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ABSTRACT

Aim: To develop a model of matter that will account for electro-gravity.

Interacting particles with non-gravitational fields, can be seen as clocks whose trajectory is not
Minkowsky geodesic. A field in which a small enough clock is not geodesic, can be described by a
scalar field of time whose gradient has non-zero curvature. The scalar field is either real which
describes acceleration of neutral clocks made of charged matter or imaginary, which describes
acceleration of clocks made of Majorana type matter. This way the scalar field adds information to
space-time, which is not anticipated by the metric tensor alone. The scalar field can’t be realized as
a coordinate because it can be measured from a reference sub-manifold along different curves. In
a “Big Bang” manifold, the field is simply an upper limit on measurable time by interacting clocks,
backwards from each event to the big bang singularity as a limit only. In De Sitter / Anti De Sitter
space-time, reference sub-manifolds from which such time is measured along integral curves, are
described as all events in which the scalar field is zero. The solution need not be unique but the
representation of the acceleration field by an anti-symmetric matrix, is unique up to SU(2) x U(1)
degrees of freedom. Matter in Einstein Grossmann equation is replaced by the action of the
acceleration field, i.e. by a geometric action which is not anticipated by the metric alone. This idea
leads to a new formalism of matter that replaces the conventional stress-energy-momentum-tensor.
The formalism will be mainly developed for classical but also for quantum physics. The result is that
a positive charge manifests small attracting gravity and a stronger but small repelling acceleration
field that repels even uncharged particles that measure proper time, i.e. have rest mass. Negative
charge, manifests a repelling anti-gravity but also a stronger acceleration field that attracts even
uncharged particles that measure proper time, i.e. have rest mass.
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1. INTRODUCTION

The motivation of this theory is to show matter is
an acceleration field i.e. prohibition of inertial
motion/free-fall of every small particle that can
measure proper time. The scalar field is either
real which describes acceleration of neutral
clocks made of charged matter or imaginary, or
partially imaginary with some condition which
describes acceleration of clocks made of
Majorana type matter.

Non-geodesic motion as a result of interaction
with a field, is not a geodesic motion in a
gravitational field, i.e. it is not free fall. Moreover,
material fields by this interpretation prohibit
geodesic motion curves of particles moving at
speeds less than the speed of light and by this,
reduce the measurement of proper time! The
expression of such a field is thus by a field of
time that is not part of the geometry of space-
time but rather adds new information to the
space-time manifold by expressing how material
force fields bend the curve of a small enough
clock. This bending is not anticipated by general
relativity but can account for a complementary
field to the gravitational field and it offers a new
expression of matter. In this paper, the author
replaces the notion of a force field by an
acceleration field. In fact, the covariant
description of such an acceleration field is by an
anti-symmetric matrix that is multiplied by the
velocity vector in order to point to a perpendicular
direction i.e. to an acceleration 4-vector. A 4-
vector of acceleration is only a representative of
such a field, which as we shall see, leaves an
SU(2)xU(1) degrees of freedom in the definition
of the matrix. An acceleration can be seen as
curvature of a particle's trajectory, however, we
seek a formalism that will be independent of any
specific trajectory. This goal can be achieved by
an introduction of a very special scalar field,
namely, a field of time. By the principles of
General Relativity, no coordinate of time should
be preferable and therefore any such scalar field
should not lead to a realizable preferable
coordinate of time. Also, because more than one
curve can measure the same maximal proper
time between a predefined reference sub-
manifold and an event, a definition of maximal
time may not lead to unique integral curves. The
theory that will be presented is a geometric
interpretation of Sam Vaknin’s Chronon Theory
[1] by a Godbillon-Vey [2],[3] curvature vector /
Reeb vector. This vector is a part of the
Godbillon-Vey 3rd order form and it belongs to
the De Rham Cohomology. Locally, it offers
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foliations which their tangent bundle is the kernel
of a 1-Form, namely the gradient of a scalar field
of time.

By the principle of parsimony, even the maximum
time requirement is not necessary if the scalar
field that defines proper time along curves, is
emergent out of a mathematical formalism. Here
we should introduce an equivalence relation.

1.1 Avoidance of Closed Time-like Curves

In this paper, the curves along which maximal
proper time is measured do not contain
backward travel in time. If two events e, and e,

are on a curve such that e, is in the future
relative to e, then no geodesic exists between
e, and e, such that e, is in the future in
relation to e, , otherwise the curve is excluded
from the calculation of maximal time.

The equations of the presented theory may
render this definition redundant.

1.2 Geodesic between

Events

Equivalence

Given a sub-manifold M, in M . Events in a set
of events M, are equivalent, if for each event
eu, INM, there exists an event e,,, iIn M,
such that the maximal proper time

T\iaxmeasured along curves that connect e, , to
events in M, is the same for each other event
in M,, i.e. If the maximal proper time from
event g,,, to M, is to event g,,, € M, then

the curve length in proper timer is also Ty,,. The

main interest of this paper is that for each Tyay,
there exists a class M, such that e,,, —>e,,;

is a surjective map. Ty IS subject to

acceleration fields, i.e. to fields that prevent any
small test particle from moving along geodesic
curves. M, may not be unique and all such

M, sub-manifolds of M should be dictated by

a physical law, i.e. a minimum action principle.

Before we continue, we have to define the “big
bang” as it embodies the most simple case of
M, . Please note that M, may not be a neat

geometric object as a 3D sub-manifold. It can be
a countable unification of such sub-manifolds.



Big Bang: The Big Bang in this paper is a
presumed event or manifold of events, such that
if looking backwards from any clock - “Test
Particle”, at an event ‘e’ - that measures the
maximum possible time up to ‘e’ then such clock
must have started the measurement from the big
bang as a limit. The Big Bang synchronizes all
possible such clocks that measure the maximal
time to any event from the past. The definition
allows prior time even before such a manifold of
events but requires that clocks will be
synchronized on the "big bang" manifold or that
the synchronization will be done by measuring
the limit of time backwards to a "big bang"
singularity.

The idea of a test particle measuring time and
even transferring time is not new, thanks to Sam
Vaknin's dissertation from 1982 in which he
introduced the Chronon field [1] in an
amendment to Dirac's equation. Instead of
defining the maximal time backwards to a single
event, the definition can be to a sub-manifold, but
to which sub-manifold and what if small test
particles are not allowed to move along geodesic
curves due to interactions with force fields ?

The physical law that we reach will have to solve
that problem too.

An earlier incomplete paper of the author about
this inertial motion prohibition in material fields,
can be found [4].

In general, the Euler number of the gradient of
the time field may not be zero [5]. To avoid such
singularities, this paper harnesses some of the
results known to belong to Lars Hormander by

using Distribution Theory [6]. If our time field is T,

we may consider a new scalar field P= \/;l//
such that ¥/ is complex. PP* =7y * avoids
gradient field singularities where y iy * becomes

zero if the derivatives of T are discontinuous.

If test particles are forced to move along non-
geodesic curves, i.e. experience trajectory
curvature due to an external field, a
mathematical formalism of such curvature will
have to be developed and will replace matter in
Einstein-Grossmann’s field equations, as such
curvature fields become a new description of
matter. It is quite known that acceleration can be
seen as a curvature and therefore acceleration
field is another interpretation of a curvature
vector perpendicular to 4-velocity [7] though it
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leaves SU(2)xU(1) degrees of freedom. An
acceleration field that acts on any particle, can't
be expressed as a 4-vector because a 4-vector
does depend on a specific trajectory and by Tzvi
Scarr and Yaakov Friedman, such a field is
expressible by an anti-symmetric matrix

Auv = _Avu such that if Vﬂ is the normalized 4-
velocity and V, V* =1 then the 4-acceleration

is actually a,/C* = AN such that Cis the
speed of light.

2. THE CLASSICAL NON-RELATIVISTIC
LIMIT - MASS AT REST IN A
GRAVITATIONAL FIELD

2.1 Definitions

Gravity: Gravity is the phenomenon that causes
all forms of energy to be inertial if and only if they
freely fall, including a projectile that starts
upwards. All forms of energy including light
appear to accelerate towards the source of
gravity. Gravity is seen as a phenomenon that
influences the metrics of space-time.

Mass Dependent Force: A mass dependent
force is a presumed force that accelerates any
massive object that does not propagate at the
speed of light and the force is mass dependent.
The mass dependent force does not change the
metrics of space-time. i.e. clocks in the field will
not tick slower than clocks far from the field
unless gravity coincides.

An Acceleration Field / Non-Inertial Field: An
acceleration Field is Mass Dependent Force that
is not intrinsic to an object but rather appears as
a property of space-time. Unlike gravity, it does
not affect photons or any particle that propagates
at the speed of light. The idea is that such a field
affects measurement of time by prohibition of
inertial motion of particles that can measure
proper time. Non geodesic curves in Minkowsky
space-time measure less time between events.
As was already mentioned, an acceleration field

s expressible as a,/c’=A V" and

Ayv = —AW is locally similar to the Tzvi Scarr
and Yaakov Friedman matrix [7].

Very important: The acceleration field need not
represent an interaction of a small test particle
with the matter in which the field appears. As a



property of space-time, it can represent an
interaction with the entire space — time.

Caution: Although throughout the classical non-
relativistic limit sections of this paper, the author
uses vectors to describe trajectory dependent
representative acceleration vectors, an
acceleration field can't be described as a
covariant field without the Scarr-Friedman [7]

formalism @, /c* = AN and V V¥ =1 As

an author, it is important to me to make sure that
the reader fully understands that classical limit
calculations are nothing more than classical limit
calculations and the author is fully aware of and
does not mix non relativistic and covariant
formalisms!

Motivation beyond this section: For the pedant
physicist there is no point in presenting a
potential intrinsic to a massive object and a non-
relativistic potential energy as the classical limit
of a covariant theory. To such a reader, the
author will say that the purpose of this paper is to
replace the conventional energy momentum

tensor T — which

y72%
Grossmann’s field equation — by a tensor with
fully geometric meaning. Recall Einstein-
Grossmann’s field equations in his writing

convention as 8C—ﬂ|4<T#V =R, —%Rg

is part of Einstein-

such

Hv

that K is the gravity constant, C , the speed of

light, R,, the Ricci tensor, gw the metric

nv
The

replacement will be with a totally geometric
tensor and thus will achieve a gravity equation
which is geometric on both sides. To give a

tensor, R=¢, R the Ricci scalar.

further clue, the author will say that T, will be

Hv
replaced by a tensor which is the result of a

a, a,
~2 ~2

representative acceleration seems

as a curvature vector of a particle’s trajectory
with units of 1/length but as such, it is an intrinsic
property of the particle and not of a field. So
eventually, we will have to derive our curvature
vector from the gradient of a scalar field and not
from the velocity of any specific particle. Since
our new tensor is purely geometric, the constant

8(3—7214( will be replaced by 1. To be more precise,

the equation will be written as ¢ = 87 or another
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value e.g. o =4 and
a a, +other terms
872‘2( ( u-v —_ ‘LIV) — R _ 1 Rg
C oK e T

and in some special cases, where electric
charge is not involved i.e. Q=0, a simple

2
. . . a,a
equation will be valid, — ct =-R. In any
a’ a,a’
case this implies that — = can be
oK oK

construed as energy density and hopefully the
reader is not annoyed by the sloppy notation aZ.

Using a potential field intrinsic to an object
instead of correct covariant formalism and using
gravitational pseudo-acceleration, the following
will shed some light on the general intuition as to
the expected relation between energy and
acceleration fields although as a physical
argument, it is not fully acceptable. We will now
consider classical non-relativistic gravity and
classical  non-relativistic ~ acceleration  as
gualitative limits that will hint at the relationship
between non - inertial and non - geodesic
acceleration fields and energy. Estimates will be
discussed in the next section. The classical non-
relativistic and non-inertial acceleration caused
by material fields will be denoted by

a=(a,, ay,az). By the principle of equivalence,

we will calculate the integral of the square
acceleration of a particle at rest which is
accelerated because it is prevented from inertial
motion, i.e. from falling in a gravitational field of a
ball of mass. We will see how this value is
related to classical potential energy. The

qualitative hint starts with integration. K is the

constant of gravityy, M mass, r radii of a
hollowed ball quite the way it is done in the
electromagnetic theory

(v =[] an vt

V=Volume 0

47KM°

@)

0

Now we calculate the negative potential energy
- Eg ,
M 2
Km KM
j ( Jdm = =-E, @)
0 rO 2r0




So from (1) and (2)

# [[[a*dv =-E,

V =Volume
3)

(3) qualitatively implies the following relation
between energy and non-inertial acceleration

2. . .
where ,OC is the energy density and O is the
mass density

2
a® 8K .
—7 = 2p = Energy_ Density
C C @)
l1a* @
247K  8aK
In special relativity, the square norm of a
normalized by C, 4-velocity of a particle is
constant N? = UiUI =1 and also
: d(u.u’
Nz,k:(uiu'),k:(—'k):O such  that
odx!
U =—— and the normalized by C, 4-
Cdr
_ 2 i
acceleration is &' = — 5 Which is 1/length in

T
units which is the curvature of a specific particle’s
trajectory. If N ?was not the norm of a particle’s
velocity, we could think of another way to
describe acceleration. More or less, that will be
the subject of more advanced sections of this
paper.

3. THE CLASSICAL NON-RELATIVISTIC
LIMIT — THE ELECTROSTATIC FIELD

The following uses the standard definitions of
electric and electrostatic fields.

What can we say about the density of the
electrostatic field? We know it is

2

Energy _ Density = 8—20 E (5)

such that &; is the permittivity of vacuum

and E is the electrostatic field. (4) has a very
deep meaning which is, that acceleration of
neutral charge-less test particles should appear
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also within an electric field. That is because
acceleration of all small enough rest mass due to
the existence of a field, is assumed in this paper
to be the reason of all energy densities including
the electric field. Prohibition on geodesic
Minkowsky motion can be concentrated as an
acceleration field in some areas around electric
charge and may not be well distributed, however,
such argument is less appealing if we consider
the principle of parsimony.

2

2 BB ax JAmKe|E| 6

8K 2

Definition: The constant that divides the non-
geodesic square acceleration is called "Electro-
gravity constant”. In this paper we choose as an

educated guess 87K . In general we can write
our guess as 0 =87 so (6) becomes:

2
a—zg—OEz =ax GK€0|E|
oK 2 2
(7)

Other constants yield different theories and have
dramatic cosmic consequences. (6) implies a
very weak acceleration i.e. mass dependent
force on small enough charge-less neutral test
particles, about 8.61cm/sec® in a field of
1000000 volts over 1 millimeters distance. See
Timir Datta et. al. work as an elegant way to
focus field lines by metal cone and plane and to
observe the effect [8], however, in this paper we
shall see that there is another effect due to
gravity and therefore the acceleration in (6) is not
the only effect that has to be taken into account.
The acceleration in (6) exposes non-inertial, non-
gravitational acceleration of particles that can
measure proper time. On its own, it is not an
interesting acceleration but it can explain the
electric interaction as repulsive when the
integration of the square acceleration increases
and attractive when this integration is reduced.
The author believes the acceleration of charge-
less particles in an electric field is from positive to
negative.

In “Electro-gravitational thrust, Dark Matter and
Dark Energy” it will be shown that there is an
electro-gravitational effect opposite in direction to
the acceleration of an uncharged particle in an
electro-static field. There is at least informal
evidence that the elecro-gravitational effect
shows thrust of the entire dipole towards the



positive direction [9] and the author does not
imply asymmetrical capacitors of 1 - 0.1 Pico-
Farad with 45000 Volts. Such capacitors
according to the calculations in the section
“Electro-gravitational thrust, Dark Matter and
Dark Energy” in this paper, can’t manifest any
measurable effect of at least 1 micro Newton
thrust. Here is a testimony of Hector Luis
Serrano, a former NASA physicist in reply to
Peter Liddicoat: “Actually by the generally
accepted definition of what constitutes high
vacuum 107-6 Torr is about in the middle. This
pressure is about equal to low Earth orbit. More
importantly at this pressure the ‘Mean Free Path’
of the molecules in the chamber is far too great
to support Corona/lon wind effects. We've tested
from atmosphere to 10"-7 Torr with no change in
performance either. However, I'm glad the results
have you thinking. It looks simple, but trust me
it’s not”.

3.1 Serious Experimental Problem -
Electron Mobility

The down side of the non-geodesic acceleration
is that it is about 10 orders of magnitude smaller
than the accepted and known electric field
interaction. For example, negative charge
suspended above the Earth will cause charge to
move in the ground. This charge will have a
much stronger effect than the interaction with the
acceleration field as is, and will cause a shielding
effect i.e. the fields will cancel out within the
Earth. Even the almost ideal insulator, i.e.
diamond crystals, have impurities such as
Nitrogen Vacancies [10] that allow charge
carriers to move in the lattice i.e. high electron
mobility. In the most pure diamonds the NV

impurities are about 10" nodes per cm™®
comparing to 1.77x10%* carbon atoms per

cm 2. The donor electrons lie deep in the band
gap of 5.47ev, at about 1.7 ev.

4. THE NON-GEODESIC ACCELERATION
FIELD

The author’s strategy in developing the idea of
an acceleration field that is not gravity is as
follows:

1) The curvature vector of the gradient of a
scalar field will be developed. If the
meaning of the scalar field is that it is
proper time, measured along different
curves from a reference sub-manifold, then
non-zero  curvature  vector means

2)

3)

4)

5)

6)

7

8)
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acceleration. The trajectory of any small
enough clock that measures non-zero
proper time will not be parallel to any
geodesic field as it interacts with material
fields.

A specific 4-vector can’t account for an
acceleration field because we need a
representation that does not depend on
any specific velocity 4-vector. Such an
acceleration is exactly Zvi Scarr and
Yaakov Friedman matrix [7]. A basic
singular matrix will be developed. It is
singular because 2 vectors are not enough
to describe rotation and scaling in
Minkowsky space-time. There are still at
least two more degrees of freedom and if
our curvature vector is complex then there
are SU(2)xU(1) degrees of freedom.

We develop a non-singular acceleration
matrix in which there is SU(2)xU(1)
degrees of freedom.

We represent the gradient of our scalar
field of time by means of the perpendicular
foliation and show an additional SU(3)
degrees of freedom. Although
SUB)XSU(2)xU(1) is the symmetry group
of the Standard Model, it is shown in this
paper to be a result of geometry and not of
any second quantization technique.

We explore more scaling degrees of
freedom in the definition of the time field.
We use the square norm - the second
power of the Minkowsky norm — of the
curvature field as an action operator that
can replace the material action in Einstein-
Grossmann-Hilbert action.

We show that the Euler Lagrange
equations lead to a new term that
expresses the divergence of the curvature
field. This divergence is attributed to
electric charge because an electric field is
a form of energy for which the simplest
explanation is a very small acceleration of
even uncharged small clocks along
electro-static field lines. So electric
interaction is predicted as either increasing
or decreasing the energy of the
acceleration field.

The interpretation of charge is of having
two unpredicted fields, an acceleration field
and an opposite weaker gravitational field.
Electrons are predicted to manifest
attractive acceleration field and a weaker
repulsive  gravity. Free intergalactic
electrons are thus prime candidates for
Dark Matter.



9) Warp drive is mentioned as a result of very
large charge separation. Implementation
by radio photons as possibly behaving as
oscillating pairs of virtual +e and —e charge
is only briefly discussed though even slight
imbalance of such virtual charge
distribution is equivalent to large amounts
of ordinary separated charge and may
therefore account for Roger Shawyer's
EMDrive, Warp Drive, experiments by Dr.
David Pares from Nebraska and for
NASA’s approval in the late news that
EMDrive indeed involves Warp Drive
effects. This idea also offers energy
production  promises to developing
countries by Dennis Sciama inertial
induction. This idea will be reminded.

10) The time field in Schwarzschild solution is
discussed.

11) Ideas of how to extend this theory to
quantum mechanics are offered by
stochastic calculus.

It is first required to achieve a curvature field

without resorting to Tzvi Scarr and Yaakov
Friedman representation [7] that is required for a

general acceleration field. A/w = —Aw such that

it V,, is the 4-velocity such that V,V* =1 then
the 4-acceleration is actually a_; = vaﬂ. In
C

(Lv,/cv, lev, /c)

special relativity V* =
N1-v?/c?
such that X,Y,Zare the well known three

dimensional Cartesian coordinates, V,,V,,V,

are three dimensional velocity coordinates, C the
speed of light. The first coordinate is

1/v1—V? /C? is the speed along the time axis.

The vector field that this paper uses is the

gradient of the scalar field of
time,P, =P =d—P and it will replace the
H H dxy

velocity vector of specific particles. Please note

that due to intersection of different curves,
14
—— is not a velocity, however it is a unit
,/PAP*ﬂ
P U
vector ——— should

and A ,TT— =
PR 2
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emerge for some vector U, that replaces

u
acceleration. The following is simply an exercise
in differential geometry. Considering a scalar

field P and its gradient P = 9P i1 covariant
o dx#

writing, such that dx“ are the coordinates, find

the second power of the curvature of the field of

curves generated by P# = d—P It is a problem

dx*
in differential geometry that can be left for the
reader as an exercise. However, if the reader
wants to get the answer without too much effort
along with some physical interpretations, he/she
should read the following.

The idea is to use a scalar field of time - that
represents the maximum possible time measured
by test particles - back to the big bang singularity
as a limit or to a sub-manifold of events - and
from this non -physical observable, to generate
observable local measurements.

The square curvature of a conserving vector field
is defined by an arc length parameterization {
along the curves it forms.

Caution: This { may not be the time measured
by any physical particle because the scalar field
from which the vector field is derived may be the
result of an intersection of multiple trajectories.
However, a particle that follows the gradient
curves will indeed measure {even if its trajectory
is not geodesic.

Let our time field be denoted by P andlet P

U
I . dP

denote the derivative by coordinates P =
“oodx”
or in Einstein-Grossmann’s convention
P,,,: Pu' Let { be the arc length measured

along the curves formed by the vector field Pﬂ

which may not be always geodesic due to
intersections. By differential geometry, we know
that the second power of curvature along these
curves is simply

P#
VPR

P, )i

d A
— 8
at' Jpep, ) )9 ®

Curv® =

(
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such that g”’ is the metric tensor. For constant because P,l is NOT the 4-velocity of a

specific particle, also but not only (see
“APPENDIX — The time field in the
Schwarzschild solution”), due to intersections of
more than one possible particle trajectory curve.

convenience we will write Norm = PkPk and
F"l E%Pl . For the arc length parameter t.

Here it is the main trick, NOorm may not be

Let Wi denote:

d, P P P :
Wg:_( A ): A _ A Ppgkv (9)
K 3 " k'v
dt "./p P, Norm Norm
Obviously
3 Ak s . Ak 3 kv
W Pgﬁk:PlPkg _Plpsg PP kv:P/'LPkg _Pkpvg :0
Ak Norm  Norm® “ " Norm  Norm
(10)
Thus
PPg* PPg* . pp* PP’
Cuer :WAW)L: A vgz _ A sg4 PkP‘, kv: A 2_ A 2)2 (11)
Norm Norm Norm Norm
Followi h f dby P P dp Th dx IDl'hd" f th
ollowing the curves forme =P,, =——, Theterm —— = is the derivative of the
g Y T 4 dx? dt  Norm
normalized curve or normalized “velocity”, using the upper Christoffel symbols,
Pi;rEirP/l _Psrjr'
dx

Caution: Using normalized velocity, here has a differential geometry meaning but not a physical
meaning because a physical particle will not necessarily follow the lines which are generated by the

curves parallel to the gradient P,I unless in vacuum. Pﬁ may result from an intersection of curves
along which particles move but may not be parallel to any one of such curves intersecting with an
event !l

r r

d d s X
a P,1 = (ﬁ PA - Psrﬂr)a = (P,I;r )W such that x" denotes the local coordinates. If P}“ is

a conserving field then P;;, = P.;, and thus P, P"= % Norm?,, and

P,P* ~ P,P* )
Norm?> “Norm?’

1 ,Norm?,, Norm?,, g*  Norm?, P.g*
Z( Norm* - Norm?

Curv? =

)?) (12)

We define the Curvature Vector
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= (Plpa)’m _ (pﬂpl),ﬂ P P = Normz,m _ Normz,ﬂ P P

Um i i 2 m = 2 4 m
P'P, (P'P) Norm Norm

(13)

1 a

which from [7] and simple calculations, should have the meaning EUm =C—éB”m such that d,

denotes a 4-acceleration field that will accelerate every particle, that can measure proper time, by an
anti-symmetric matrix, and Cis the speed of light and B*n is a rotation matrix, i.e.

i k . : . .
B”meBliV'gM =V,V¥, V| is a vector and §,; is the General Relativity metric tensor. The
curvature itself does not depend on any specific acceleration since it is a scalar field.

Curv? :%Umu m (14)

Obviously U#P” =0 and therefore like 4-acceleration that is perpendicular to 4-velocity Ua is

perpendicular to Pa. In its complex form (13) becomes

PP* +P* P~ dz - Z, ZP*P
2 u u A k A
= = andZ, =—andU, =2+ -—-—+= 15
P dx? 'z z? 4o
R A N T Tk
and by using E(Uku* HU* uU")
2 1.1, - T %k T 171k
CUI’V ZZ(E(UkU +U kU )) (16)

Obviously UﬂP*” =0.

Possible sources for an acceleration field: An acceleration field can be represented by the Tzvi

P> u
Scarr and Yaakov Friedman [7] matrix as A, W = 3 suchthat A, =—-A,
k

We may write this matrix explicitly by (15) and (16) and also require an additional 1/ 2 scaling and
reach the following anti-symmetric singular matrix

A _UP-PU,
vz

_ P¥_URP*-RUP*
y72% \/2 ZZ

* *4
so A“(A/ I:)/?")*z—(ulli ) \/Pki It easily verifiable that Det(Aﬂv) =0. wWhat is required,

however, is that Det(Aﬂv) #0.

=U, /2
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So we need a modified Aﬂv. On our path we will see symmetries that are usually achieved by second
guantization and particle symmetries but with a very different geometric source.

5. THE STANDARD MODEL SU(3) x SU(2) x U(1) SYMMETRIES VIA THE GODBILLON-
VEY CLASS

Caution: Please note, the following is NOT a quantum theory of the discussed acceleration field U#.

The sole purpose of the following equations, is to show the degrees of freedom in the matrix
representation of the acceleration field action.

We now present the curvature quite closely to the Reinhart-Wood metric formula [2],

W _UPR-PU. (Z#P Z,P* PP R p* PPy))_
/2 f z? Z

ZP, ZVF’# ()
\/—( ) (\/_)’v (\/_)’#_(\/— ¢ )w (\/_+¢)"u

For some conserving field ¢ =d@/dx* . It is immediate that if P, is imaginary so is U, because
f u "

then A},y

and this fact will become crucial when electro-gravity is discussed. It is easily verifiable that the

is complex, as +/Z is real. The divergence of the real part is then (U, +U* );*/2=0

exterior derivative dw = d(

—)dx*, can be written with 77=U2V dx” by the Godbillon-Vey

Nd

U, P
observation [2][3], as dw=(7"w); —( —=),, dx“Mdx” = —=—==dx“~dx" with coordinates

Jz 2z

x*. Another observation is the Godbillon-Vey class, on the foliations whose tangent bundle T (F)is
. P,u U H U vIii 7N VA A A 3 .
perpendicular to ——. GV(F) = 7de dx"Mdx”* = n d77 eH (M) is closed on

Jz

T (F) . More important is the observation that [U ﬂ] is the Reeb cohomology Class [77] .

From Reeb it follows that the projection of the curvature vector Uﬂ on the tangent bundle T (F) of

the foliations F that are perpendicular to P , have a vanishing exterior derivative. In other words,
U/,(F) is a closed form on F i.e. Uﬂ;v (F) —UV;,, (F)=0.. From (6) and the remark after (13)

it follows that the rotor of the electric field should be zero on F | but that is possible only if even
photons are pairs of charged particles, possibly oscillating with a total zero dipole moment as indeed
informally predicted by physicists such as Hans W. Giertz [11]. This conclusion, as will be discussed,
regards very important late findings by NASA. It is worth mentioning that the expansion of the
holonomy of the foliations is dictated by the norm of the Reeb vector [12] which in the real case is

\—U, U* and therefore this value is of great cosmological interest.

Following is an offered complex form of (17),

10
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1. UP — PU U ** P* —p*“J *
AL A* AR £ 2 +..)=
( v )= (( i3 =)( i )+..)
u* U“+U* U"
%((U * U“+U*, U")+(U,U* +U,U *V)):%( e (18)

which is the time field curvature action. In the real case where A, =A™ we define

F. = ﬁ A, and the action (16) takes the form FWF“V which reminds of the electro-magnetic

theory but without the vector potential. As we shall see, this vector potential is indeed redundant
because electric charge is a geometric phenomena. From the theory of Lie Algebras,

Det(exp(AW)):exp(Trace( ) =exp(0) =1 and therefore either exp(A, )e SO(4) or

exp(A,,) € SU (4) depending on whether A, is real or not. We proved that A =A,g “ does

Y74

*
rotate and scale \/2'/ into U 4 12. s0 by the Tzvi Scarr and Yaakov Friedman representation [7], for

every test particle with rest mass and with velocity V # and the speed of light C we have,

L VY1 dv
"'C c? dr 19
1 dv”
Just like U y the term  —= represents a curvature vector but of a specific particle related

dr

trajectory.

We continue with the Tzvi Scarr and Yaakov Friedman acceleration representation [7] matrix and for
simplicity we restrict our discussion to the real case. Aﬂv is singular and we can easily define a

matrix that rotates vectors in a plane perpendicular to both U u andto PV . That is the matrix

Bes = L gmarp

(20)

Where £“"“# s the Levi-Civita symbol. It is easily verified that
ap ap af ap
(A" +B*")(A,;+B,;)=A""A, ,+B“"B,,

and also

l ,uva/)’A & Aij :%S'leijA}thij =

uvija p

B“’B,, =
%(5%;—5;’5:)@” == (A”V —AMAL) = ATA,

Therefore (A”” +B“/)(A, ; +B, ;) = A"’ A, , +B“’B, , =2A"A

v

11
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d/is the Kronecker delta.

Aaﬂ—>Aaﬁ+Baﬁ (21)

(21) is the matrix we have been looking for and it also results in an immediate degree of freedom in

(16). In particular, 770!” rotations in SU (4) [13] that do not affect Aaﬁ may be applied to Baﬁ. These

rotations are in SU (2)xU(), B, , #7,“B,.7, and A, , =7,“A 7"

Aaﬁ - Aaﬂ + 770:# Byvj;ﬁv (22)

Dirac’s Monopole: If the reduction of Uk to the foliation tangent space T (F) that is the kernel of
Pk changes in relation to the point 0 in the axis system reduced to T (F)then the determinant of

A+ }7(1”Bﬂv}7ﬂv preserves the same sign.

For the real case, where U, =U ™ note that Curv? =%(UKU “Y=(A“"A,,+B“’B,,)/4.

SU(3) degrees of freedom result from a way to represent T; with 3 scalar functions

a(2), q(2), q(3) according to the Frobenius (foliation) theorem. The Lie brackets of 3 vector fields on a

perpendicular foliation to —~, have to depend on the tangent bundle T (F) of the foliation F as

Jz

follows,

q();a(2),a(3) & =aP”,a = 0is complex.

d d d
aq@); = ﬁq(l), a(2) = Ve a(2),a3), = dx—yq(?»)-

1) o' *q(),a(2),4(3), =0 (3)
2)o'**q(1);,9(2);,90) (a®)"a(2),,, —9D)s,, 9(2)") =0
3)c"*q(2);,4(2);,4(3), (A" a(3),.,~a@D,,, A3)) =0

4) o' q();,a(2);,9() (a(2)" a(3),,, —a();., a®)") = 0

Conditions 2,3,4 in (23) define the gradients of q(1), q(2) and q(3) as Holonomic .

3
Vectors h(s) are Holonomic if their Lie brackets depend on them [h(i), h(k)] = Zth(j) for some
=

coefficients Cj . Condition 1 is a transversality condition. The Lie brackets of each two vectors must

depend on the vectors that span T (F). (23) has a deep meaning that our scalar field of time is a
result of 3 scalar fields of space locally perpendicular to the gradient of the scalar field of time.

12



The source of these fields are possibly the Sam
Vaknin's Chronon field [1]. This implies a simpler
physics and it is possible that Dirac's equation
[14] and spinors are an algebraic language that
was required because concurrent physics
theories do not have a complete analytic theory
of space-time. The need for algebraic abstraction
may not be related to physical reality but rather
to the way we perceive it. This possibility justifies
further extensive research and should not be
dismissed.

5.1 Dr. Vaknin's Theory — One of Four of
his Offers

The coming definitions will reflect Dr. Sam
Vaknin's view, that even photons by
entanglement of wave functions have rest mass.
Not that a photon as observed on its own has
rest mass. That is incorrect. Matter by Vaknin's
theory [1] is a result of interaction of a field of
time that quite reminds of Quarks in which
summation results in positive propagation. This
paper sees Dr. Sam Vaknin's theory as a starting
point.

Dr. Sam Vaknin's possible description of time:
"Time as a wave function with observer-mediated
collapse. Entanglement of all Chronons at the
exact "monent” of the Big Bang. A relativistic
QFT with Chronons as Field Quanta (excited
states.) The integration is achieved via the
guantum superpositions”.

We will now refer to a simple implementation of
Sam Vaknin’s approach as a quantization idea of

4
time, as the action J%Curvz,/— gdQ*

QA

Where 4/—( is the root of the negative metric

tensor determinant for the volume element, such
that

P= (r!iTwl/'(l) +yw(2)+...+w(n))/Time_ Atom

and such that:

[ * (- gda* =1

0<j<k<oo= In//(j)l//*(k),/—ng“ =0
QA

Here are more definitions we will need.

Energy Conservation: In any physical system
and its interaction, the sum of kinetic (visible) and
latent (dark) energy is constant, gain of energy is
maximal and loss of energy is minimal. See E. E.
Escultura [15].

Information: Information is a mathematical
representation of the state of a physical system
with as few labels as possible. Labels can be
numbers or any other mathematical object.

4
Energy Density: We define —RCUWZ, such

that C is the speed of light and K is the gravity
constant, as the Energy Density of space-time. If
this value is defined by (14) then P =7 is the
upper limit of measurable time from an event
back to near big bang event or to a sub-manifold
of events and therefore (14) is intrinsic to the
space-time manifold because it is dictated by the
equations of gravity and adds no information that
is not included in the manifold and in the
equations. As we shall see, if we choose to write
P =7y such that ¥ is a complex scalar field

then if ¥ is a function of T only then (16) is

reduced to (14) as if P =7. Consider the set of
events for which T is constant. Since 7 is not a
coordinate, we can't expect that set to be a sub-
manifold but a unification of such 3 dimensional
. . 3 3

geometric objects Q (To) =Q (T = TO).

We consider T as a Morse function on the
space-time M manifold. That is that M =7 is
locally smooth and the differential of this map is

of rank 1. In such a case the Morse — Sard
theorem states that the Lebesgue measure of the

Critical Points of M is zero [16].

Energy: The following is equivalent to rest mass

energy. The integration of
4
- _f C—Curvzdgf’(ro) is defined as the
93(70)

Energy of the scalar 7 =T7;. This value is locally
3
conserved for small neighborhoods in Q (To) if

ur 'm = 0 as any local integration of the
squared norm of a vector field is conserved if its
divergence is zero. So if there is a possibility of
ur 'm = 0 local conservation of the term Energy
does not hold. Photons too, by entanglement and

*Corresponding author: Email: eytansuchard@gmail.com, eytan_il@netvision.net.il;



superposition have rest mass but not as an
isolated electro-magnetic wave.

nice thought experiment — is the use of a
covariant Gauss Law and the atom of space for

o =81 . After we have these definitions in mind,
we may want to extend Gauss Law to a covariant
format and later use the idea that there is an
atomic structure of space time that can't be
curved by gravity. For start, a generalized Gauss
law using the exterior algebra, should look like:

Q 24
&y

fE-ds = IE“"dx"‘dxj"dxk =cTau

S3 S3

such that E is the electric field. dsa surface
element and Xdenotes the coordinates, but here
E is a 4-vector and will have to be defined,
cTau is the length of the path of a charge
enclosed in a 3 dimensional surface S3, &, the

permittivity of vacuum and Cis the speed of light.
We also assume that in our local coordinates, the
metric tensor is

Joo =10y =109y =-105=-1

otherwise, gW:O, i.e. flat geometry on the

hyper-cylinder. Since space-time can be curved,
we can only discuss small volume S3 and small

proper time Tau in local coordinates. Instead of
considering the general acceleration field

V"' 1 dv”
A'uv :_2

C C° dr

representative trajectory dependent boost 4-

dv#

dr

(6) as an exact relation as the outcome of the
energy density a“a,/(87K) ie. for the

as in (18), we need a

. Mo
acceleration a” = SO now we can apply

previously discussed guess 0 =87 .

(25)

such that E# is a 4-vector that replaces the
electrostatic field. Please notice that here

E° = 0. Consider a 3 dimensional surface of 4
dimensional cylinder around a charge Q, i.e.

Surface = S,xI around a Cylinder = B3X|

14
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such that both the radius of the sphere S, and of

the ball 53 and the length of the interval | ,is L

and is small. We may consider L to be an atom
of length so by the relation we have from (18),
acceleration is merely a curvature of a particle's

trajectory. If there is an atom of length, say L ,
then the maximal curvature would appear in

loops of radius L so it would be

Curvature:% and by (18) and by the relation

aV

— H
_c2 = AWV
maximal acceleration is therefore

such that V”V# =1, the

C2
H -
la“a,| =

(26)
where C is the speed of light. By (6), this

acceleration can be the underlying acceleration
field in an electric field. The parameterization in

polar coordinates of the surface S,xI is
(L cos(¢) cos(e), Lsin( ¢) cos(e), Lsin( ¢),1)
where O0<l<L.ltis

(r cos(¢) cos(e), rsin( ¢) cos(p), r sin( ¢),0)
where =0 and it is
(r cos(¢) cos(e), r sin( @) cos(e), r sin( @), L)
where | =L, such that

re(0,L),¢e(0,27),pe(—nl2,7/2)

and the normal to the surface which for
O<l<L is
n = (cos(¢) cos(e), sin( ¢) cos(e), sin( ¢),0)

and at | = L the normal vector is fi = (0,0,0,1)

and at | =0 the normal is i = (0,0,0,-1).

A*,
source is expected to cause E* ﬁﬂ to cancel out

on the "top" and "bottom" |=L and | =0
boundaries combined together, because
acceleration changes sign as the time coordinate
changes sign. So the integration (25) will be by
(25) and by (26), even though the metric is
Minkowsky,

An acceleration field around a physical



CZ
Ly4Ks,

K
4re,

But what about gravity which results from the
energy of the acceleration field A*, and what
about the influence of such gravity on the metric
tensor within the cylinder ?

:%:L
€o

473

27)
_Q

CZ

Since we consider an atom of length L, no
field can exist below that radius and therefore,
(24) is valid even if the charge Q is not small.

We now assign the electron charge € to Q and
(27) becomes,

K
4re,

What is the wave length of a photon that can be
emitted by the field E“ ? We know that the
energy should be & times smaller than the

energy of the field, such that & is known as the
"Fine Structure Constant". Therefore, the

1/ \/E than the

expected wave length if we assume that L is
also the wavelength of a photon that has equal

e
LZF

(28)

wavelength is bigger by

energy to the field E“ or in its matrix
form A*,. We have ﬂ:L:% L
Ja C*\idrga

2

. (]

assign o = —— and get,
4rgy hC
Knh

A=\ce (29)
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Which is known as the "Planck Length".
6. INVARIANCE UNDER DIFFERENT
FUNCTIONS OF P

Here we are about to explore another degree of
freedom in the action operator of the acceleration
field as shown by a representative vector field

d—P that curves.
dx'

Caution: Although the calculation may have a
gquantum meaning, it is not brought here for the
purpose of developing a quantum field theory.

We revisit our acceleration field,
N 2, N 2, p *#

U,=—m-—% P st N
N N (also found

=(P* P +P*P)/2

as Z in this paper) we can sloppily omit the
comma for the sake of brevity the same way we

instead of p, for d—Piand write

write P,
dx
N%n NZ,P*
Suppose that we replace P by f(P)such that
f is positive and increasing, then
df(P) df(p) dP

®) dx’ dp dx' (PR ©
N? = PiPﬁ then

N? = f(P), f(P)* = N°f (P)’ and
2 2 2f

NA 2k _N 2k o (P) p, but also
N N f,(p)
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g - N’ N% f(p)p°fy(p)py

k™ N 2 N 2 N 2

2, 2f 2, 2f f °f
N2k+ pp(p) - N25+ pp(p) ps) p(p)zp p(g)pk _ (30)
N f,(p) N f,(p) N=f,(p)
N% NZ?,P*

Consider quantum coupling between the wave function ¥ of a particle and the time field 7,

2
PP*=1 ',Vl//* as follows. Where does this coupling P =7y come from ? It is has some common

sense if we say that the sum of wave functions that intersect/coincide with an event, influence the time
measurement from near the “big bang” singularity event or from a sub-manifold of events to that
specific event. A much better choice that will be discussed in the appendix "Appendix - Event Theory

and Lévy Process" is P = \/;l// and PP* =y *. In that case, iy * is a Lévy measure and time

itself becomes a stochastic process with events in which time can be measured. The appendix
presents an offer of how to quantize (14).

Currently, we defer the quantization of (14) and we define the curvature vector of P = 7y,

. 2 A2_ *]
U, (N < Niey) (n//)kj (31)

N 2 (N 2)2
¢ 2 k
Index k means derivative by coordinate x*, N? = (ty), (ty*)*, N* =r7,7".

As a special case, we replace ¥ by a wave function that depends on 7 only

—-iE7

w=e" st i=+-1 (32)

E is the energy of a coupled particle, /i is the Barred Planck constant, so we have

iE
(ty) =y + 7y, =Tkl//(1_7) (33)
2E2 2c2

n E E

szrkrk(1+rh2 ):N2(1+Th2 )
(34)

and

) 1 Z_ZEZ

NZS_N25(+ K2 )JFZUSEZNZ/I"LZ_NZS+ 2rr E? (35)
N2 2 22 22 - 2 2 22

N N (1+ThE ) (1+rh|§ IN? N (n° +7°E7)

16
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N?j(zy) )

Now we want to calculate N7)? (rw), sowe have

N°j(zy)*
(N?)?
By, * E

N? (% +°EY) " 2E2 TW(l_?”‘ (36)

(tw)y =

(

 IN?

N?; 2rrE? 7] N?jzlz, N 277, E?

(2+ )2k 212 2 22
N2 (W’ +72E°)’ N (N?)®> (W +7°E?)

From (31), (35) and (36) we have the result

N> (N?)
N % 2r7, E? N%iz'z, 277, E°
+ - + =
((NZ (h2+12E2)) ((N2)2 (h2+rzE2)))
N?2« N?2izlr N2, NZ%PIP
N o Ty (N ) =U
N (N?)? N (N?)?
(37)

7. GENERAL RELATIVITY FOR THE DETERMINISTIC LIMIT

By General Relativity, We have to add the Hilbert action to the negative sign of the square curvature
of the gradient of the time field. Negative means that the curvature operator is mostly negative. We

assume o =8r.

k
Z=N?=PP“andU, :%_Zi’_zﬂand L:%U“Uk

R = Ricci curvature.

Min Action = Mlnj ( R——LjrdQ

(38)

A reader that still insists on asking on where does Ty come from, can understand that L can be
developed also for 7% and remain invariant if ¥/ is only a smooth function of 7. If P =7y then

L= 1 (UKU*, +U** U,) and an integration constraint can be
8
Joey v - gdQ* () =1 (39)

17
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. 3 . . . .
Caution: (T) is not a sub-manifold because T is not a local coordinate and thus the local

3
submersion theorem [17], [18] does not hold. However, Q (T) is necessarily a countable unification

of three dimensional sub-manifolds - Almost Everywhere - on which T is stationary due to
dimensionality considerations.

R is the Ricci curvature [19], [20] and +/— g is the determinant of the metric tensor used for the 4-
volume element as in tensor densities [21].

Important: If instead of P =7y we choose P= \/;l// then Uk in (37) is the same if ¥ depends
only on7. Moreover, instead of the constraint in (39) the following

[,y gt =1 (40)

leads to a theory in which /' represents an event and J‘ . PP* [— gdQ* = Teen TEPTESENtS the
Q% (7)

time of an event, i.e. see "Appendix — Event Theory and Lévy Process". Now we return to (38). By
Euler Lagrange,

(PZ)

L= st.Z=PP”*

Ay-g) d aLy-g) _

9" dx™ a@" )

(&PPP )i &(F wPPP" + 1 'nP PP™)+
(&PP) - %(T "PPP"+ I 'wP PP")+ -0
((P P) )Zva 3( ((PJHP)L)’SPS)Z )PIPV_E(PlZA)Z )
73 L 74 L 2 73 u
(%P )PP, - 2(P 23) Y Gl PP )Z,P, +
_ Z Z YA Z ﬁ
1P'Z) . (PLY PP

2 Z3 w787
(41)
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ZZ
Ay-g) d aLy-g)_

og"’ dx™ og”,,

L=

A _ 1]
st.Z=P,P

7|

-2 Z;‘ “ )i +2 T

Z"PP (,'wPPZ"+I,'nP P.zm))
+

PP, Z" r'wPPZ™+I 'wPPZ"
+2( u vz)z )_2( ! Zz u ))+ ﬁ:
Jll G220 12,27
ZZ ZS mov Z(PIPI)Z ja%
z" z'z, PP, 122" Z/Z,
(_2(?)!mpypv_2 Zzz ﬂZ _E ;2 gyv 22 )V_g
Z;LZ)L 1
L= -2 st.Z=PP!
olLy-9) d aly-9)_
o9’ dx™ og”,,
Z"P,P, ", wPPZ"+I,'wP,RPZ")
-2 > )im +2 " )+
PP, Z" r'wPPZ"+I 'wPPZ"
o0 et ) G ARE T LAE ) g -
zZ7Z z.7° 122"
g 5T pp o TmT
22 Z3 mov 2(PIF)I)2 g.u"
zm z'z, PP 122" ZZ, —
(_2(?)’mpﬂpv_2 szL ﬂz _E ;2 uv ;2 ) _g
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k
Zzi —%and L=U"U,

Z=PP"andU, =

Ay-9) d ay-g)_

09"’ dx™ aog",,

(P*P,)mP™ k..
+2(~—L5"—P“); PP, +
P‘z,)* PP P*P,),P°
2( Z;) ,uZV_Z(( ZAZ1S )ZﬂPV+
N-0 =

A 2 A ZPP
ACZ)  PZ) PR
2 7 ¢ YA z
7'z, P#Pv_lzkzkg +Z,,Zv
z® z 2 z7* "™ 77

(P2P1)1mpm K y. Zm .
+2((TP )’k_z(?)’m)Pva-'_
+2(PAZA)2 P/lPV_ZZAZ). P#PV+

z®  Z z? Z
N—0 =
1(P'Z,) 12,2*

2 72 Tz

Z Z A S

+ QZV—Z((P Zz’sp )Z,P, +

(PXPA)’um . Zm .

TF>k),k -2 77 )im )PP, + (43)
‘7 2 PP 'z PP

+2(PZZ;) “ZV—ZZZ?‘ "ZV+ -9 =

+U#UV—%UkngW

)

Zm
(—2(?);mpﬂpv_2

(P;LZA )2 P,u Pv
3 YA

+2((

1 PP
(Uva _EUkngyv_ZUk;kﬂT)V_g
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st.Z=P*P,andZ_=(P*P,),,
oly-g) d aly-g)_

P, dx"  oP,,
(Z P )

ZP° -
P"P”);V+4( — )Fi“vP'PV+
Z

Y LU L N

M5

. Ps) (ZP )

+4 PP -4
m= u m\2
+2Zm;3z _6(szF>4)

Z,P*)P* Z,P"Z"  (ZaP") b (44)
S P2 T

P

(-4

S st.Z=P'P,andZ_ =(P'P,),
oLy-9) d aLy-g)_
oP, dx"  oP,,
nwzv .
#);V+i2]“i"kP'Zk+
Z Z (45)

4222 pe g

Z3

YAl z.Z" .,
(-4=5), -4 E )P*J-g

— 4

From (38), (43), (44) and (45), we get two tensor equations of gravity, assuming o =87, where the
metric variation equations (38) and (43) yield,
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k
Z=N?=P,P* U, :Zz—l—zk'ZD—ZPA,L:%UiU‘ and Z = P*P,
P*P,),, P" z"

+ 2((% Pk);k—Z(?);m )P,,PV +
8z1| ,(P'Z,)" PR 272, PR .:
o 4 z® z z? Z

1

+u#uv—5ukukgw
87 1 1 PP, 1
;Z(UyUV_EUkng,UV_ZUk;k ﬂT)zR,uv_ERg#v (46)
st R=R,g"
st R =)= )+, Ty =T, T,

RW is the Ricci tensor.

In general by (7) (46) can be written as

187 1 P.P
u,u, —EUkng,w —2U%;, ;z

1
-2z =R, —=R
4 o ) y72% 2 g,uv

. . e e 1k
We can also see that the ordinary local conservation laws are modified if U w7 0 unless the local

PP
average around charge (—2U k;k — );V =0 which is expected due to symmetry around charge.

VA

Different charges will fall at the same speed, for a detailed proof of conservation see “APPENDIX
- Conservation, Why Do Different Charges Fall At The Same Speed”.

Majorana - like field: The term — 2U k;k % in (46) can be generalized to:

(PP* +P* P)/2
z

—2(U%;, +U*)12)

Which is an interesting case because if the field Pﬂ is partially imaginary or (ZZ ﬂ);” =0 with

k. k. . . .
additional conditions then U % +U™* K = 0 which means that there is no electric charge. It could
. . . . .. _ " ..
be the case in Neutrinos. In that case, since the acceleration matrix is A, = (T),V—(T%), it is

possible that the norm of Pﬂ i.e. /Z is imaginary which means Z <0 and Pk is space-like. The
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1 A

complimentary matrix B# = ﬁ Aaﬁb“ Y can be transformed to a real matrix due to the SU(2) x

U(1) degrees of freedom and also be imaginary.

Important: The force represented by U” may greatly differ from what conventional physics defines as

mutual interaction forces. This is because such a force is a property of space-time (although not
anticipated from the metric alone) and as such, it can be construed as an interaction with space-time

itself, i.e. all matter. Please note that U# is a curvature vector which means time can't be measured
along geodesic curves as these curves are prohibited in the field (17),(18).

Denoting Z, = g—ZL , from the vanishing of the divergence of Einstein-Grossmann’s tensor we have:
X

1 P“P”

(U"U”—EUkU"g’”—ZU";k ), =
u“ld”; su"u“;,
1 S v . S v . PP
—5 U U950 + U5, U, g5 g™) - (U, )i, =
Ko Ltk e 11K - «. PP"L
u“l*;, +uus,, Uy, —(2U°;, )i, =
u“uk;, + 47
z" Z pt Z pt P“pP”
U= ) —(Z9) "+ P P, 0%, ;=
((Z)()( )k(Z 5= ( Z)V
Z P, o. Z.P" P“P"
Uy, +U (( —5 )P’ - ( —)“ P) - (U5, 7 )i, =
L LDV
u“u;, +U (Z P ) P¥—(2U%;, PP ), =0= 4(R’”‘——Rg”k),k
ZP z¥ 7P
The term Uk(?),k P* is due to the fact that Uk :E - 22 P and UkPk =0 from which
Uk(_(ZLPL).yP)_O . . .. .
72 ' Fx) =Y. The bottom line is that it is possible that
PP PP
-(2U “ % );V #0 . We will later refer to - 2U ¥ K T as “electro-gravity”.

We can now explore the relation between local parallel translation in loops and non-zero divergence
PP

k. . .
U w7 0. contraction of (46) by yields
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18r 1 K .. P.P,_P“P¥ 1 pP“p”

- —u u -=uUu ~2u, L) —=(R,, —-=R =

4 o ( uzv 2 k gyv k Z ) Z ( uv 2 gyv) Z

187, 1 ‘ ‘ P“P” 1

——(-=Uu“-2Uu%,)=R -—R 48

4 0( 5k =R, 7 > (48)
Contraction of (46) by §”" vields

187, 1 K K 1

——(=Uu“-u’;, )=-=R 49

Pl =73 (49)

So from both equations we have,

B P,UPV
4 o A4

(50)

If the divergence U 1k IS related to electric charge then this result implies that even photons
generate pairs of oscillating charge. By the definition of the Ricci tensor

P“P" P“P"
L L
R,uv:R ”Lv:>R‘uv Z :R ulv Z ==

o (52)
(P55 —Phi) =

This is because by the definition of the Riemann curvature tensor, the anti-symmetric derivation of a
vector field V" yields VL;J- VL = R".jkV* and so

(\/L;j;k—VL;k;j)Vk :RLujkV”Vk and therefore
V5V IV =R VAR =R, VAV

HDV
_%S_EUk;k:R/wPZP -
180 P 42
T
—Z;Uk:k =(P"; 5, —-P5;, 5

Definition: We will call the latter "Charge Holonomy Equation™.

Or in its complex form,
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*V
T U ) =R 1, P ) )
8 o Z
(53)

1 P
And if 0 =87 we have _ZU k;k = (P";L ;V—P";V ;L)7 in the real case and

1 p*
—g(U k;k+U *k;k )= Re((PL;L ;V—PL;V o )T) in the complex case.
p*
For (PL;L ;V—PL;V ;L)T not to be zero, it requires that locally, parallel translation along

different paths that connect two events, will yield different results. Obviously because P is a scalar

ko . k. . .
field, in flat geometry (P ,L,V—P ,V,L)ZO and in curved geometry we can have

k. . k. .
(P 1|_1V_P 1V1|_)¢0.
By Lee C. Loveridge [22], another illuminating equation which is simple if o =87 s,

87 1

R(3) = (Zuﬁul +U ;) (54)

o2
. 8z 1,1

or in the complex case R(3) = ;”E(Z(U UX, HU XU )+US U >

Where R(3) is a three dimensions scalar curvature in the space perpendicular to Pﬂ = P,# or in the
complex case, to (Pﬂ + P*/,)/Z. (54) can be viewed as a non linear version of Proportional to
square error — Differential case of PID control which is well known to physicists who also have

. . . 1 . . k. . : .
background in engineering. —U ’1U/1 is the square proportional term and U 1 IS the differential
4
term. The three dimensional scalar curvature R(3) is merely an output of such a control system. Note

that both R(3) and %U *U , are curvature terms where Ux describes the curvature of the gradient of

the time field i.e. the curvature of Pﬂ .

From (38),(44),(45) we have,

d , o d o ’
- uu/-g)=w*; J-g=0
dx” (aP# dx” GP#,V)( ‘ 9) uNT9

0 d o
We recall, W * :(8P “ 4 2P ’V)(Ukqul—g)

u u
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W =

- (ZV),V—4ZZZm) WPy o pZaP2 (PN
z;v —4Z;—ZSmP*‘+

4 a(&P )PV)WP 2 Za P )’

LA A

—4((Uz—k);k+Uk k)P”—zzf;—fmu”:o

A simpler solution to zero Euler Lagrange equations, is

o d 0 )
(GPH e GPW)( UY-9) (56)

Which results in a special case, “Zero Charge” as charged particles are related to non-zero
divergences and either U “U = 0 or Zum =0
VY. _
u”), =0 (57)
and (46) becomes,

8z 1 1 1
— UM, —JUU ) =R, ~JRy,, (58)

The reader can either refer to the following calculation or skip it.
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- (ZV),V—4ZZZm) pr 4 4((ZP P

U
2,P"2"  (Z,P")’

);, P*

IE 2
Z
Z.P*)P" Z. P )
ca(EPOPY b g ZaP)
Z Pm Z" ZumP”
(——?)Z
k m
—4«” Yo+ Uk)Pﬂ 2ZnP e g
Z
k -P,u
Recall that U"P, =0 , multiplication by T and contraction yields,
Z (Z, o )PV zZ.Z" (Zum)2
( 7v )’V)Z+ Zz - 23 :O (60)
VAl (ZP)PV 1.2,2" (Z, P)
( )’v_( )’v+_ mg ) 0
Z Z
(61)
and as a result of (61), the following term from (46) vanishes,
“HLpv k nLpv
_outy, PP (U ), PP —2UMU, T
Z Z 62)
Zm . (PAP )’m . 1 Ziz (ZSPS)2 PV
2((?1m_(/1z—3pk)7k+2( 22/1_ 23 ) P“P" =0
.2V (ZP)P
which yields a simpler equation (58). Recall that U" = 7 —T
And that %UV =U uU”
Z" (z,P® )PV 1.2.2" (Z,P")°
1y ] +—= - =
G5 (o =)
UV 1 1 m
( ),V+ u,u" )——(U )i, — Z,+-U U= (63)
72 Z
—U");, =0
Z( )iy

which proves (57).
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1 PP
Question to the reader: |If U#UV —EU kU kgyv -2U k;k % describes the electro-magnetic

energy momentum tensor, where is the torsion tensor F/,V = —Fvy that is so basic to the electro-
magnetic theory?

Answer: U is not any electro-magnetic field. It is a property of space-time as P =7 is dictated by

U

the equations of gravity. U”, however, offers a way to describe an anti-symmetric tensor which is a
singular Lie Algebra matrix as an acceleration field via Tzvi Scarr and Yaakov Friedman

P*ﬂ
" (PP, +PP* /2

such that A y = _Avu- See "Appendix —

representation [7], AV u

Acceleration field representation”. The field is actually represented by A, but it is not an

Hv
electromagnetic field, rather, it is the underlying mechanism that results in what we call, the electric
U * P *H
field. In the complex formalism either, —= Avu > > * or
2 J(P* P, +P*P*,)/2
U, p*# c'1
= R . Increasing or decreasing ——(U *U"+U U *V) results
u
2 J(P* P, +P*P*,)/2 oK 8 '

in change of Energy density and in the phenomena we call Electro-Magnetism. Ayv represents a

non-inertial acceleration of every particle that can measure proper time and not of photons as single
particles.

8r 1 1 _
Inertia Tensor: We define inertia tensor as ) uu _EU U g,, | this reflects what we know
o
as energy momentum tensor.
. . 2 k Py Pv . . .
Question: why is the tensor ——U *; not included in the Inertia Tensor ?

“ PP,

PP . _
Answer: Because the term —£_Y_ is not a material field.

PkPk
2. PP
Electro gravity tensor: We define the electro-gravity tensor as — -U K —
4 JPP,

<L orby (7)

As we shall see, —EU K IS equivalent to electric charge density —%U k.

L ifo#8r.
280

But the sign could be also plus. Charge conservation yields the following:
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1 k k. P/IPV Hv k k.
From, (U#UV_EUkU g, —2U ,kT)g =-UU"-2U";, itfollows

that%J‘(—Ukuk—2Uk;k)ﬁdQ:£J‘_UkUkHdQ:J‘_RHdQ'
Q

Q 4Q
Construction and Destruction: We define construction or destruction as local appearance and
disappearance of non zero — EU k;k neighborhoods of space-time as a function of 7. This definition

alludes to the well known terms of construction and destruction brackets in Quantum Mechanics.

8. RESULTS - ELECTRO-GRAVITATIONAL THRUST, DARK MATTER AND DARK
ENERGY

Dark Matter: Dark Matter will be defined as additional Gravity not due to the Inertia Tensor. It is
meant that the cause of such gravity is not inertial mass that resists non-inertial acceleration. It also

emanates from the acceleration field as expressed by the Scarr-Friedman matrix [7], Auv = —Aﬂ,.
This field prohibits Minkowsky geodesic motion of rest mass.

Dark Energy: Dark Energy will be defined as negative Gravity not due to the Inertia Tensor. It is
meant that the cause of such gravity is not inertial mass that resists non-inertial acceleration. Also in

this case electro-gravity is not the only cause. The acceleration field A/,V :_Aw that prohibits

Minkowsky geodesic motion of rest mass must also be taken into account. The following will describe
a technology that can take energy from space-time apparently by Sciama Inertial Induction [23] and is
closely related to Alcubierre Warp Drive [24]. Electro-gravity follows from (6), (46) and (55). For
several reasons we may assume the weak acceleration of uncharged particles mentioned in (6) is
from positive to negative charge see also [8], consider the general relativity equation

Lo, -tuur 0k, vy g _r -ig icci i
Z( U V_E A P ,kT)— uv = ”V_E Q.| such that the Ricci tensor is

Ryj :(l“jkp),p—(l“pkp),j+1“pyp1“jk” -T," 0,

ku

G#V is the Einstein-Grossmann’s tensor. From (4) in a weak gravitational background field and

o =8r,
4 P*P,), P*
lum — 1((P F,), )lm _( _/‘)/‘2 Pm) ~ iZ = 47ZK80 E—n; (64)
2 2" P'P (P'R) C C
a oKe, E
F: > 0 C_”; E, =(E0 =0,E1,E2,E3) (65)
and also

C is the speed of light, dis the non-relativistic
weak acceleration of an uncharged particle, & E“,=0 (66)

is the permittivity constant in vacuum, K is the

gravitational constant and E is a static non-
relativistic electric field in weak gravity, assuming
that by correct choice of coordinates,

The reader is requested to notice that (70) is only
a non-relativistic and non-covariant limit! From
electro-magnetism
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k. _ P /oK yo,
E = c (67) 2% C2 =Gy =Gy, (70)
0

Such that p is the charge density

1 oK
6 1 . So i 2e. PC? =G, =G, such that
k
;Z(UyUV_EUkU g,uv) 0
~ek o L e g _LleENg ) 1| o
= o ChN M gk 9 — 5 Kp behaves like mass density and
o\ 2¢
(68) °

therefore we can define an electro-gravitational
virtual mass as dependent on charge Q:

Or by (7) if o # 87 (68) becomes

PP E“;, P.P, 1
- 12U K " - ~ ngO zk . (69) Ivlvirtual = 4 Q = Q (71)
4 z V2 ¢ z o\ 26K [20g,K

From the electro-magnetic theory Ek;kzﬁ

€o
such that o is the charge density and so for t
Schwarzschild coordinate time,

Q.

We will calculate Virtual _Mass =
20¢,K

for +20 Coulombs by assuming o =87

+1Coulomb

= +5.8023316910603588881280833793417 x10° Kg
J167g, K

Multiplied by 20 we have

+ 20 Coulombs
J167e,K

=+1.1604663382120717776256166758683x10" Kg.

Within 1 cubic meter the effect would be a feasible electro-gravitational field because Newton's
gravitational acceleration as a rough approximation yields,

K -Virtual _Mass

radius?
K -1.1604663382120717776256166758683x 10" Kg /12 =
7.7447759503439588089631666010105 1 ere
Second

Consider parallel metal plates of 10cm x 10cm with a gap of 2cm and with low relative permittivity thin
slab of 10 grams in the middle, such that the voltage of 37 Kilovolts is applied to the plates. The net
classical non-relativistic gravitational force on the slab without regarding the non-geodesic
acceleration field, is less than one third of a micro-Newton. That is a dauntingly small force which is
very difficult to measure.
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The calculations rule out any measurable imbalance in charge distribution in photons can
vacuum thrust of Pico-Farad or less, resultin alleged effects such as EMDrive [26]. A
asymmetrical capacitors even with 50000 volts slight 1% imbalance in +e and —e charge of say
supply, simply because the net effect depends 1024 photons is equivalent to over

on the total amount of separated charge which is +1600 separated Coulombs and therefore if
far from sufficient in standard Biefeld Brown . . .
- Hans Giertz assumption [11] holds, using
capacitors [25]. ) .
photons for warp drive effects is the most

Hypothetical use of sub-luminal photons: Itis feasible technological solution.

yet needed to be demonstrated that sub-luminal .
photons do exist and that if very close to the 1pe K-Virtual _ Mass
speed of light can interact with electric currents radius?
and/or fle|dS as if they are h|gh density eleCtI’iC acce|eration of over 126 gees between
charge distributions. After (17) there is a 41600 coulombs separated by a gap of 2
discussion on the vanishing of the Reeb class  yaters. In such a case, if a photon behaves like
based on [2][3] from which the restriction of U, a dynamic oscillating or rotating dipole, these
to the foliation F must have a zero rotor i.e. dipoles will b? .Of differgnt dipplg _moments
. . ) aligned or anti-aligned with relativistic electric
U, (F)=U,;, (F)=0. This results in fiejgs The result is equivalent to true charge
electric field which is always a result of electric  separation and can have a great technological
charge, i.e. non vanishing divergence. The idea potential for the development of a feasible warp
is that even photons can appear as a pair of drive thrust.
oscillating negative and positive charge. Slight
Use of plasma: Another idea is to use ionized plasma. Let us see what we can do with one gram of

ionized hydrogen. The number of atoms by Avogadro's number is n = 6.02214129x10% . The
charge of the electron is e =1.602176565x10™ Coloumbs so
Q = +9.64853364595686885 x 10 Coloumbs K = 6.67384 x10™m>kg™'sec™ and

& =8.8541878176..x10™ F/m so 1 gram of hydrogen reaches a virtual mass of
Virtual_Mass ~ +5.5983992546197688910422084444814 x10* Kg . That is far less than the

mass of the Earth M, = 5.97219x10** Kg but the distance between two clouds of positive and

negative ionized hydrogen can be much less than the average Earth radius and therefore a field that
overcomes the Earth gravitational field is feasible.

shows a gravitational

viu

Dark Matter and Dark Energy follow immediately from negatively ionized gas in the galaxy and
A
a,a

positively ionized gas outside or on the outskirts if we assume energy density which means our

electro-gravity constant is Const =87K. In other theories, e.g. Const =K, the center of the

galaxy should be positive. Negative charge as in the first case Const = 87K, will only behave as
Dark Matter more at distance because close to stars it is expected to cause induced dipoles within the
star just as a small negatively charged ball above the Earth will polarize the ground. We now consider
the classical non-covariant limit of the summation of two effects, the non-inertial acceleration and

electro-gravity. Let Q be the charge of a ball at radius r  then by (7) the observed non-relativistic
classical acceleration aof an wuncharged particle without any induced diploes is

A~ - KQ N oKey, Q OKQ(E_L)_Q .
rzm 2 4-7Z'<C,‘0I’2 250 r2 o Ar Electro_ gravity

If 0 =8x then ar~ |— —(— ——) = Oelectro_gravity — &
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A friend, Mr. Yossi Avni suggested that two marble balls will be suspended on a balance above
charged balls, left minus and right plus, and that by the checking if the balanced is tipped or not, we
can decide o =4 for unbiased balance and different value else, e.g. o =87 . There is a problem,
however, that charge in the ground below the balls will polarize the ground.

Fig. 1. Avni suggestion, the left lower ball is negatively charged and the right is positively
charged. The balls above are marble or even of lower dielectric constant
This theory means that a positive charge manifests attracting gravity but has a repelling acceleration
field that acts even on uncharged particles that can measure proper time, i.e. have rest mass. The

curvature U U, < 0 and for positive charge U*;, < 0.

Negative charge manifests a repelling anti-gravity but has an acceleration field that attracts even
uncharged particles and acts on particles that can measure time, i.e. have rest mass.

The following table describes the relation between o and the Dark Matter and Dark Energy.

Table 1. The relation between constants and Dark Matter

o and classical non- Cause for Cause for Dark matter causes
relativistic acceleration dark matter dark energy
o<4dr—= Positive charge  Negative charge Caused by gravity
oK 1 1
HEE-Lys0
26 1° o Ar
o=4r = Negative Positive charge  Caused only by an Alcubierre
Charge Warp Drive [24] by induced
oK Q l_i) _0 dipoles. Positive side faces
2¢, 2 4r - the negative galaxy center.
o>4dr = Negative Charge Positive charge  Caused by the acceleration
field on particles with rest
KQ1_ 1) g mass
26, r* o 4n

32



9. CONCLUSION

An upper limit on measurable time from each
event backwards to the "big bang" singularity as
a limit or from a manifold of events as in de Sitter
or anti - de Sitter, may exist only as a limit and is
not a practical physical observable in the usual
sense. Since more than one curve on which such
time can be virtually measured, intersects the
same event - as is the case in material fields
which prohibit inertial motion, i.e. prohibit free fall
- such time can't be realized as a coordinate.
Nevertheless using such time as a scalar field,
enables to describe matter as acceleration fields
and it allows new physics to emerge as a
replacement of the stress-energy-momentum
tensor. The punch line is electro-gravity as a neat
explanation of the Dark Matter effect and the
advent of Sciama's Inertial Induction, which
becomes realizable by separation of high electric
charge. This paper totally rules out any
measurable Biefeld Brown effect in vacuum on
Pico-Farad or less, lonocrafts due to insufficient
amount of electric charge [25]. The electro-
gravitational effect is due to field divergence and
not directly due to intensity or gradient of the
square norm. Inertial motion prohibition by
material fields, e.g. intense electrostatic field, can
be measured as a very small mass dependent
force on neutral particles that have rest mass
and thus can measure proper time. Such
acceleration should be measured in very low
capacitance capacitors in order to avoid electro-
gravitational  effect. The  non-gravitational
acceleration should be from the positive to the
negative charge. The electro-gravitational effect
is opposite in direction, requires large amounts of
separated charge carriers and acts on the entire
negative to positive dipole.
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APPENDIX

APPENDIX —The time field in the Schwarzschild solution

Motivation: To make the reader familiar with the idea of maximal proper time and to calculate the
background scalar time field of the Schwarzschild solution.

A S mk A m\2

(PP, )PP )y 9™  ((P°P,),nP")
(P'R)’ (P'R)’

for a freely falling particle. This theory predicts that where there is no matter, the result must be zero.
The result also must be zero along any geodesic curve but in the middle of a hollowed ball of mass
the gradient of the absolute maximum proper time from "Big Bang" event or from a sub-manifold of
events, derivatives by space must be zero due to symmetry which means the curves come from
different directions to the same event at the center. Close to the edges, gravitational lenses due to
granularity of matter become crucial. The speed U of a falling particle as measured by an observer in
the gravitational field is

We would like to calculate [ J in Schwarzschild coordinates
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U®> R 2GM
o Tr T =

V2

Where R is the Schwarzschild radius. If speed V is normalized in relation to the speed of light then

V = % . For a far observer, the deltas are denoted by dt',dr’and,
, dr R
=) =Vil--) (73)
dt r

because dr =dr'/+/1-R/r and dt =dt'v1-R/r .

R(l R)2
L 2 t — (11— t
p:J' (1—5)—Mdt:'[ (1—5)—¥dt:'|‘ (_B)Zdt:
r R r R r
0 -5 -5
r r
t
ja—Emt
0 r
Which results in,
dP R
P="=0101-— 74
=g 4 ) (74)

Please note, here tis not a tensor index and it denotes derivative by t !!!
On the other hand

Ry I
: la-5HE
R.1 1 R 1
P=] |0-2)5- dr = | r R_
AT e e e

o0

Which results in

dP r
P=—"== 75
"odr R (73)

Please note, here T is not a tensor index and it denotes derivative by r !l
For the square norms of derivatives we use the inverse of the metric tensor,

-0
r

R and ! R
@--) a--)
r r

So we have (1— E) -
r

So we can write
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N2=pip —-Dyp2_t pr_q Ryr 5 r R,
r 1" r R R r
r
NP R,
R r

dN?

2
N, = — And we can calculate
X

R.,,1 R,
N2,N2* =(1_?) (R
2\2
(N%) (L_,_B_Z)Z
R r

We continue to calculate

N*P = (1—5)2(l —EZ)\/E and
r- R r r

Please note, here tis not a tensor index and it denotes derivative by t 1!

NP _ . R,1 R,IR
-5 r
r

R.. , R.,1 R.[r
1- )NZP = (1- ) (= - ). |~
A= INSR ==~ 2R

Please note, here T is not a tensor index and it denotes derivative by r !

2 pAN2 _(1_ 2£_E2L B_
(N%P7)"=(1 )(R r2) (R+r 2)
So

R.,,1 R,
(vopty O )
(N?)?

r R
— 4+ ——2)?
(Rr)

And finally, from (77) and (81) we have,
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(78)
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(Pﬂpﬂ)’m (Psps)'k gmk _ ((Plpﬂ)’m Pm)2 —
(PP’ (PP’

N2,1N2/1_(N2/1F’/1)2 _
(N?)? (N?)?

R 2 1 R 2 R 2 1 R 2
- Bg- CDG-D

r R r R
— 4+ —=2)? — 4 ——2)?
(R r ) (R r )

(82)

0

which shows that indeed the gradient of time measured, by a falling particle until it hits an event in the
gravitational field, has zero curvature as expected.

APPENDIX — Event Theory and Lévy Process

Motivation: To present one of several possible quantization offers of (38) without using Stochastic
Calculus. To provide an alternative integration constraint that leads to a new possible theory — a

particle is a non-zero curvature vector Uy and a family of event functions, . An interesting

alternative to (39) is that  is not a particle wave function but an event function, i.e. a collision with a
particle in a 4 dimensional space-time,

wy*,—-gdQ* =1 (83)

Q% (r)

And instead of P =7y we choose P = \/;1// . The reader can verify that the same curvature vector

in (37) is reached by the assignment P = \/;1// if ¥ dependsonlyon 7 .

Then from (40) we get a new random variable 7.,

Tevent = J.Q4(r) TWW*HdQ4 = J.

Q4 (r

)PP*,/— gdQ* (84)

and adding this constraint to the complex form of (38) we have the following variations system,
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sz/;(//

LNz PP PR, P

Z, Z,P*P,

andU , = Z -2 and

11
L= Z(E(UkU*k +U* U,))
R = Ricci curvature,
1 (85)
Min Action = Minjﬁ(a R-L+ APP*}/— gdQ

and

_[Q PP*HdQ = z-Event

A =Const.

An alternative is by Sam Vaknin’s approach as events as the collapse of the chronon field wave
function ¥,

1.1
L= Z(Euku * U *, UK))
Min Action:j(%R - L}/— gdQ
Q

P =(lm y () +y/(2) +...+ () Time _ Atom (86)
[y *())-gao* =1

0<j<k<wo= jw(j)w*(k),/—gdg“ =0
Qd

And if the norm of the gradient of ¥ is partially imaginary or (ZZ ,);" =0 with additional conditions

.k
then we get a Majorana-like curvature field (Uk +U *k), =0 and therefore the charge is zero.

(85) is worthy of further research. To prove that (85) is consistent with quantum mechanics, e.g.
Quantum Field Theory and that no other idea of how to quantize (38) is required, a family of solutions

to (85) with complex functions  _ should exist such that 7z, will be increasing and will describe

detection events of the same particle. Because we introduce a scalar field of time 7, and use a
probability function w i *, if the time S is a Lévy process [28] then we also need the following to
hold,

s—t= [y *() -y Oy *O)ry-9d=[p(s -ty *(s-t)r-gdQ  (©7)

s.t. S>1. So actually a particle is a family of parameterized Lévy measures ¥ (S)y *(S) such that S
itself denotes time and such that 7 denotes the scalar field of time and such that the curvature vector
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o Z, P*P dP -
field U, = ZJ _ L is not zero, st. P=+ry and P,=—— and x' are local

Z° dx’
coordinates. This is one of the ways of the ways to try to quantize the theory. Showing that this offer
works and agrees with Quantum Field Theory should be a subject of international research.

The philosophy here is that particles should emerge from geometry, stochastic processes and from
stochastic calculus and not from algebra and is therefore against the concurrent physics mainstream.

APPENDIX - Conservation, Why Do Different Charges Fall At The Same Speed

Theorem: Conservation law of the real curvature field

From the vanishing of the divergence of Einstein tensor and (46) in the paper, we have to prove the
following:

PP
%(U#UV —%uku “g,,—2U%;, %J;# =G,,;“=(R,, —% Rg,,);“=0 (88)
Proof:

From the zero variation by the time field (55) in the paper

W#;ﬂ:(_4UV;V Zl (ZZS ) J,#:O (89)
’ z,P"
(2 TG}

k. . (Z P ) Pv_ 2uk P/l PV. —
Tu T Zz ’# Tk 7 Yu
Z P ) PV _Uk. ZV
1/1 1k Z

= (92)
t v k. ZV v t v k. ZV
(— j P* -0 %5 — ( i UP U, YU s

oK +( )i, U“P"
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So

p“p"
(20",

t
)., =-U” U +(?);#U“P” (92)

u
U -ty ukge —auk;, PP e
2 z

1

u“ u”+usur, 2(U U, +UUg; )g g“"-u*, UV+( =), U“P" = (93)

Tu
U”UV;#—%(U U.);" ( —);,U“P" =0

Notice that

U”UV;#—%USUS;V:

u *'[(%):ﬂ—(%);# P —(%)Pk:ﬂjg” -

(94)

Uipe ok =
[(_)’k (22) s—(?)Pw)g =

_U#( ) PV

Notice that — (%);k P.U® =0 and therefore:

usu"”; (USU) +( Ly uspr = u#(%),# ( Ly, uPr =0 (9

tu

And we are done.

© 2015 Suchard; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

41


http://creativecommons.org/licenses/by/4.0

