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Abstract. This paper use Nevanlinna’s Second Main Theorem of the
value distribution theory, we got an important conclusion by Riemann hy-
pothesis.
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First, we give some notations, definitions and theorems in the theory of
value distribution, its contents see the references [1] and [2].

We write

log 1<z
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log m_{ 0 0<z<1

It is easy to see that logz < log" .

Let f(z) is a non-constant meromorphic function in the circle |z| <
R, 0 < R < oo. n(r, f) represents the number of poles of f(z) on the
circle |[z| < 7(0 < r < R), the multiplicity of poles is included. n(0, f)
represents the order of pole of f(z) in the origin. For arbitrary complex
number a # oo, n(r, ﬁ) represents the number of zeros of f(z) —a in the
circle |z| <7 (0 <r < R), the multiplicity of zeros is included. n(0, #)
represents the order of zero of f(z) —a in the origin.

We write
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and T(r, f) = m(r, f) + N(r, f) .
T(r, f) is called the characteristic function of f(z).

LEMMA 1. If f(z) is a analytical function in the circle |z|] < R (0 <
R < c0), we have

2Ll T, 0 < <p<R)

T(r.f) < log" M(r,f) <

where M(r, f) = max.—, |f(2)]
The lemma 1 follows from the References [1], page 57.

LEMMA 2. Let f(z) is a non-constant meromorphic function in the circle
2] <R(0<R<o00). ay (A=1,2,...,h)and b, (p=1,2,...,k) are the
zeros and poles of f(z) in the circle |z| < p (0 < p < R) respectively, each
zero or pole repeated according to their multiplicity, and z = 0 is neither
zero nor pole of the function f(z), then, in the circle |z| < p, we have the
following formula
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this formula is called Jensen formula.
The lemma 2 follows from the References [1], page 48.

LEMMA 3. Let f(z) is the meromorphic function in the circle |z| < R,
and

f(0) # 0, 00, 1, f/(0) # 0

when 0 <r < R, we have

T, f) < Q{N(R,%) +N(R, f) + N(R,ﬁ)}
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+ 4 log* |f(0)] + 2 log* + 2328

+ 24 log

1 R
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This is a form of Nevanlinna’s Second Main Theorem.
The lemma 3 follows from the References [1], the theorem 3.1 of the page
75.

Now, we make some preparations.

LEMMA 4. if f(x) is a function of the nonnegative degressive, we have

g&<2ﬂm—/f@m>—a

where 0 < a < f(a). in addition, if # — oo , f(z) — 0, we have

< fE-10,  (Eza+l)
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a<n<¢

The lemma 3 follows from the References [3], the theorem 2 of the page 91.

Let s = o + 1t is the complex number, when ¢ > 1, Riemann Zeta
function is
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When o > 1, we have

o () = 3 )

nslogn

where A(n) is Mangoldt function.

LEMMA 5. If ¢ is any real number, we have



0.0426 < |log((4 +it) | < 0.0824
| C(4+it) — 1] > 0.0426

0.917 < | ¢(4 +it) | < 1.0824

(4)
| ¢'(4+it) | > 0.012
PROOF.
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by Lemma 4, we have

where 0 < o < 1(;%3

1 1 [ log 3 1 [
/ ngdx = ——/ logz dz™3 = 089 + - / rdx
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~ log3 1 [~ log 3
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therefore

=, logn log 3 1 log 3
Z n4 < 34 +§+ 34

n=3

, log 2 2log 3 1
| ¢'(4+it) | > TR —§20.012

This completes the proof of Lemma 5.

Let 6 = - ¢, ¢o, ..., is the positive constant.
100 ) ) ) )

LEMMA 6. When o > 1, [t| > 2, we have

[Clo+it)] < alt:
The lemma 6 follows from the References [4], the theorem 2 of the page
140.

LEMMA 7. If f(2) is the analytic function in the circle |z — zy| < R,
0 <r < R ,in the circle |z — z| < r, we have
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where A(R) = max|._.,<p Ref(z).
The lemma 6 follows from the References [4], the theorem 2 of the page 61.

(A(R) — Ref(z0))

Now, we assume that Riemann hypothesis is correct, and abbreviation
as RH. In other words, when o > %, the function ((o + it) has no zeros.
The function log ((o + it) is a multi-valued analytic function in the region
o> %,t > 1. we choose the principal branch of the function log (o + it),
therefore, if ((o + it) = 1, then log ((o + it) = 0.

LEMMA 8. If RH is correct, when 6 = ﬁ, o > % +26, t > 16, we have

| log (o +it) | < cylogt+cy

proof. In Lemma 7, we choose f(z) = log((z+4+it),2 =0, R =
% -0, r= % — 24, t > 16. Because log ((z + 4 + it) is the analytic function
in the circle |z] < R, by Lemma 7, in the circle |z| < r, we have

| logC(z +4+it) —logC(4+1it) | < — (A(R)— Relog((4+it) )

STIREN|

therefore

| log((z+4+it) | < (A(R)+ | logC(4+it) | )+ | logC(4 +it) |

ST

by Lemma 6, we have

A(R) = max log| ((z+4+1it) | <

Jmax logt + logcy
z—2zp|<

N | —

by Lemma 5, we have

| log((z+4+it) | < cologt + c3

therefore, when o > % + 20, we have
| log (o +it) | < cologt + c3
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This completes the proof of Lemma 8.

LEMMA 9. If RH is correct, when § = ﬁ, t>16, p = % — 20, in the
circle |z| < p, we have

1
N(”’ C(zt+d+it) —1

) < loglogt + ¢4

proof. In Lemma 2, we choose f(z) = log((z+4+1it), R=1-6, p=
=26, ayn (A =1,2,...,h) are the zeros of the function log ((z 4+ 4 + it) in
the circle |z| < p, each zero repeated according to their multiplicity. Because
the function log ((z + 4 + it) has no poles in the the circle |z| < p , and
log (4 + it) is not equal to zero, we have

P

) 1 27 . ) h
log | log ¢(4 + it) | = Dy / log ‘log §(4+zt+pe§0)| dp — Z log N
0 A=1

by Lemma 5 and Lemma 8, we have

h
Z log P < loglogt + ¢4
A=1 [ax]

because z = 0 is neither zero nor pole of the function log ((z + 4 + it), if
ro is a sufficiently small positive number, we have

Z log |a_p)\| = /p <log ?) dn(t,%) = [<1og %) n(t,%)]

]
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1 1
B N(p, 10g<(z+4+it)) = N(p, ((2—1—4—1—2'15)—1)

This completes the proof of Lemma 9.




THEOREM. If RH is correct, when o > % + 46, 6 = 1—(1)0, t> 16, we
have

| ((o+it)| <cg (logt)®

proof. In Lemma 3, we choose f(z) = ((z +4+it),t > 16, R =
% — 20, r = % — 34. by Lemma 5, we have f(0) = ((4+it) # 0, oo, 1,
and |f'(0)| = [¢'(444t)] > 0.012, | f(0)] = |¢(4+it)| < 1.0824. because
((z 4+ 4 +it) is the analytic function, and it have neither zeros nor poles in
the circle |z| < R, we have

N(R,%) —0, N(R,f)=0

therefore, by Lemma 9, we have

T (r,((z+4+it)) < 2loglogt + c5

In Lemma 1, we choose R:%—Qé,p = % — 30, r = % — 49. by the
maximal principle, in the circle |z| < r, we have

log" | ¢(z+4+it)| < cgloglogt + cr

therefore, when o > % + 46, we have

log" | (o +it)| < cg loglogt + cr
log |((o+it)| < cgloglogt + ¢7

[(lo+it)| <cs (logt)™
This completes the proof of Theorem.
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