
discussion could mean a temporary decomposition of maybe the Higgs Boson into two energy states, 
one temporarily behaving like a negative charge and one like a positive one. The discussion thus 
becomes more a sort of a game. The idea is that area changes are relative to energy portions even if 
the are changes also due to charge electro-gravity and not due to energy. It is a manifestation of a 
modest holographic principle. Our modest test will be to divide the Higgs energy by 2 and then either 
by ,or by . That is by 384.00258393161619 or by 126.64796860744865. ..192.00129. .63.32398..
For example: 125 / 126.64796860741693304549022281718 ~= 0.987 GeV which should be a 
Baryonic energy state but not a particle. 
 
 
That is also a converging iterative equation that can be solved in different programming languages 
such as C as in the following code: 
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nclude <math.h> 

                 long double f_cos = 1) 

in+ 
   2*f_in*f_cos‐1.0)/192) 

   ); 

                 long double f_cos = 1) 

in‐ 
   2*f_in*f_cos‐1.0)/192) 

   ); 

d main(void) 

 
#include <stdio.h> 
#include <conio.h> 
#i
 
inline 
long double MAIN_f1(long double f_in, 
   
{ 
  return 
  sqrt(sqrt(((long double)192*f_in*f_
          
   
} 
 
inline 
long double MAIN_f2(long double f_in, 
   
{ 
  return 
  sqrt(sqrt(((long double)192*f_in*f_
          
   
} 
 
voi
{ 
  int i; 

// long double m_x2 = 0.99207267636432173; 

0.5; 
long double m_y1,m_y2,m_y3; 

(i=0;i<56;i++) 

  m_x2 = MAIN_f2(m_x2); 

"%.18lf,%.18lf\n",m_x1,m_x2); 
} 

 
m_y3 = (long double)1.0/(m_x1 * m_x1 ‐ m_x2 * m_x2); 

printf("y1 = 2/(x1^2‐1)=       %.18lf\n",(double)m_y1); 

printf("y2 = 2/(1 ‐ x2^2)=     %.18lf\n",(double)m_y2); 

printf("y3 = 1/(x1^2‐x2^2)=     %.18lf\n",(double)m_y3); 

printf("125.0  / y1 = %.18lf \n",(double)(125.0 / m_y1)); 

printf("125.0  / y2 = %.18lf \n",(double)(125.0 / m_y2)); 

printf("125.0  / y3 = %.18lf ?\n",(double)(125.0 / m_y3)); 

 
  // long double m_x1 = 1.00260076714849611; 
  
 
  long double m_x1 = 2, m_x2 = 
  
 
  for
  { 
    m_x1 = MAIN_f1(m_x1); 
  
 
    printf(
  
 
  m_y1 = (long double)2.0/(m_x1 * m_x1 ‐ (long double)1); 
  m_y2 = (long double)2.0/((long double)1 ‐ m_x2 * m_x2);
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printf("750.0  / y1 = %.18lf \n",(double)(750.0 / m_y1)); 

printf("750.0  / y2 = %.18lf \n",(double)(750.0 / m_y2)); 

printf("750.0  / y3 = %.18lf ?\n",(double)(750.0 / m_y3)); 

while(_kbhit()) _getch(); 

puts("Press Enter to exit."); 

; 

  Output: 

97793000 

7323561069000 ? 
ess Enter to exit. 

 

 exist but no spin means states, not particles. 

 GeV. 
/ 

unlike in charge case, additional positive or negative gravity is due to the 

 the Higgs Boson decays, then it could decay into temporarily entangled + and – charge then 

ed by 192 implies an important resonance as Higgs particle is responsible 
r the transfer of mass.  

 

So 

 
  
 
  
 
  
 
  
 
  
 
  getchar()
} 
 
 
/*
 
1.002600767148496900,0.992072676364322840 
1.002600767148496700,0.992072676364323280 
1.002600767148496400,0.992072676364323500 
1.002600767148496400,0.992072676364323610 
1.002600767148496400,0.992072676364323720 
1.002600767148496400,0.992072676364323720 
1.002600767148496400,0.992072676364323720 
y1 = 2/(x1^2‐1)=       384.002583931616190000 
y2 = 2/(1 ‐ x2^2)=     126.647968607448650000 
y3 = 1/(x1^2‐x2^2)=     47.6188138376
125.0  / y1 = 0.325518642922101310  
125.0  / y2 = 0.986987800707987640  
125.0  / y3 = 2.625012887260178100 ? 
750.0  / y1 = 1.953111857532607600  
750.0  / y2 = 5.921926804247926100   
750.0  / y3 = 15.75007
Pr
 
*/
 
/* 
Baryon states should
1) 325.5 MeV. 
2) 0.987 GeV. 
3) 1.953 GeV. 
4) 5.922
*
 
By the holographic principle, the additional area should be related to energy also when particles do 
not have charge where 
divergence of the field.  
If
 
half the Higgs mass divid
fo

MeV 5.325GeV 125
93161619384.002583

1
GeV 125

2

1

96577...192.001291

1
~   

Also 
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This energy is the model dependent vacuum constituent Quark energy according to  "Number of the 
QCD  critical  points  with  neutral  color  superconductivity",  Zhao  Zhang  et.  Al.  (2008),  
arXiv:0808.3371v3  
Phys.Rev.D79:014004,2009, 10.1103/PhysRevD.79.014004. 
 

Another example is the 750 GeV noise resonance in CERN. GeV 95.1GeV 507
384

1
~  , 

possibly a new particle by Evidence for a narrow baryon at 1.95 GeV/c2 

For a more accurate solution we need to take into account the field density around a charge. 
 
 
 
APPENDIX  - Alternative description of the SU(3) symmetry 
 

The SU(2) x U(1) symmetry is well covered in DOI: 10.9734/PSIJ/2015/18291 and its corrigendum, 

both published in Physical Science International Journal. The SU(3) is briefly described so we will 

focus on the SU(3) symmetry. The best way to do so is to return to the Godbillon-Vey class and to the 

Reeb class. There are several ways to show the SU(3) symmetry, from a theorem by Frobenius, 

either by replacing  with an expression that depends on 3 foliation holonomic gradient fields or by 

adding these fields in the rotor calculation of (17) and (18). For now we will adopt the second 

approach. We add three normalized gradients of scalars that change along the F foliation, This can 

always be done by integration along a grid that is defined in the foliation , We define the 

scalars , ,  as integration along curves in the foliation and 
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Obviously we sloppily wrote the norms because we should write 

2/)*111*1()1(,2/)**( 









 VVVVVZPPPPZ   etc.  

 

Such that the three vectors are gradients of scalars that vary only along the Godbillon-Vey foliation 

,    so . It is sufficient that the 

norms of the gradients of such fields are stationary

)( kPF ))((3,2,1 kPFTVVV  0321  






 PVPVPV

 along . Then we have P
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... 2/)*111*1()1( 



 VVVVVZ   and we write as in the paper  so 

 and obviously 

 since the gradients are along curves in the foliation, then 

locally using the Scarr-Friedman law for homogeneous acceleration, we get 

 ),1()1( VZVZ 
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A   half the curvature vector. 

 

This is a type of invariance that can be expressed by the 3x4 matrix 
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V
  so if the three columns change with  such that the norms 

are invariant along and they are in  then equation (46) in the paper remains invariant.  

The 3x3 matrix determinant in the basis , ,  can’t change sign. 
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