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ABSTRACT 

 In this article it is shown that the General Relativity Theory is an incorrect theory 

of gravity. It leads to erroneous predictions when it is extrapolated beyond its 

experimentally verified validity such as the prediction of the existence of Black Holes 

with their event horizons. The article describes the two fatal problems found in the theory 

in particular in the Schwarzschild metric, which is the “vacuum” solution of Einstein 

field equations for a mass point. The problems are the insufficient contravariance and the 

violation of conservation of angular momentum. The article then derives the correct 

metric for the centrally gravitating body, which does not have the above mentioned 

problems, presents the Christoffel coefficients, and derives the Riemann, and the Ricci 

tensors. From this metric it is also shown that the Einstein’s Weak Equivalence Principle 

does not correspond to reality and that the inertial mass and the gravitational mass both 

depend on the gravitational potential as well as on the velocity in such a way that their 

product remains constant. 
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INTRODUCTION 

 The General Relativity Theory (GRT) is based on the famous Einstein field 

equations that were originally derived by applying the conservation rule to the energy-

momentum tensor. 
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The equations were originally derived using the analogy adapted from the Maxwell 

Theory of Electromagnetic fields (EMT) where the Electromagnetic momentum stress 

tensor is constructed with its divergence equal to zero. This property is associated with 

the conservations of energy and momentum, which are considered to be among the few 

most important and fundamental laws of physics. By assuming that the metric 

coefficients are dependent on the gravitational potential the search for the second rank 

tensor, depending on the second derivatives of metric coefficients with its divergence 

equal to zero, led to finding the Einstein tensor 
jkG . It was then assumed that in an empty 

space, “the vacuum without mass”, the right hand side of Eq.1 should be zero. This in 

turn led to finding the Schwarzschild metric with its differential metric line element 

shown below as a solution of Eq.1 for the centrally gravitating mass M :   
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In this metric line element the coefficient 
ttg  equals to:        
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the angular variables are:  2222 sin  ddd  , and the Schwarzschild radius sR  is 

defined as: 

                                              
2

2

c

M
Rs


  ,                                                        (4) 

with   and c having their usual meanings. However, this is not the procedure that one 

finds in the Maxwell EM field theory. In that theory the momentum stress tensor is 

calculated from the fields not the other way around. The fields are not calculated from the 

divergence theorem, they are found from the Maxwell’s field equations. It is therefore 

more reasonable to first find the metric and then from the metric calculate the mass 

energy tensor for the gravitational field. When this procedure is adopted it is, of course, 

found that the divergence theorem is still satisfied, but the mass energy tensor is not 

necessarily zero in the “empty” space around the centrally gravitating mass. This is 

certainly a more reasonable approach than an arbitrary apriori assumption that in a space 

where there is gravitation field the mass energy tensor must be zero.       

 

CONTRAVARIANCE PROBLEM  

 The first problem that can be identified in the Schwarzschild metric is the 

problem of insufficient contravariance. This can be shown by assuming that a small test 

body is falling in a radial direction in the field of a centrally gravitating mass and derive 

equation for its motion. The Lagrangian describing such a motion is as follows: 
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From the well known variational principle: 
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follow the corresponding Euler Lagrange (EL) equations of motion: 
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Here it was also considered that for the static and spherically symmetric case the metric 

coefficient is a function of only the coordinate radius r . The first integrals of these 

equations are easily found to be: 
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where k is an arbitrary constant of integration ( 2cL  ). To find the forces that govern the 

motion of a test body, Eq.9 is differentiated with respect to  with the following result:   
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In this formula it was assumed that the metric coefficient is a function of the Newton 

gravitational potential 
n  in order to satisfy the experimental fact that the Newton 

potential becomes the limiting function as r . From this equation then follows that 

since the left hand side is a component of a contravariant geometrical object, the right 

hand side must also be a component of a contravariant geometrical object. It is therefore 

necessary, considering that in the orthogonal spherical coordinate system it holds: 

tt

rr gg   and that the gradient of a potential is a covariant vector [1], that the following 

condition must be satisfied: 
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The solution of this equation, assuming a flat space at infinity, is simple to find and is 

equal to: 
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From this result it is then clear that the Schwarzschild metric satisfies this requirement 

only approximately to the first order. Therefore, the Schwarzschild solution of the 

Einstein field equations is a nonphysical solution. This also includes the Schwarzschild 

solution as originally published [2]. Even if the Schwarzschild metric leads to the correct 

predictions for the Mercury perihelion advance, the light bending by the Sun, etc., it is 

not correct to extrapolate it and use it for the astronomical objects where there is a strong 

gravitational field. The examples are the neutron stars and similar compact objects, the 

whole universe etc.. The Black Holes are, therefore, a mathematical artifact of an 

incorrect extrapolation of the Schwarzschild metric and cannot exist in reality.              

 

CONSERVATION OF THE ANGULAR MOMENTUM PROBLEM 

The second problem of the Schwarzschild metric is the problem of conservation 

of angular momentum. This is a well recognized law of physics that has to be satisfied as 

is well known, for example, from the quantum physics where the spin is one of the well 

conserved quantum numbers. In order to illustrate this problem the metric given in Eq.2 

is generalized as follows: 

          22122 )(   dgdrgcdtgds tttt  ,                   (13) 

where the metric coefficient g  standing by the angular coordinates was introduced. 

Again, the motion of a small test body described by the Lagrangian corresponding to this 
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metric will be investigated. For simplicity only the motion in an equatorial plane, 

2/  , will be considered. The first integrals of EL equations are thus as follows: 
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where   is the integration constant corresponding to the angular momentum. By 

eliminating the proper time differential d  from these equations the result becomes: 
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This is the correct equation for the conservation of the angular momentum. Many GRT 

textbooks, however, claim that Eq.15 is the correct equation for the conservation of the 

angular momentum [3]. This is a very strange claim, which is absolutely wrong. The 

linear velocity is defined and measured as the coordinate distance increment divided by 

the coordinate time increment, but for some unexplained reason the angular velocity 

should be the angular increment divided by the invariant d ? This does not make sense. 

The angular velocity has always been determined by measuring the coordinate angle 

increment divided by the coordinate time increment. From Eq.16 it is then clear that the 

ratio of the angular metric coefficient and the coordinate time metric coefficient for the 

spherically symmetric coordinate system has to be some generalized, most likely the 

proper distance squared, function of the coordinate radius. It must therefore hold that: 

              ttgrg 2)(  ,               (17) 

where )(r  will be called the physical distance defined as: 

         dr
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Clearly, this is not satisfied by the Schwarzschild metric. There is no suitable function, 

which would satisfy Eq.18 and at the same time the condition: 2rg 
 found in the 

Schwarzschild metric. The correct metric for the centrally gravitating body in the metric 

theory of gravity (MTG) is thus as follows [4]:  
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where again the angular variables are:  2222 sin  ddd   and where for the physical 

distance and for the potential hold the following formulas: 
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In this metric both the contravariance and the conservation of angular momentum are 

satisfied. It can also be shown that the well known four tests of gravitational theory: the 

Mercury perihelion advance, the bending of the light by the Sun, the Shapiro delay, and 

the gravitational red shift are all leading to the identical results obtained from the 

Schwarzschild metric for the case of the weak gravitational field. These tests have been 

already verified by observations and experiments to a reasonable degree of accuracy, so 

any new metric must also provide equations that lead to the same results [4].       

 

GRAVITATIONAL RED SHIFT AND THE MASS EQUIVALNCE PRINCIPLE 

 The metric derived in Eq.19 can now be used to answer questions about the 

Einstein Weak Equivalence Principle (WEP), which in one formulation states that the 

inertial and the gravitational masses are identical independent of any inertial motion. In 

order to derive the relation between these two masses, it is necessary to return back to 

Eq.10. It is also necessary to find the general expression for the coordinate time.  

When an observer is stationary in a gravitational field his coordinate time is given 

by the following relation: 

       ttgdtd  .               (22) 

From this equation then directly follows the gravitational red shift formula, since it is 

known that the frequency of emitted light from the source located in the gravitational 

field is determined by the time rate at that place. For the moving test body, however, it is 

also necessary that the Lorentz coordinate transformation holds. Therefore, there are 

clearly two factors that must enter into the formula for the coordinate time, the metric 

coefficient and the Lorentz velocity factor. To proceed further in the derivation it is 

necessary to find the dependence of the light speed in the radial direction on the 

gravitational field. This is found from the metric in Eq.13 by setting the ds to zero. The 

result is: 

                  ttr gcc  .               (23) 

By eliminating the proper time differential  d  from Eq.9 and using Eq.23 it is possible 

to write for the metric coefficient ttg  the following: 

              22 /1 rtt cvg  .               (24) 

Finally, by considering that from Eq.8 it holds that: dtgd tt , and from Eq.22 for 0v  

that it holds: ttgdtd  , it is clear that for the coordinate time in general it must hold: 

                 22 /1 rtt cvgdtd  .              (25) 

This formula reverts to the standard red shift formula for time when 0v  and to the 

standard Lorentz time dilation formula for the flat spacetime when 1ttg . It is now 

simple to substitute this result into Eq.10, multiply it by the rest mass 0m  of the test body, 

and write: 
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where dtdrv / . The left hand side of this equation is the familiar Newton inertial force 

law and the right hand side is the Newton gravitational force law. It is therefore clear that 

for the inertial and the gravitational masses it must hold the following:  
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The Einstein’s WEP ( gi mm  ) is therefore not consistent with this result. In view of the 

above findings that the Schwarzschild metric does not correspond to reality, the WEP 

does not correspond to reality also. The derived dependencies of the inertial and the 

gravitational masses on the gravitational potential have significant consequences in 

cosmology, where they can be used to calculate the duration of long GRB explosions [5]. 

This mass dependence on the gravitational potential is also in line with the philosophy of 

Mach where he believed that the inertial and the gravitational masses of bodies on Earth 

must be influenced by the masses present in the surrounding distant universe. 

   
CHRISTOFFEL SYMBOLS, RIEMANN, RICCI, AND EINSTEIN TENSORS 

Since the metric is now known, it is straight forward to calculate the Christoffel 

coefficients, Riemann and Ricci tensors, and the Einstein tensor. For the sake of 

simplicity the coordinates defined as:  ,,,rct  will be changed to a numeric 

convention: (0,1,2,3). By introducing an abbreviation: 2/ cnc    the Christoffel 

symbols are calculated to be:   
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 The Riemann tensor is calculated according to the relation: 
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with the following results: 
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where only the nonzero symmetric terms were listed. After contracting the Riemann 

tensor the Ricci tensor becomes: 
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 The Ricci scalar then becomes as follows: 
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For small Rs/ρ this expression reduces to: 
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Since the terms in powers of ρ
-2

 and ρ
-3

 cancel after expanding Eq.33 into a power series, 

the Ricci curvature becomes for most of the space outside the Schwarzschild radius very 

small as can be clearly seen in Fig.1. It is thus easy to understand now why the Einstein 

field equations provide the Schwarzschild solution that describes the reality reasonably 

well, when the Ricci scalar is set to zero, 0cR . However, it is now also easy to 

understand that the Schwarzschild solution must fail with large errors and nonphysical 

Black Hole artifacts such as the singularity and the event horizon, where the Ricci scalar 

is not equal to zero, 0cR . From this result it is not evident that the Ricci tensor or the 
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Einstein tensor should be zero everywhere in the empty space around the gravitating 

body or the Einstein tensor simply proportional to the traditional stress-energy tensor. 

The Einstein tensor that should be used on the right hand side of Eq.1 instead of zero to 

obtain the correct solution for the metric of the centrally gravitating body is as follows: 
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The Einstein field equations thus become identities and cannot be used to search for the 

metric similarly as the momentum stress tensor in EMT is not used to find the electric 

and magnetic fields [6]. Furthermore, since there is no event horizon, it is now possible to 

calculate the energy stored in the gravitational field outside of the radius r. This is: 
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At some point this energy becomes equal to the mass equivalent energy of the gravitating 

body. This occurs at the mass equivalent physical radius
se R

4
1 , or the coordinate mass 

equivalent radius 
se Rr  009384.0 . This also places an upper limit on the observation of 

the gravitational red shift 389.6max Z . In Fig.1, the normalized energy of the field 

)/()()( 2McrWrWn   is represented by a dashed curve and the mass equivalent coordinate 

radius is shown as a vertical dot-dashed line. It is an interesting fact that the largest Z 

shift observed to date is: Z = 6.29 from the Gamma Ray Buster GRB 050904. This is very 

close to what is predicted above for the maximum intrinsic Z shift without including any 

applicable cosmological red shift and thus clearly confirms the correctness of the theory.  
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Fig.1. Graph of normalized Ricci curvature as a function of the normalized coordinate distance 

for a body with the mass equal to the mass of the Sun. The plot is based on the metric derived in 

this article. The dashed curve Wn is the normalized energy stored in the field outside of the radius 

r(s). The vertical dotted line indicates the location of the Schwarzschild radius; the vertical dot-

dash line indicates the location of the mass equivalent radius. 
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The derived MTG metric can now also be applied to very small objects. If it is 

considered that the mass-energy that is compressed into the minimum volume is 

quantized and represented by oscillations in the azimuthal direction with the maximum 

wavelength equal to one half of the circumference the minimum mass is equal to: 
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After substituting this value into Eq.36 the minimum possible physical radius is found to 

be equal to: 
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This value is identical to the Planck length found only on the basis of dimensional 

analysis. 

 

CONCLUSIONS 

 In this article it was shown, using the well established fundamental principles of 

physics, that the GRT is a wrong theory of gravity. The main reason for this problem is 

that the right hand side of the Einstein field equations is determined from some other 

apriori assumption rather than calculated directly from the gravitational field. This 

procedure when applied to the centrally gravitating body leads to the nonphysical 

solution, the Schwarzschild metric. The new metric presented in this article, which is 

replacing the Schwarzschild metric, leads to the equation of motion of a test body that 

satisfies the contravariance requirement as well as the conservation of angular 

momentum. The new metric is also used for the derivation of the formulas for the 

dependency of the inertial mass and the gravitational mass on the gravitational potential 

and velocity. From this result it is shown that the Einstein’s WEP does not hold in reality. 

Finally the new metric theoretically disproves the existence of Black Holes with their 

event horizons and allows giving the direct physical meaning to the Planck length. 
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