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Introduction

One of the first non-commutative multi-component algebras the algebra
of four-component quaternions was discovered in 1843 by W.R.Hamilton
[1,2]. Substantially the quaternions are a generalization of complex numbers
on a space of dimension 4. Then J.Graves (1843) and independently
A.Cayley (1845) discovered the eight-component values octonions [3]. An
algorithm for constructing octonions on the basis of quaternions is called as
Cayley-Dickson construction procedure. It enables the generalization of the
complex numbers on the any space of dimension 2" and in particular, to
build the sixteen-component hypercomplex numbers sedenions [4]. The
history of discovery of hypercomplex numbers partially considered in [3,5].
A systematic exposition of the theory of quaternions and hypercomplex
algebras of higher dimension can be found in the following books [6-11]. An
extensive bibliography on the use of quaternions in physics is contained in
the reviews [12,13].

A significant disadvantage of hypercomplex numbers algebras of
dimension greater than 4 is their nonassociativity. This considerably
complicates their application to the description of physical systems, since all
equations have to fix a specific sequence of actions of all operators.
However, the Cayley-Dickson hypercomplex numbers are not only dedicated
algebraic system on which one can build a description of physical systems.
There are other alternative approaches based on the use of associative
algebras of multi-component vectors and Clifford algebras [14,15].

This book provides a systematic presentation of the authors proposed an
associative algebra of sixteen-component space-time variables "sedeons" and
their applications to the description of quantum particles and fields [16-19].



Chapter 1. Algebra of sedeons

From a mathematical point of view, one of the main problems addressed
in this book is the problem of representation of quadratic forms

>4 (1.1)

k=1

as the product of two factors. In general, quadratic form (1.1.) can be
expressed as follows:

(A12+A22+....+A,f+...A,f,) (12)
=(ad +. .+ 4 +. +a A ) (4 +. +a 4+ +aydy).

This representation is possible for two different systems of coefficients «, .

The first case corresponds to a non-commutativea,, which have the

following properties:

a,a, =1,

(1.3)
a,a, =—o,a, (for k #1).
The second case corresponds to the orthogonal «, :
oo =1, (1.4)

a,a, =0 (for k #1).

In this book, both of these approaches are used to describe space-time and
charge properties of physical systems. The main tool for the description we
chosen the algebra of space-time sedeons.

A key feature of the sedeonic algebra and its main difference from
widespread Gibbs-Heaviside vector algebra is the concept of Clifford
product of vectors. Let us consider two arbitrary vectors 4 and B recorded

in the basis of unit vectors i,, i,, i:
A= Aji, + 4,i, + Asi;,
B=Bi +B,i,+Bi,.

(1.5)

Then the Clifford product for 4 and B is the direct product written in the
following form:



AB = (Alfl + Azfz + Ajs )(Blfl +B’2172 + 8312)
= AIBIEIZI + Aszszsz + A383;3;3
+ AIBZEIEZ + AzleTles + AsBllTslTl

+ A Bji i, + A, B/i,i, + A,B,i,i, .

(1.6)

Depending on the rules of the basis elements multiplication and commutation
the Clifford product can have a different result. In particular, if we accept
the rules of multiplication of the unit vectors corresponding to the Gibbs -
Heaviside vector algebra

Li, = 6L, =6Li, =1,

L, =L =1,
by, = —i0, =1, (1.7)

by, =—iyi, =i,
then Clifford product of two vectors 4 and B is equal

AB = A B, + A,B, + A,B,
+ A,Bii, + A,Bji, + AB,i, (1.8)
- AsBzz; _AlleTz - AzBllTs >

i.e. it is the sum of the scalar and vector products. Such approach allows to
carry out the simultaneous calculations with scalar and vector quantities and
is particularly fruitful in the application to the relativistic physics. However,
the multiplication rules taken in vector algebra have one essential deficiency.
For example, let us consider the square of the unit vector 7, . Following the

rules of vector algebra (1.7), Clifford square of this vector can be
represented as follows:

T2 7 TITT TITT

Iy =i, = 60, = -0 i, =—1, (1.9)

which is in contradiction with the original rules (1.7). To overcome this
contradiction it is required the development of an alternative algebra, based
on other rules of multiplication.



1.1. Space-time sedeons

The sedeonic algebra [16] encloses four groups of values, which are differed

with respect to spatial and time inversion.

e Absolute scalars (V)and absolute vectors (/) are not transformed
under spatial and time inversion.

e Time scalars (¥,) and time vectors (V,) are changed (in sign) under time
inversion and are not transformed under spatial inversion.

e Space scalars (¥,) and space vectors (V.) are changed under spatial
inversion and are not transformed under time inversion.

e Space-time scalars (¥, ) and space-time vectors (¥, ) are changed under
spatial and time inversion.

Here indexes t and r indicate the transformations (t for time inversion and

r for spatial inversion), which change the corresponding values. All

introduced values can be integrated into one space-time sedeon V , which is

defined by the following expression:

V=VAV+V, 4V +V. +V +V +V,. (1.10)

Let us introduce scalar-vector basis a,, a,, a,, a,, where the element a, is

0
an absolute scalar unit (a, =1), and the values a

a,, a, are absolute unit

1° 20

vectors generating the right Cartesian basis. Further we will indicate the

absolute unit vectors by symbols without arrows as a,, a,, a,. We also

introduce the four space-time units e,, e,, e,, e,, where e, is an absolute

0> ~1°

scalar unit (e, =1); e, is a time scalar unit (e, =e,); e, is a space scalar
unit (e, =e ); e, is a space-time scalar unit (e, =e, ). Using space-time
basis e, and scalar-vector basis a, (Greek indexes «,f=0,1,2,3), we can
introduce unified sedeonic components V,, in accordance with following

relations:

~
Il

el] I/()Oa() >

<

=€, (VOIal +Vozaz +V0333) )

AN

=€V a,,
Vt:el(Vnal"'Vlzaz"'Vlsas)v (1‘11)

V. =e,Vya,,



¢, (VZIal + szaz + stas ) ’

SN

=e;l/a,,

Vn =€ (VSIal +Vpa, + V3333) :
Then sedeon (1.10) can be written in the following expanded form:
V =€, (Vooao + V()lal + Vozaz + Vosas)
+e1 (Vvl()a(]-i-l/;lal +I/1232+I/1333) (112)
+e, (Vzoao + VZIal + szaz + stas)

+e3 (V;an + Vv_ﬂal + V;Zal + V;SaS) °

The sedeonic components 7, are numbers (complex in general). Further we
will use symbol 1 instead units a, and e, for simplicity.

The important property of sedeons is that the equality of two sedeons
means the equality of all sixteen space-time scalar-vector components. It
enables to write many relations of modern relativistic physics in a compact
form.

Let us consider the multiplication rules for basic elements a, and e,
(Latin indexes n, m = 1, 2, 3). We require that square of the length of any
vector should be positively defined quantity. Then the vectors a, should
satisfy the following rules:

aa =a =1, (1.13)

aa =-a a (for nzm). (1.14)

Finally, for the existence of Clifford product we have to require the

following rules of multiplication of the basis elements a, (external product):
a,a, =ia,. (1.15)

a,a, =1a;, aa; =ia

We introduce the similar rules for the elements of space-time basis e, :

ee =e =1, (1.16)
ee, =—ee (for nzm), (1.17)
ee, =ie,, e,e,=ie , € =ie,. (1.18)

Here and further the value i is imaginary unit (i* =-1). The multiplication
and commutation rules for sedeonic absolute unit vectors a, and space-time

10



units e, can be presented for obviousness as the tables 1 and 2.

Table 1. Multiplication rules for absolute unit vectors.

a1 a2 33
a, 1 ia, —ia,
a, —ia, 1 ia,
a, ia, —ia, 1

e e, e,
e, 1 ie, —ie,
e, —ie, 1 ie,
e, ie, —ie, 1

Note that although sedeon units e,, e,, e;, and the unit vectors

a,, a,, a, generate anticommutative algebras
aa =-a.a,
e.e, =—€.e.,
units e, , e,, e, commute with vectors a,, a,, a,:
ae =e.a (1.19)

for any n and m.

Thus the sedeon V is the complicated space-time object consisting of
absolute scalar, time scalar, space scalar, space-time scalar, absolute vector,
time vector, space vector and space-time vector.

A sedeon can be represented in compact form. Introducing the scalar-
vector values as

Vo =Viay +V5a, +Va, + V;)SaS >
A\

=V,a, +V,a,+Va, +V1333v (1‘20)
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V, =V,a,+V,a, +V,a, + V2333 >

Vi =Va, +V,a +Va, +Va,,
we can write the sedeon (1.12) in the following form:
V=V, +eV, +e,V, +e,V,. (1.21)

On the other hand, introducing the designations of space-time sedeon-scalars
as

Vo =Voa, +eV, +e, V5 +eV5,

Vi =Va, +el, +e,l, +e0,, (1~22)
V, =Vpa, +e ), +e)l, +e1;,,
V, =Via, +e V), +e,V,, +els,,

we can write the sedeon (1.12) in another form
V=V,+Va, +V,a,+V,a,, (1.23)
or introducing the sedeon-vector
V=V+V,+V.+V, =V,a,+V,a,+Va,, (1.24)
it can be represented in the following compact form:

V=V,+V. (1.25)
Further we will indicate the sedeon-scalars and the sedeon-vectors with the
bold capital letters.

Let us consider the sedeonic multiplication in detail. The sedeonic
product of two sedeons A and B can be presented in the following form:

AB =(Ao +1§)(B0 +l§)= A,B, +A,B+AB, +(11~1§)+[1§x1§] (1.26)

Here we denote the sedeonic scalar multiplication of two sedeon-vectors
(internal product) by symbol “-” and round brackets

(A-B)=AB, +A,B, +A,B,, (1.27)

and sedeonic vector multiplication (external product) by symbol “x” and
square brackets

[AxB]=i(A,B,~AB,)+ i(A,B,—AB,)+i(AB,~A,B,). (1.28)
In expressions (1.27) and (1.28) the multiplication of sedeonic

12



components is performed in accordance with (1.22) and Table 2. Note that
in sedeonic algebra the expression for the vector product differs from
analogous expression in Gibbs vector algebra. As a consequence, in sedeonic
algebra the formula for the vector triple product of three absolute vectors A,
B and C has the following form:

[A?x[éxéﬂ:—§(2.6)+6(2.E). (1.29)

Thus, the sedeonic product

has the following components:
F,=A,B, +AB, +A,B, +A,B,
F, = A,B, +A,B, +iA,B, —iA,B,, (1.30)
F, = A,B, +A,B, +iA,B, —iAB,,
F,=A,B, +A,B, +iA,B, —iA,B, .

1.2. Spatial rotation and space-time conjugation

The rotation of the sedeon V on the angle 6 around the absolute unit
vector 7 is realized by sedeon

U =cos(0/2)+iiisin(6/2) (1.31)
and by complex conjugated sedeon
U" =cos(0/2)-iiisin(6/2). (1.32)
Note that these sedeons satisfy the following relation
UU=00"=1. (1.33)
The transformed sedeon V' is defined as the sedeonic product
V' =UVU. (1.34)

Thus the transformed sedeon V' can be written in the following expanded
form:

V'= [cos 0/2)—in s1n(9/2)](V0 +\7)[cos(9/2)+iﬁsin(9/2)]

1.35
=V, +V cos@+(1- cos@)(ﬁ-V)ﬁ—iSine[ﬁxV]. ( )
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It is clearly seen that rotation does not transform the sedeon-scalar part, but
sedeonic vector V is rotated on the angle 6 around 7 .

The operations of time conjugation (R,), space conjugation (R,) and
space-time conjugation (R,) are connected with transformations in

e,, e,, e, basis and can be presented as

1°

IétV =e,Ve, =V, —¢,V, +e,V, -e,V,,
RV =¢Ve, =V, +eV,—e,V,-e,V,, (1.36)
RV =eVe, =V,—eV,—e,V,+e,V,.

1.3. Subalgebras of smaller dimension

Sedeonic basis e_, a 5 allows one to construct different values of smaller

dimension, which are differed in their properties with respect to the
operations of spatial and time conjugation. For example, we can introduce
the space-time double numbers as

D, =d +ed,, (1.37)
D, =d +ed,, (1.38)
D, =d +e,d,, (1.39)

where d, and d, are scalars. These values, on the one hand, have all

properties of double numbers, but on the other hand, they are transformed
differently by the space-time conjugation and sedeonic Lorentz
transformations (see section 2.1).

We can also introduce the four-component values, which we call
"quaterons" (in contrast to quaternions), in accordance with the following
definitions:

0 =qa,+e,(q,a, +q,a, +qsa,), (1.40)
0, = 4,3, +e,(q,a, +¢,2, +q.a,), (1.41)
0, =qa, +e,(qa, + 4,2, +¢.a,), (1.42)
0, = 4,3, +¢, (¢, +¢,2, +¢.a,). (1.43)

14



The absolute quateron (1.40) is the sum of the absolute scalar and absolute
vector. It is not changed under the operations of space-time conjugations.

Time quateron Q,, space quateron (., and space-time quateron (, are

transformed under the operations of space-time conjugation in accordance
with the commutation rules for the basis elements e,, e , e, . For example,

the time conjugation (see (1.36)) for quateron Q, is connected with the
following transformation:

IétQt = erQer =q,a,—¢, (g2, +q,a, +q;a,). (1.41)

Furthermore, the sedeonic basis e, , a, also allows designing different types

a

of space-time eight-component values named octons [20]:

Gt = GOO +G()lal + GOZaZ + GOJaS +etG10 +et (Gllal + GIZaZ +G1333 ) > (142)

Gr = GOO + G()lal + GOZaZ + GOJaS +erG20 +er (GZIal +G2232 +G2333) > (143)
Gtr = GOO +G()lal +G0232 +G0333 +etrG30 +etr (GJIal +G3232 +G3333) N (144)

Each of these subalgebras is closed with respect to the operation of Clifford
multiplication (the ring). The application of spatial octons in
electrodynamics and relativistic quantum mechanics was considered in [20-
22].

1.4. Conclusion

The algebra of sedeons can be considered as a scalar-vector version of
the Clifford algebra with specific rules of multiplication and commutation.

The sedeonic basis elements a,, a,, a, are responsible for the spatial

rotation, while the elements e, , e, , e, are responsible for the space-time

r’ tr
inversions. From the point of view of commutation and multiplication rules
both these bases are equivalent.

In contrast to the Heaviside-Gibbs vector algebra the multiplication rules
for vector basis in sedeonic algebra contain the imaginary unit (see Table 1).
It enables the realization of scalar-vector algebra with Clifford product.
Apparently, such possibility of vector basis multiplication was pointed first
by A.Macfarlane [23]. Later the similar multiplication rules for matrix basis
were applied by W.Pauli [24] and P.A.M.Dirac [25] in their spinor

equations of quantum mechanics.
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Chapter 2. Relativistic mechanics
2.1. Lorentz transformations

The relativistic event four-vector can be represented in the follow
sedeonic form:

S=iect+er, 2.1

where ¢ is the speed of light, ¢ is the absolute scalar of time and
7 =xa, + ya, +za, is the absolute radius-vector. The sedeonic square of this

value
SS=-cr+x*+y* +2° (2.2)

is the interval of event, which is the invariant of Lorentz transformation. In
the frames of sedeonic algebra the transformation of values from one inertial
coordinate system to another are carried out with the following sedeons:

L = cosh §—e, 7isinh 3,

= (2.3)
L =cosh3+e, msinh 9,

where tanh(29)=v/c; v is the velocity of uniform motion of the system

along the absolute vector . Note, that
LL=LL =1. (2.4)
The transformed event four-vector S’ is written as
S’ =L'SL = (cosh 9 +e,nsinh 3)(ie,ct +e,7 )(cosh $ —e, msinh 9)
= ie,ct cosh(29)—ie, (m-7)sinh(29)+e,7 cosh 29 (2.5)
—e,ctmsinh(29)+e, (m-7)m(cosh29-1).

Separating the values with e, and e, we get the well-known expressions for
the time and coordinates transformations [26]:

f— 2 —
t,_t xv/c , x—vt 2.6)

- 3x 3y':yﬂ 2'223
N1=v*/¢é? N1=v*/¢e?

where x is the coordinate along the 7 unit vector.

16



Let us also consider the Lorentz transformation of the full sedeon V . The
transformed sedeon V' can be written as sedeonic product

V'=L'VL. 2.7)
In expanded form:
V' =(cosh 8 +e,sinh 3)(V, + V) (cosh 9 —e,isinh 9)
=V, cosh’ $—e_V,e, sinh’ § (2.8)
+(e, V, — V,e, )mcosh 9sinh 9 +V cosh’ 9
— e, fiiViiie, sinh® 9+ (e, itV - Vine,, )cosh gsinh 9.
Rewriting the expression (2.8) with scalar (1.27) and vector (1.28) products,
we get
V'=V, cosh® 9—e,_V,e, sinh’ 9
+(e, V, — V,e, )mcosh 9sinh 9 +V cosh’ 9
—e, Ve, sinh® $-2e, (- V)e,sisinh’ 9 (2.9)
+(etr (rh . \7) —(\7 -r71)etr )cosh@sinhS
+(etr [xV]-[Vxin]e, )costhinhS .
Thus, the transformed sedeon have the following components:
vi=v,
Vt; = I/tr >
V.=V, cosh(29)+e, (-, )sinh(29),
V=V, cosh(29)+e, (¥, )sinh(29),

V'=Vcosh(29)- ( V) (cosh29-1)
+et,[m><Vtszmh( 9),

V.=V, cosh(29) (m Vtr) (cosh29-1) (2.10)
+e, [mxV ]sinh(29),
V=V, +(m-V,)i(cosh29~1)+e,V,isinh (29),

!
Il
.NJ

+ (7, )i (cosh 29 ~1) + e, ¥, isinh (29)
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2.2. Relativistic momentum and angular momentum

In relativistic physics an important value is the four-vector of energy-
momentum of the relativistic particle. In sedeonic algebra it can be
represented as

E=ie E+ecp, (2.11)

where E is the energy and p is the momentum of particle. The square of
this value

(ie E+e.cp)(ie,E+e.cp)=—E* +c’p’ (2.12)

is the invariant of Lorentz transformations and connected with particle
inertial mass m,, by Einstein relation

E*-c*p’ -mic* =0. (2.13)

In sedeonic algebra this expression can be presented as the product of two
the same factors

(ietE +e.cp+e,mc’ )(ietE +e.cp+e, mc’ ) =0, (2.14)

that will be used further for constructing of quantum mechanics and field
theory equations.

The generalized angular momentum for relativistic particle can be written
as follows:

M = LES = L(ie £+ e,cp)(ieci+e,7). (2.15)
C C

Performing sedeonic multiplication we get

1\71=—Et+(ﬁ~?)+[[)x7]+e"cﬁt—e“lEF. (2.16)
C

18



Chapter 3. Quantum mechanics and field theory

3.1. Generalized sedeonic wave equation

The wave function of the free particle should satisfy an equation, which
is obtained from the Einstein relation between particle energy and
momentum

E*-c*p’ —-mic* =0 (3.1
by means of changing classical energy E and momentum p on
corresponding quantum mechanical operators [27]:

F=inl and p--inv, (3.2)
ot
where 7 is Planck constant and V is the gradient operator, which has the

following form:

0
+a

—a (3.3)

In sedeonic algebra the Einstein relation (3.1) for operators (3.2) can be
written as
(ietE +e,cp+e,mc )(l'eté" +e,cp+e,mc ) =0. (3.4)
Let us consider the wave function in the form of space-time sedeon
(7, t)=w, (F.0)+y(7,1), (3.5)

then the generalized sedeonic wave equation, corresponding to the operator
equation (3.4), is written in the following symmetric form:

.10 = . c). 10 = . c).
[ze‘ o5 —e V—ie, m‘)?j(zet o5 —e V—ie, m‘?}w =0. (3.6)

In this equation the parameter m, is the rest mass of particle.

Besides, there is a special class of particles, which is described by the
first-order wave equation [27]:

19



cot

(ie,lag—eﬁ—ieﬂ%j\flzo. (3.7

Obviously, that for such particles the equation (3.6) is satisfied
automatically.

The sedeonic quantum equation (3.6) admits the field interpretation. To
simplify the further presentation we introduce the following operators:

10

0, =e,——,

fot e ot

V o=eV, (3.8)
m,c

mtr:etr ;'(-l) >

then the equation (3.6) takes the form
(i6, =V, —im, )(id,~V, —im, )§=0. (3.9)

Let us consider sequential action of the operators on the left side of (3.9).
After the action of the first operator we obtain

(iat _ﬁr —imy, )‘T’ = iat‘l’ﬂ + iatq’_ﬁrwﬂ

- - (3.10)
~(V,9) [V, % |- im,w, — im, .
Introducing scalar and vector field strengths according
E, =id,y, —(V, %) - im,y,, (3.11)
E=i0§-V,y,-[V,xy]-im,p, (3.12)
expression (3.10) can be rewritten as
(6, -V, —im, ) =E,+E. (3.13)
Then the wave equation (3.9) takes the form
(i6, -V, —im, )(E, +E)=0. (3.14)

Producing the action of the operator in (3.14) and separating sedeon-scalar
and sedeon-vector parts we obtain a system of first-order equations similar
to the Maxwell's equations:

20



i0,E,~(V, -E)~im,E, =0,
Lo L L (3.15)
i0,E~[V,xE]-im,E-V,E, =0,

In fact, the first- and second-order wave equation of describe quantum
fields that carry information on the kinematic properties of quantum
particles. The dispersion characteristic of these wave fields coincide with the
Einstein relation for the energy and momentum of a particle. Note, that the
first-order equation (3.7) describes the special case of quantum fields with
field strengths equal to zero. More detailed the quantum mechanics of
relativistic particles will be discussed in the Chapter 7.

The generalized sedeonic wave equation (3.6) has another interpretation
as the wave equation for the force massive fields [16]. In this case, the field
sources are appropriate charges and currents, so that in addition to the
homogeneous equation, which describes the free field, we have non-
homogeneous equation

ie‘lg—eﬁ—ieﬂﬁ z'etlﬁ—eﬁ—ie"E w=1J, (3.16)
c ot h c ot h

where by J we have identified the scalar-vector source of field. In this case,
the wave function has the meaning of the field potential and the parameter
m, is the mass of the quantum of field. Of course, in the case of zero m, the
equation (3.16) should describe electromagnetic and weak gravitational

fields. The sedeonic theory of massive and massless force fields will be
discussed in detail in the subsequent sections.
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Chapter 4. Electromagnetic field

4.1. Sedeonic form of electromagnetic field equations

The sedeonic wave equation for the electromagnetic field in a vacuum is
written as follows

[iet lg—erﬁj[iet lg—eﬁjw=3. 4.1
c ot c ot
The potential of the electromagnetic field has the form:
W= ieqp +e A, 4.2)

where ¢, is scalar potential (time component), 4, is vector potential (space

component). A source of the field is written as follows:
- Ar -
J=—4rie p,—e, —ﬂj(, (4.3)
C

where p, is a volume density of electric charge, j, is a volume density of

electric current.

The equation (4.1) is a compact universal relation, which can be
represented either as a system of wave equations for the potentials of the
field or in the form of Maxwell's equations for the field strengths. Indeed,
producing the multiplication of operators in equation (4.1) and separating
the scalar and vector parts, we obtain a system of wave equations:

1 2
(Z—; —Ajwe = anp,. (44)
1¢° - A4 -

LN . 45
(C (3t2 j e c Je ( )

Here we assume that the potentials are described by twice differentiable
functions, so that W X @J W =0 . On the other hand, performing the step-by-

step action of operators in equation (4.1), we have first

22



_ oo Lo Gy (9-4)-[9x4]

coa "coa "

Let us introduce the scalar and vector strengths of electromagnetic field:

__1%. (5.5
© ¢ ot (V AP)’
.o 104,
E,=-Vo, —25
A, =-i[x4].

Then the expression (4.6) can be represented as

.10 =/ v = 5
[zet ;a—erVJ(zetgo(, +erAe) =f, +e,E —iH,,

and equation (4.1) can be rewritten in the following form:

4r -

10 = ==
[iet ———eer(ﬂ, +e, L, —z'He) =—4rniep, —e,— j,.
cot c

Applying the operator

[iet 10_ eﬁj
cot

(4.6)

(4.7)

(4.8)

(4.9)

to both parts of equation (4.9) and separating values with different space-
time properties we obtain the wave equations for the strengths of

electromagnetic field:

1 ¢ 4 (6p, (= -
— A =——J e 4 (V-7

¢t or’ /. c { ot ( ]e)}’
1 & . - 4r O]
————A|E =—4nVp, —— ¢

¢ ot ¢ P T

1 82 o ,477.' — -
) e A

Assuming the electrical charge conservation
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(4.11)

4.12)



Pei(9:7,)=0, (4.13)

we note that equation (4.10) has no sources and the scalar field f, can be
chosen equal to zero. This is equivalent to the Lorentz gauge condition:

=19 G dy=0. (4.14)

c Ot

In the Lorentz gauge the equation (4.9) takes the form
[iet 1o eﬁj(enli - iFI(,) =—4rniep, —e, 4—”]1 (4.15)
c ot c

Producing action of the operator on the left side of (4.15), we have the
following sedeonic equation:

,laa_%_let(ﬁ B )ie [UxE,]
c
et%a—‘ﬂer (@ 151(])+ier [ﬁxﬁtl (4.16)

Separating in (4.16) the values with different properties, we obtain a system
of first-order equations

B 4.17)

which coincides with the Maxwell equations.
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4.2. Energy and momentum of electromagnetic field

The sedeonic algebra allows one to provide the combined calculus with
the values of different type. In this section we consider the relations for the
energy and momentum of electromagnetic field.

e

Multiplying both parts of equation (4.15) on the sedeon (e E, —iH,),
from the left we obtain

= rs o=
+4re, {pK,EK, +ZZ[HE XJJ}'

Note that in this expression and further the operator applies to all right
expression. For example, for any two vectors 4 and B we have:
(V-4)B=B(V-4)+(4-9)5. (4.19)

Equating in (4.18) the components with different space-time properties we
get

é%(ﬁj+Hj)—ii(§[ﬁexﬁe])+(éej’e)zo, (4.20)
1o/ = .1 0p= -

gv( £2+H(2)_,4—7w5[  xH, | o
1



e 2)0.8)
4 ot ot (4.22)

(4.23)

w B[V, J|-[Ax[IE. ]|} +efl.p, i E.x].]=0.

The expression (4.20) is the very well known relation named as Pointing
theorem. The value

2 r72
oLt 4, (4.24)
&
is the volume density of field energy, while vector
P=-i—[Exi,] (4.25)

4r

is the energy flux density vector (Pointing’s vector ).
4.3. Relations for Lorentz invariants of electromagnetic field
Using sedeonic algebra it is easy to derive the relations for the values
I, =E-H?,

(5.7 (4.26)

which are Lorentz invariants of electromagnetic field. Multiplying both parts
of equation (4.15) on sedeon (e, E, +iH, ) from the left we have:
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(4.27)

= 1 i =
+4re, {peEe _ZZ[HE X]e:|}.

Separating the values of different types, we obtain the following relations for
the Lorentz invariants of the electromagnetic field:

(4.28)

(4.30)

27



28



Chapter 5. Gravitational field

The analogy between electromagnetic and gravitational fields was
discussed by many researchers starting from J.C.Maxwell and O.Heaviside
[28,29]. This analogy motivated many attempts to reformulate the equations
of Newtonian gravitation in the form similar to the Maxwell equations in
electrodynamics. Such approach is based on two general assumptions. First
is the existence of gravitomagnetic field connected with moving masses.
Second is the hypothesis that the speed of gravitational field propagation is
equal to the speed of light. These assumptions enable the formulation of
phenomenological Maxwell-like equations for gravitational field [30, 31].
On the other hand, recently it was shown that linearized weak field equations
of general relativity can be represented as the set of Maxwell-like equations
for the vectorial gravitational field.

The application of hypercomplex numbers in the theory of weak
gravitational field is considered in [32,33].

5.1. Linear equations of gravitational field in flat space-time

As is well known, Einstein's equation for gravitational field is written as
[26]:

R, _EgaﬁR: - Ty s 5.1

where R, is Ricci curvature tensor, g, is the metric tensor, G is the
gravitational constant, 7,, is the tensor of energy-momentum of matter

(Greek indexes are 0,1,2,3, Latin indexes are 1,2,3). In linear approximation
this equation has the following form [34-36]:

1o - 167G
[ —A]haﬁ _ oGy | (52)

& or ¢!

where }_’aﬁ is the deviation from Minkovski metric tensor 7,,, defined by

following relations:
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gaﬁ = naﬁ +haﬁ’

— 1
Ry (5.3)

h=n"h,.

The deviation 7, (|i7aﬁ|<<1) satisfies the gauge condition o, /dx, =0.

Introducing matter density p, and density of matter current j,, according

the relations
Too = chz 5 (5~4)
T, = joC» (5.5)

as well as scalar ¢, and vector A, potentials according

De » (56)

[
o]

(5.7)

C
the equation (5.2) can be represented as the set of wave equations for
gravitational potentials:

10
[CT?_A]% =—4nGp,, (5.8)
[%%—AJZG 65, (5.9)
with gauge condition
19 4 (9-4,)=0. (5.10)

The analogy with electrodynamics is evident. It allows one to introduce the
gravitoelectric E"G and gravitomagnetic H c fields:

E, = —lagf -V, (5.11)
C
Hy=[Vx4,]. (5.12)

These variables satisfy the equations similar to Maxwell's equations. In the
Heaviside-Gibbs algebra these equations are written as
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(§~EG)=—47ZG,DG,

(VFIG)=0,

[ﬁng]:_lagG’ (5.13)
C

- 10E, 4r -

[VXHG]_Z atG _Tﬂ ¢

The same equations can be written in sedeonic algebra. In this case the field
strengths are defined as

- 104, -
E.=———5%_Vg_,
¢ c Ot s

Hy=~i[Vx 4, ]. (5.15)

(5.14)

Then the equations for the gravitational field are written in the following
sedeon form:

VFIG)=0,
—i[ﬁxEG]:_lagG (5.16)
C
[V, |-t 225

The gravitational field equations (5.16) differ from the equations for the
electromagnetic field (4.17) by sign in front of the terms describing the
sources of the field.
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Chapter 6. Gravitoelectromagnetism

In this section we develop the sedeonic approach to the formulation of
equations for generalized massless gravito-electromagnetic (GE) field
describing simultaneously electromagnetism and weak gravity [18].

6.1. Generalized Newton-Coulomb law

It i1s known that Coulomb's law for the force of electrical interaction
between two charged point bodies is written as follows:

E, =daday 6.1)

el2 3 122
12

where ¢, and ¢,, are electrical charges; 7, is a vector directed from body 1
to body 2; r, is the separation between point bodies, which is equal to

modulus of 7

.. For a symmetric description of electromagnetic and

gravitational phenomena, we introduce the gravitational charge ¢,

considered previously in [30, 37]:
g, =\Gm, (62)

where G is gravitational constant, m 1is a mass of gravitating body. Then
Newton's law for gravitational force between two point bodies can be written
in the form of Coulomb's law:

=Tl (6.3)

g12 3 12
12

Simultaneous consideration of gravitational and electric fields leads us to
another symmetry connected with charge conjugation. From the algebraic
point of view this symmetry can be taken into account by introducing
additional scalar units associated with electrical and gravitational charges.
Let us denote the electric unit by symbol ¢,. This value is changed (in sign)

under electrical charge conjugation. Analogously the gravitational unit ¢, is

changed (in sign) under gravitational charge conjugation. Since in the
classical gravito-electrodynamics there is no direct interaction between
gravitational and electrical charges, the rules of multiplication for units €,

and ¢ . should be chosen in accordance with Table 3.
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Table 3. The rules of multiplication for ¢, and ¢, units.

8e 8&’
€, 1 0
g, 0 1

Besides, we suppose the anticommutativity of these units and assume that
the priority of commutation is higher than multiplication, so that:

€€, =-¢€ ¢, (64)

and
(6.5)

£,8,8, = €88 =—¢,.
Following this approach, the generalized gravito-electromagnetic charge

Q can be presented as
O=¢,q,-igq,. (6.6)

Then generalized Newton - Coulomb law can be written in the following
symmetric form:
ﬁiz = Q13Q2 hs - (67)
Ut
Indeed, using (6.6) and (6.7) we obtain correct expression for the force
between two massive electrically charged point bodies

= daben - 9992 -
F,= 13 ? 12 5 3g U (68)
Ut 2

Using algebra of gravitoelectrical units we can introduce the operations
of electrical charge conjugations (/, ), gravitational charge conjugation (fg ),

and electrogravitational charge conjugation (IA(,g ) as

[:’Q = SgQSg =-&4, — isgqg > (69)
1,0=¢,0¢, =2,4q,+itq,, (6.10)
1,0=¢.5,088, =—¢,4q,+ig,q,. (6.11)
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6.2. Generalized sedeonic equations for GE field

The sedeonic formalism enables the representation of gravitational and
electromagnetic fields as one unified gravito-electromagnetic field. Let us
consider the potential of GE field in the following sedeonic form:

W= ies,0, +e,8,4, +i(iet£ggog +ersg;1g), (6.12)
where ¢, 4, @, and ;lg are scalar and vector potentials of electromagnetic

(index e) and gravitational (index g) fields. Hereafter we mean that electrical
values contain g, and gravitational values contain ¢, units, but we will omit

them to simplify farther expressions.
The generalized sedeonic second-order equation for massless field can be
written in the following form:

[iet lg—erﬁj[iet lg—eﬁjw=3. (6.13)
c Ot

c ot

Let us also consider the sedeonic source of GE field
~ . 1- (. 1-
J= —47z[zetp(, +er—]£,J+4m(zetpg +er—]gJ, (6.14)
C C

where p, is a volume density of electrical charge; ;. is a density of
electrical current; p, is a volume density of gravitational charge; j, is a

density of gravitational current. In expanded form equation (6.13) is written
as

[iet lag— erﬁJ[iet lag —eﬁj(z’etgog +er;lg +i(ietgog +er;lg ))

c ot c ot

X | (6.15)
= —47z[ietpg +e, —](,J+ 47z'i(ietpg +e, —jg J
C C
This equation describes simultaneously electromagnetic and gravitational
fields. Performing sedeonic multiplication of operators in the left part of

(6.15) we get the system of wave equations for the components of GE
potentials

16°
Zg_A ¢, =4np,, (6.16)
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10° - 1~

ZJ—A AB 2477.'2]@’ (617)
10

Pyl [ (6.18)
10° - 1~

ZJ—A A :—47T ]g (619)

On the other hand, sedeonic equation (6.15) can be represented as the
system of first-order Maxwell equations for electromagnetic and
gravitational fields. Let us consider the sequential action of operators in the
left part of equation (6.15). After first operator we get

c ot
:_%%—e"%%—e"§¢g (v-4)-[Vx4] (6.20)

_H{_la% _et,%%_enﬁwg _(v‘ag)_[§x;lg]}

This expression allows us to introduce scalar and vector field strengths
according to the following definitions:

__1%. (5.5

¢ ot (V )
E =-V e—lai

c Ot
i =—i[9xid
1[8go ]q ) (6.21)

=T ~(V-4).
E, =V, ia;g
ﬁgz—i[@xgg].

Using the definitions (6.21), the expression (6.20) can be rewritten in the
following form:
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[iet lg —eﬁj(z’etgoe +e A + i(ietgog +e 4, ))

cot (6.22)
=f +e"1§"e —ilrle +i(fg +etr1§"g —iﬁg).
Then the second-order wave equation (6.15) can be represented as
.10 = A
ie, ;5—erv (ﬂ +e E, —iH, +z(fg +etrEg —iH ))
(6.23)

. l- (. l-
=—4r|iep,+e —j, |+4ni|iep, +e.—], |
c c

Applying the operator [iet l%—eﬁj to both parts of expression (6.23) one
C

can obtain the second-order wave equations for the field strengths in the
following form:

%%—A fe:—%{%+(vi)}, (6.24)
%%‘ A B, :_4;16,;@—‘;—?%, (6.25)
%%—A 1-7 =—1477T[V><]8], (6.26)
%g_A 7. :47”{%4%)}, (6.27)
%%—A E, =4n¥p, +i—fz—f (6.28)
%%—A i, = %[VX il (6.29)

Assuming the conservation of electrical and gravitational charges we have

P (97) =0, (6.30)
agtu(ﬁjg):o, (6.31)



and we can take the scalar fields f, and f, equal to zero. This is equivalent

to the Lorentz gauge conditions (see expressions (6.21)):

f. :la% +(§.;1e) =0, (6.32)
c Ot
109, - -
=— +(V-4,)=0. 6.33
fo= ot (VA (6:33)

Taking into account these gauge conditions the equation (6.22) is rewritten
as

[iet lag —eﬁj(z’etgog + er;le + i(z’etgog +er2g ))

co (6.34)
—e, B, —ifl, +i(e,E, ~ifl, ),
and generalized equation (6.15) takes the following form:
10 S\ m m i m o
[zet P erVJ (etrE(, —iH, +i (etrEg —iH, ))
C
(6.35)

. l- (. l-
=—4rn|iep,+e —j, |+4ni| iep, +e,—], |
c c

Performing sedeonic multiplication in the left part of equation (6.35) and
separating terms with different space-time properties, we obtain the system
of Maxwell equations for GE field

[ Vx(E, +iE, )| =~ 2 (1, i ),
C

[V, +ifl, )| =22 (7. -1, )+ +iE, ), 6.36)
(V-(E.+iE,)) =4z (p. ~ip,).
(V-(, +ifl,))=0.

Separating terms with different charge (e, and ¢,) properties, we obtain

two systems of Maxwell equations for electromagnetic and gravitational
fields. For electromagnetic field we have
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—i[@xE{,]z—;a—t‘

o - 1aE,
‘Z[VXHK’]:%UEG—{’ (6.37)
(V-£.) .

On the other hand for gravitational field we obtain

[9xE ]:_laﬁg,

& c Ot
Fe =7 4r.  10E,
SV, = o (6.38)
q~Eg)=—47ng,

V-H,)=0.
Thus, we have shown that the generalized sedeonic equation (6.15) correctly

describes the unified GE field. Further, we will assume the performing of
gauge conditions (6.32) and (6.33).

6.3. Relations for energy and momentum of GE field

The sedeonic wave equation allows one to derive the generalized Pointing
theorem for unified GE field. Multiplying the expression (6.35) on the

sedeon e E, —iH, +i (etrE"g —iH g) from the left, we have the following

equation:

L . 1o - L L
(etrE(, ~ifl, +i(e,E —ng))[iet ;a—erVJ(enEe ~ifl, +i(e,E, ~ifl, ))

(6.39)
R . 1= (. l-
=—47z(etrEy—zHy+z(etrEg—zHg)) zetpy+er;]y—z zetpg+er;jg .

Performing the sedeonic multiplication in (6.39), we obtain
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e, {(pe ip J(E+iE, ) +i (1, i, (-7, )}}.

Note that in this expression and further the operator V acts on all right

expression. For example, for any vectors 4 and B we have

(V-4)B=B(v-4)+(4-9)5. (6.41)

Equating in (6.40) the components with different space-time properties

we get the following equations for the GE field strengths:

é%{(& +iEg )2 +(1_"[e +iﬁg )2} —ii(ﬁ.[(ﬁe +iEg)X(ﬁe Hﬁg )J)

+((E"e+i1§g)~(]’e —i}'g))=0,

(6.42)
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~ (VB i, )) (B +iE, )+ (V-(A, +if1, ))(A, +ifl, )| (6.45)
+c(pe —ipg)(Ee +iEg)—i|:(1:Ie +i1:[g)x(je —z]g)} =0.

Finally, separating the values with different space-time properties and taking
into account that e,&, =0, we get

Lg{éz_i_ 2_E2_1j12}
87 ot £
_ii{(v[axﬁe])_ V-[E,xd,]) (6.46)
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+H(V- ﬁe)ﬁe} (6.47)

i (B [VxE )+ (A, [92A,])) (6.48)
e

BT B, (9,) (9 £, (75,
B[] [AAFxE]) (64
RNl

The expression (6.46) is the generalized Pointing theorem for the GE field.
The value w
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w=—{E +H -E, - H}| (6.50)

871{

plays the role of volume density of GE field energy, while vector P

P=—i-—{[E.xH,]-[E,xH, ]| (6.51)

4r

plays the role of Pointing vector of GE field.
6.4. Lorentz invariants of GE field

The sedeonic algebra allows one to obtain relations for the Lorentz
invariants of GE field. Let us multiply expression (6.35) from the left on
sedeon

(e E,+ifl,~i(e,E, +ifl ))

tr—e tr—g

As a result, we obtain the following relation:

(etrE( +ifl, ~i(e,E, +ng))[ze laﬁ—e Vj(e"Ee i, +i(e,E, —ifl, ))
o (6.52)

1- 1-
=—47z(e E +zH —z(e"EgHH ))[ietpe+er;je—i[ietpg+er;jgn.

Then performing sedeonic multiplication, we obtain the following
expression:

42



—iet{%((&—iEg)'a(Eea-:iEg)J_ [(He_iﬁg).a(ﬁe;iﬁgq
(B8, 9 it o (-8, [0 8, )]

-5y
_i((ge_l-gg).[w(ge+l-Eg)})+l-((He_,-Hg).[vX(HeHﬁg)})}
+et{—i%[(Ee—iEg)x%]ﬂ%[(He—ng)x ( - g)]
(B, i, )(V-(A, +ifl, ) + (A, ~ifl, ) (V-(E. +iE,))

o[ (B, ~iE, ) [9x (1, virt,) ||+ [ (-, ) V(B +iE)]]} (653)
te, {%[(E —iE, )X%i +i%[(He —ngk%]
B )5 ()
o8- m TR [<H+zﬂ>ﬂ}
i (8, G ) e ()5
ine {(p. =i, ) (7, =i, )+ (E~iE,) (-7 )
R LN CETARH[CAARVATAIf

S

Equating in (6.53) the components with different space-time properties, we
get the following equations for GE field strengths:
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i{(a_igg). (Ee;igg)}{(ge_m) (A, +i, )
+li{((a_@) (Vx(, +itt, )|+ (7, -1, ) 9(
A(E~,)7.-7,) o

i{((E i) (He;iﬁg)}{(ﬁe—iﬁg).a( )J
(.~ (6o, ) (i, [, )|
#((a1. -, ) (.=3,)) = .

e [N AN | B A AR

(6.54)

(6.55)

(6.56)

(6.57)



(6.58)

(6.59)

(6.60)

(6.61)



The expressions (6.58) - (6.61) are the equations for the generalized Lorentz
invariants /, and 7, of GE field:

L =E~H+EX-H?, (6.62)
L=(E,-H,)+(E,-H,). (6.63)
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Chapter 7. Relativistic quantum mechanics

7.1. Sedeonic wave equation for particles in an external fields

Let us consider a relativistic quantum particle, which is described by the
sedeonic wave equation (see (3.6)):

.10 = . c). 10 = . c).
[ze,Za—e,V—ze"m‘?Ize‘;a—erV—ze"mO?jw:O, (7.1)

where wave function is space-time sedeon
(7, t)=w, (F,0)+9(F,1). (7.2)

In the equation (7.1) the elements of sedeonic basis e, and a_ play the role

of space-time operators, which transform the space-time structure of the
wave function { according the multiplication rules. For example, let us

consider the action of a, operator. The wave function can be presented in
a, basis as
V=vy,+ya ty,a, tyag, (7.3)

then the action of a, operator can be written as

33\TI =V, —iy,a, Hiya, Hya;. (7~4)

Let us consider the eigenfunctions of a, operator. The equation for the
eigenvalues and eigenfunctions in this case has the following form:

a,y =4y . (7.5)
Performing sedeonic multiplication we get this equation in expanded form:
Wy —iy,a, +iyia, +y,a, =A(y, +y,a, ty,a, tyia) . (7.6)

This equation is equivalent to the following system:
Vs =AYy,
-y, = Ay,
iy, =y,,
W, =AY,

(7.7)
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from which follows

AP =1,
W, = Ay, (78)
v, =idy,.

Thus, the eigenvalues of a, operator are equal A =+1. So, we can choose
the set of functions
(1+2a,),

(a, +Aia,), (7.9)

as the new basis. The expressions (7.9) are the eigenfunctions of a,
operator.

To describe a particle in an external gravito-electromagnetic field the
following change in quantum mechanical operators in equations should be
made:

g—>Q+i(q¢ ~4,9,)
o o p e AV ) (7.10)
§—>§—L(qg;1y—qg;1g).

hic
It leads us to the following wave equation:

{iet é(% +%(qe<pe -4, ))—e, (ihic(qe/l ~q,4 ))—ie" %}
X{ietl(§+%(qe¢e—qgwg)j—e, (ihic(qeﬁe—qg?l ))—ie"%}ﬁlﬂ

(7.11)

In the next section we will consider the task about charged relativistic
particle in homogeneous magnetic field.
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7.2. Relativistic particle in homogeneous magnetic field

Let us consider the relativistic particle with electrical charge ¢, in an
external homogeneous magnetic field directed along Z axis:

H,=H,a,. (7.12)

Here H, is module of vector H,. Let us choose the vector potential A,

satisfying the gauge condition (6 . ;19) =0 in Landau presentation:
A, =4

e e2

a,=H xa,. (7.13)

Then the sedeonic equation for relativistic particle (7.1) is written as:

2 2 2 . 2H2 H
{1 O e 2y O 4 "}\P:O. (7.14)

ot n ke oy R he

In (7.14) last term ¢ H, /hc is the vector operator, which transforms the
sedeonic basis of wave function. For stationary states with energy E we get:

2i 0 mic® q'H’ g H E?
“A+—q H x—+—2 e e Tl |g=—0. 7.15
{ he Tetle oy hc’ he v K¢’ v ( )

This equation can be considered as the equation on the eigenvalues and
eigenfunctions of complicated operator written in square brackets in the left
part. Since this operator commutes with operators p, and p., all these

operators have the same system of eigenfunctions. Therefore we will find the
solution of (7.15) in the form

v =<T>(x)eXp{%(pyy+pzZ)}, (7.16)

where p, and p. are the mouton integrals and §(x) is arbitrary function.
Substituting (7.16) into (7.15) we get

(7.17)

e R
[/ h? o' ke

qux+ W({)

pj pzz mgcz 82 Zpy qezHez x2 que a (b — E2
¢ n’c’ he
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Note that the operator in the left part of (7.17) commute with operator a

39
so we can find the solution as the linear combination of the eigenfunctions of
the operator a, (see (7.9)):

¢ =F"(x)(1+2a, )+ F" (x)(a, + Aia, ), (7.18)

) _ . .
where F,”(x) (y =1,2) are arbitrary sedeon-scalar functions. Then operator

in the left part of (7.17) is scalar and this equation has the following form:

{pj pzz mgcz 82 Zpy qezHez x2 _i que}

2
o= E g (7.19)

4=+ -—— Hx+ ;=

o w af el pe he

After algebraic transformations (7.19) can be rewrite as follows

O?°F» E? 2 2.2 H H 2 . 2
ag + |5 2—;’—;—’";26 +/1qfh e _[q;l j x——lz, FY=0. (7.20)
x c c c q,

e

This is the equation of linear oscillator [38]. The energy spectrum is defined
by the following expression:

E., =myc* +p2c’+|q,| H,hc(2n+1)—Aq,H hc . (7.21)
This set of energies is absolutely identical to the energy spectrum of particle

with spin 1/2 obtained from the relativistic second-order equation following
from the spinor Dirac equation [38].

7.3. Relativistic first-order wave equation

Let us consider the special case of particles, which are described by
sedeonic first-order wave equation

1o = . mc).
2 e V—ie 2 |y=0. 7.22
(ze‘ 5 e V—ie, 5 j\v ( )
This equation has the solution in the form of plane wave with frequency

and wave vector k. In this case the dependence of the frequency on the
wave vector has two branches:

2 4
o, =+ ,|c%k? ’”hOf (7.23)
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The plane wave solution can be written in the following generalized sedeonic
form:

Cc

V= [el &—iezlg —ie, m;lc ](T) exp{—iwg-ki(l??)} , (7.24)

where ¢ is arbitrary sedeon with constant components, which do not depend

from coordinates and time. Substituting (7.24) into (7.23) one can see that in
this case wave equation contain algebraic zero divisor:

(e1 D _l'ezlg_ieg, us (el D _iezlg_ie," Mo =0. (725)
c h ¢ h

The details of a plane wave solution are discussed in Section 8.6.
7.4. Conclusion

We can make some general statements about the form of the wave
function of a particle in a stationary state corresponding to the certain
eigenvalues of the operator a,. In the stationary state with energy E the

wave function can be represented in the following form:
(.0 =g (F)e™ (7.26)

where frequency w=FE/h. For the states corresponding to certain
eigenvalues of the operator a, the spatial part of the wave function can be

written in the form (7.18) as
¥, (7.0 ={FY ) (1+ 2a,) + BV (7) (a, + Aia, )} e ™. (7.27)

This function has quite clear geometrical structure. The real and imaginary

—iot

parts of the component (1+2a;)e ™ are the combinations of an absolute

vector directed parallel to the Z axis and an absolute scalar oscillating with
the frequency w . Here the phase difference between oscillations of scalar
and vector parts equals 0 in case A =1 or 7 in case A =-1. On the other
hand, the real and imaginary parts of the component (a, +Aia,)e ™ have
the form of absolute vector rotating in plane perpendicular to the Z axis
with the frequency @ . The direction of rotation depends on the sign of 4.
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The space-time structure of the wave function is defined by particular form
of the scalar functions F*(7) and F\" (7).

Thus it is shown that the sedeonic wave function of a particle in the state
with defined spin projection has the specific space-time structure in the form
of a sedeonic oscillator with two spatial polarizations: longitudinal linear and
transverse circular.
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Chapter 8. Massive fields

The attempts to generalize the second-order wave equation for massive
fields on the basis of different systems of hypercomplex numbers such as
quaternions and octonions have been made in Refs. [15, 39-42]. The authors
discussed the possibility of constructing the field equations similar to the
equations of electrodynamics but with a massive “photon”. In particular they
tried to represent the wave equation as the system of first-order Maxwell-like
equations. The resulting Proca-Maxwell equations enclose field’s strengths
and potentials [15,42]. On the other hand, there are a few studies concerning
the generalization of the Dirac wave equation on the basis of hypercomplex
numbers [22,43-46]. In this approach, the wave function has a scalar-vector
structure similar in nature with the potential of field and the hypercomplex
Dirac-like equation can be reformulated as the wave equation for the
potential of special field.

The consideration of multicomponent wave functions is an inevitable
necessity in describing the spin and space-time properties of fields and
quantum systems. The requirements of relativistic invariance leads to the
necessity of introducing sixteen-component algebras taking into account the
full symmetry with respect to the spatial and time inversion. There are a few
approaches in the development of field theory on the basis of sixteen-
component structures. One of them is the application of hypernumbers
sedenions, which are obtained from octonions by Cayley-Dickson extension
procedure [4,47]. However the essential imperfection of sedenions is their
nonassociativity. Another approach is based on the application of
hypercomplex multivectors generating associative space-time Clifford
algebras [14]. The basic idea of such multivectors is an introduction of
additional noncommutative time unit vector, which is orthogonal to the space
unit vectors. However, the application of such multivectors in quantum
mechanics and field theory is considered in general as one of abstract
algebraic scheme enabling the reformulation of Klein-Gordon and Dirac
equations for the multicomponent wave functions but does not touch the
physical entity of these equations.

In this section we consider the massive fields described by first- and
second-order wave equations on the basis of sedeonic potentials and space-
time operators [19].
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8.1. Generalized sedeonic equation for baryon field

Let us consider the sedeonic wave equation for free massive field:

1 . - -
(ie —g—eZV—ie3 %j(ie li—ezv —ie, m};cjw =0, (8.1

'cot fi "cot

where m, is the mass of quantum of massive field and W is sedeonic
potential. For convenience we will write:

_10
c ot (8.2)

myc

o

0

Then we can rewrite equation (8.1) in compact form:
(ielé—ezﬁ—ie3m)(ie18—e2§—ie3m)w =0. (8.3)
Let us choose the potential in the following form:
W= a+ieb—ie,c—ie,d+id+eB+e,C—e,D , (8.4)

where the components a,b,c,d, 4, B,C,D are the functions of spatial

coordinates and time. Introducing the scalar and vector fields strengths
according to the following definitions:
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Ez—@é—?c—i[ﬁxé]_mﬁ, (8.5)

we get

(iela—eﬁ—ie3m)(a+ie1b—iezc—ie3d+i;1+e11§+ezé—e35 ) (8.6)
= —e+ielf—iezg+ie3h—iE+e113+ezé+e3ﬁ,

and the wave equation (8.3) takes the form
(iela—eﬁ—ie3m)(—e+ie1f—ie2g+ie3h—iE+e11:"+ezé+e3ﬁ ): 0. (8.7)

Performing the action of operator in the left part of the equation (8.7), and

separating the terms with different space-time properties, we obtain the

system of equations for the field’s strengths, similar to the system of
Maxwell’s equations in electrodynamics:
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(8.8)

The proposed equations for massive field possess a specific gauge
invariance. It is easy to see that fields strengths (8.5) and equations (8.8) are
not changed under the following substitutions for potentials:

where ¢

a?

a=>a+0s,—me,,
b=b+0¢, —mg,,
c=c+0¢g, +me,,

d=d+0¢g, +me,,
A= A-Ve,
B=B-Ve,
C=C-Vs,,
D=D-Ve,

(8.9)

&, €, € are arbitrary scalar functions, which satisfy

homogeneous Klein-Gordon equation. These gauge conditions are different
from those taken in electrodynamics.

Multiplying each of the equations (8.8) to the corresponding field
strength and adding these equations to each other, we obtain:
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+f(§ G)+e(§~1?)+h(§ E)+g(§~17") (8.10)
+(17“ @g)+(1§ @h)+(1? §e)+(q~~f)
il F-[9G))-i(E- [ ))+i( f-[VE])-i(G[9F])=0
Let us introduce the following notations:
w=—i(e2+f2+g2+h2+Ez+ﬁ2+éz+ﬁ2),
87 (8.11)
ﬁz—i(elfl+fé+gﬁ+hE+i[ExHJ+i[éxﬁJ).
Then the equation (8.9) can be written as:
%ww):o . (8.12)

This expression is an analogy to Poynting’s theorem for massive fields. The
w term plays the role of field energy density and P is an energy flux
density vector. The minus signs in expressions (8.11) are because we assume
that stationary scalar point sources of equal baryon charge attract one
another (see section 8.3).

8.2. Nonhomogeneous equation of baryon field
Let us consider nonhomogeneous sedeonic equation for massive field with

phenomenological source. In this case the field potential satisfy the following
equation:

(ielé—ezﬁ—ie3m)(ie18—e2§—ie3m)w:j. (8.13)
In analogy to gravitodynamics we consider a four-component source sedeon
J=iednp, +e, =7, (8.14)

C

where p, is a volume density of baryon charge and j, is volume density of
baryon current. In this case the sedeonic potential can be choosen as
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W =ieb+e,C, (8.15)

where b(7,t) is a scalar part (time component) and C(7,t) is vector part

(spatial component) of four-dimensional baryon potential. Then we have
only the following nonzero field’s strengths:

e=ab+(V-C),

g =-mb,

E=-i[VxC], (8.16)
F=-mC,

H =-8C-Vb.

The wave equation (8.13) takes the form
(ielﬁ —e,V - ie3m)(—e— ie,g —iE +e,F + e3h7)

. 4 - (8.17)
=ie, 4np, +e, T]B.

The system of equations for the baryon field is written as
8e+(§-1:1)—mg =—4np, ,
(6 E) =0,
6g+(§~ﬁ')+me=0,
OF +Vg—-mH =0, (8.18)
aE—i[ﬁxﬁ}o,
o +Ve+i[IxE]emF =27,
[V F+mE =0,
On the other hand, applying the operator (iela—eﬁ —ie3m) to the equation

(8.17), we obtain the following wave equations for the field strengths:
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(82—A+m2)e=—47z[8p8+;(v ]B)J,

(62—A+m2)g=47z'mp3,

(0*-a+m)F=m ™, (8.19)
. Arp-. -

(¢ -aem®)E=iZ2 [V, ],

(82 —A+m2)1:1 :471'[%8]8 +VpBJ

Assuming baryon charge conservation

opy +(V7,) =0, (8.20)

C
we can choose the field intensity e equal to zero. This is equivalent to the
following gauge condition:

ab+(V-C)=0, (8.21)

similar to the Lorentz gauge in electrodynamics.

8.3. Stationary field of point scalar source

In stationary case j, =0 and potential can be chosen as

W =ieb(7). (8.22)
Then we have only two nonzero field components
g=-mb,
L (8.23)
H=-Vb

and the following field equations:
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(§~I:I)—mg =-4rp, ,
Vg-mH =0, (8.24)
[6 x H ] =0.

Let us calculate the field produced by a scalar stationary point source

J=ie dnq,5(F), (8.25)

where ¢, is point baryon charge. Then stationary wave equation can be
written in spherical coordinates as

[%g[ﬂ gj_";o_fJb(f) = —47q,5 (7). (8.26)

The partial solution of the equation (8.26), which decays at r — o, is

r

b =q—Bexp[— m;;c rj. (8.27)

Thus, the stationary field of baryon point source has scalar and vector
components

myC g, myc
_ My o e ) 8.28
oot ) -
i, :[Lﬂ]q—%xp[- ¢ r]?o, (8.29)
r h)r h

where 7, is a unit radial vector.

8.4. Baryon — baryon interaction

Let us consider the interaction of two point baryon charges due to the
overlap of their fields. Taking into account that the field in this case is the

sum of the two fields g=g, +g,, and H=H, +H,, the energy of
interaction (see expression (8.11)) is equal

1 .

Wy = _gj‘{gmg}sz +(1:131 “Hy, )} av, (8.30)
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where the integral is over all space. This expression can be derived
analytically. Substituting (8.28) and (8.29) we obtain

959 myc
W =—%exp[—7°R] , (8.31)

where R is the distance between point baryons. By definition we assume
interaction between equal charges to be attractive.

8.5. Sedeonic equation for lepton field

In [22] we supposed that lepton fields can be described by sedeonic first-
order equation, similar to the Dirac equation. In sedeonic algebra the
homogeneous first-order equation is written as

(ie,0—e,V —ie,n)W =0. (8.32)
In equation (8.32) the basis elements e, , e,, e, and a,, a,, a, play the role
of space-time operators, which transform the wave function by means of

component permutation. Choosing potential W in the form (8.4) we find
that sedeonic equation (8.32) is equivalent to the following system

8a+(§- )+mc:0,

ob+(V-C)+md =0,

8c+(* -E)—ma =0,

od +(V - 4)=mb =0,

04+Vd —i[ VxD |+mC =0, (833)
0B +Ve+i[ VxCl+mD =0,
oC+Vb—i[VxB|-md=0,

In fact these equations describe the special fields with zero field strengths
[22] (see expression (8.5)).
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Multiplying each equation of system (8.33) on corresponding components
of potential W and adding we get

lﬁ( ‘+b+c’ +d2+;12+1§’2+6‘2+52)
2 Ot

+a(§~5)+b(vé)+c(§~1§)+d(§~;1)

+(;1~§d)+(1§~§c)+((j‘~§b)+(5~§a) (8.34)
—l(;i|:§><5j|)+l(§|:§><éj|)
—i(é-[ﬁxé])ﬂ'(ﬁ[@xﬁ]):O.
Let us introduce the following notations:
Wzi(a2+b2+c2+d2+;12+1§’2+62+Dz), (8.35)
&
§=i(aﬁ+bé+cl§+d2+i[2xﬁ]+i[éxl§]). (8.36)
Then the equation (8.34) can be represented as
aa_‘:h(vg):o . (8.37)

This expression is an analogue of the Poynting theorem for massive fields
(described by first-order equation) but written for field potentials.

8.6. Plane wave solution of first-order equation

The homogeneous first-order wave equation

(iel 10 e d—ie, m;_:CJW =0 (8.38)
C

has the solution in the form of plane wave. In this case the potential can be
written as

w=0U exp{-iwm(/?.f)}, (8.39)
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where @ is frequency and k is an absolute wave vector. The wave
amplitude U does not depend on the coordinates and time. In this case, the
dependence of frequency on the wave vector has two branches:

2 4
o, =+ ,/c2k2 + ’”;_;f . (8.40)

Substituting (8.39) in equation (8.38) and taking into account (8.40), we
obtain

(el D —ie,k — e, mOchJ:O. (8.41)
c h
For convenience we introduce the following notations:
=@
C 9
I
7
Then the equation (8.41) is written as
(elw'—iezlz—iesm)fJ:O. (8.42)

Let us consider the amplitude of the wave function in the form of (8.4):
U= a+ieb—ie,c—ie,d+id+eB+e,C—e,D ,

where a, b, c,d are arbitrary constants and 4, B, C, D are arbitrary vectors.
Then the equation (8.42) takes the form

(ela)' —ie,k — ie3m)
S (8.43)
><(a +ie,b—ie,c—ie,d +id+e B+e,C— e3D) =0.

Let us represent the vector constants as parallel and perpendicular to fixed
wave vector k
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]

>

Nyl
Il
N
+

[Ba

B=B+B,,
oo . (8.44)
C=C+C,,
D=D+D,.

Then performing the multiplication in (8.43), we obtain the following system
of algebraic equations:

@'b—kC, +imd =0,

o'a—kD, +imc =0,

, (8.45)
o'd — kA4 —imb =0,
o'c —kB —ima =0,
o'B —kc+imD, =0,
o'4 —kd +imC, =0,

, ) (8.46)
®'D, —ka—imB, =0,
o'C,—kb—imA, =0,
w'B, —i[l;><él]+im5L =0,
io'd, —[IEXDL]—mC’L =0,

(8.47)

iow'D, +|:];><121’Li|+mél =0,

io'C, —[l?xli]+m;h =0,
where 4, B, C;, and D, are projections of corresponding vectors on k
direction. From equations (8.45) we get following relations:

=—d —i—b,
4 A lk
B’H —c—i—a,
kook (8.48)
C =Zb+ild,
k
DH——a+i—c
k k

On the other hand, from equation (8.47) we obtain
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@ (8.49)

Then the amplitude U can be written as

U= a+ieb—ie,c—ie,d

+{iw'd +mb+e,w'c—ie;maj—
k

+{eza)'b+ie2md—e3w'a—igmc}% (8.50)

+i;ll +e11§’l +ie, ﬁ,;ll —ie, ﬁ,BL
o) o)
—ie3i,[l€><;ll}—iezil[lz><l§l}
o} o)

The expression (8.50) can be represented in more compact form

. - 1 - 1=

U= (elw'—iezk —iesm){ie2 %(aﬂelb—iezc—iesd) +ie, ;Al +;Bl}. (8.51)
Substituting (8.51) in equation (8.42) and taking into account (8.40) one can
see that this equation is satisfied for any parameters a,b,c,d , A,, B, , since

we have
(elco'—iezlz—iesm)(ela)'—iezlg—iesm)E0. (8.52)

So, the solution (8.51) contains the algebraic zero divisor.
In general case the solution of equation (8.32) can be written in the form
of generalized plane wave:

Cc

W= [el &—iezlz —ie, m;c ]1\7[ exp{—iwit-iri(l;-?)} , (8.53)

where M is arbitrary sedeon with constant components, which do not
depend on time and coordinates.
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8.7. Nonhomogeneous equation of lepton field

Let us consider the nonhomogeneous equation corresponding to the
equation (8.32):

(ielé—eﬁ—i%m)w =L (8.54)

Here I is sedeonic field source describing lepton charges and currents.
Choosing the potential W in the form (8.4), we obtain following equation

for the lepton field strengths:

—e+ie, [ —ie,g +iesh—iE +e F +e,G+e,H=1,+1. (8.55)

This equation means that the strengths of this field are nonzero only in the
region of field source.
Let us consider the sedeonic source in the following form:

i=—ie,p, +e1%]’L, (8.56)

where p, is a volume density of lepton charge and j, is volume — density of

lepton current. In this case the equation (8.55) is rewritten as

- 1-
—ie,g +e,F =—ie,p, +e, ZjL . (8.57)

Applying the operator (z’ela—eﬁ—i%m) to the equation (8.57) and

separating the values with different space-time properties we obtain the
following equations for the lepton field strengths:

og+(V-F)=0p, +~(77,), (8.58)

Assuming lepton charge conservation

op, +~(¥-7,)=0, (8.59)

Cc
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we have the following gauge condition:
og+(V-F)=0, (8.60)

which is similar to conventional Lorentz gauge, but for field strength here.

Let us consider the a stationary lepton field generated by a scalar point
source

I=—ie,q,6(F), (8.61)
where ¢, is the point lepton charge. Then the strength of the scalar field is
g, (F)=q,6(7). (8.62)

This field is non-zero only in the region of source. It indicates that two point
lepton charges interact only if they are at the same point of space. The
interaction energy for two point charges ¢,, and ¢,, is equal

1 -
W, :_gjgugn dV:_QquL25(R)’ (863)
v

where R is distance between point leptons.
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8.8. Baryon — lepton interaction

One could suppose an interaction between baryon and lepton charges due
to overlap of the scalar fields g, and g,. The respective fields are

determined by equations (8.28) and (8.68), so that the interaction energy is
equal to:

1
Wy =—— [g,2,d . (8.64)
8 s,
As a result, we get
m,C q,q m,c
W, =——0C AT oy " R | 8.65
BL n R Xp[ 7 j ( )
where R is the distance between point baryon and lepton.

8.9. Conclusion

Thus, we considered the sedeonic generalization of equations describing
the massive field. It is shown that this approach allows to build a massive
field theory analogous to the theory of massless electromagnetic field in
classical electrodynamics.

We have considered the sedeonic second order wave equation for sedeon
wave function. It was shown that this equation can be interpreted as the
equation for the baryon field potentials. We have demonstrated that the
second-order wave equation for the potentials can be represented as a system
of first order equations for the field strengths similar to the system of
Maxwell's equations. We generalized the concepts of energy density and
energy flux for massive fields, and derive relations for the field energy and
momentum similar to Poynting’s theorem in electrodynamics. It was shown
that in the particular case of a stationary point source the solution of the
sedeonic wave equation is a potential of Yukawa-type. The energy of
interaction of two point baryons is derived.

Assuming that lepton field is described by first-order wave equation, it
was shown that the strengths of the lepton fields are nonzero only in the area
of sources, so the point leptons interact only when they are in the same point
of space. The plane wave solution of sedeonic first-order wave equation is
derived.

We demonstrated the possibility of describing the baryon-lepton
interaction in terms of scalar fields overlapping.
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Chapter 9. Neutrino field

9.1. Sedeonic equations of neutrino field

Among the solutions of the homogeneous sedeonic wave equation of
gravitoelectromagnetic field there is a special class that satisfies the sedeonic
first-order equation of the following form [18]:

[iet lﬁ—eﬁjwv ~0. ©.1)
c ot

The field satisfying this equation will be called the neutrino field. Based on

analogy with gravitoelectromagnetism (see (6.12)), we consider the potential

W, in the following form:

W, =iep, +e A, 9.2)
where ¢, and 4, are complex scalar and vector potentials of neutrino field:
¢, =@, +ip,, 9.3)
4, =, +id. 9.4)
Thus, the equation for free neutrino field can be written as
[iet %%—eﬁj(z’et% +er;lv)=0. 9.5)
Appling the operator
ie, %% - eﬁ

to the equation (9.5), we have

1 o , -
[C—zy—A](Zet@V +erAv) =0. (96)
Separating the values with different space-time and charge properties we
obtain the wave equations for the potentials
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1 o
C—zy—A @, =0, 9.7
1 o
L2 ale,=0, ©.8)
1 o -
—zy—A Ae :0, (99)
C
1 o -

It indicates that the potentials of neutrino field ¢,, ¢,, 4,, 4, satisfy the

same second-order equations as well as potentials of gravitoelectromagnetic
field, however the equation (9.5) allocates only those solutions that have zero
strengths of electric (and gravitoelectric) and magnetic (and
gravitomagnetic) fields. Indeed, performing the sedeonic multiplication in
(9.5) we have

109, 104 - - .-

———r e, ——L—-¢e Vo —(V-4 )| Vx4 |=0. 9.11

c al etrc at etr gov ( Av) |: X v:| ( )
Separating in (9.11) the values with different space-time and charge
properties we obtain the system of equations for the potentials:

10p (= -

;§+(V~AK,)=O,

%%+§¢g 0,

Vx4, |=0,

Ea; 1 o (9.12)
- (V-4,)=0,

—a;lg+§go =0

c Ot & 7

[ﬁx;ﬂzo

Thus, one can assume that the generalized equation (9.5) describes the
special field of a gravitoelectromagnetic nature. The potentials ¢, and 4,
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describe the electromagnetic component, while the potentials ¢, and ;lg

describe the gravitational component of the neutrino field.
9.2. Second-order relations for neutrino field

Multiplying the expression (9.5) on potential W, from the left, we obtain
the following sedeonic equation:

(ietgov +e. 4 )[iet %%—erﬁj (z’etgov +e A ) =0. (9.13)

Performing the sedeonic multiplication and separating different terms we get
second order expressions for the neutrino field potentials:

zicg{cof+?ﬁ}+(7covi)=0, (9.14)
(%[?xﬁv]):m (9.15)
%{;LX%}{@ﬁx;@]{zyxm]:o, (9.16)
L lp A Vo) +(V-2)4 -0 9.17)

Separating the real and imaginary parts and excluding the cross-terms
(taking into account that ¢,&, =0) we get following four equations:

e B g B+ (Vo9 )~ (V-0,4,) =0, 9.18)
%ﬁ{gof — A4 . +Z1;} +;—{¢e;1e gogAg} ©.19
+(V-4)4-(-4,)4, =0,

(4. [Vx4])-(4,[Vx4,])=0, (9.20)
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! A xalzl? -1 4 xagg
|| o ¢ ot (9.21)
+|:goe§><;le]—[gog§><;lg]+[;lexﬁgoe]—[,zlgx@gog]:o.

On the other hand, multiplying the expression (9.5) on (—ietgov +er2V)

from the left, we obtain the following sedeonic equation:
. -\ 10 =) -
(—zetgov +e A, )[zet P erVJ(zetgov +e A, ) =0. (9.22)

Performing the sedeonic multiplication and separating different terms we get
following expressions

2%%{5"3‘;*2}*% (V-4,)-(4,-V)e, =0, (9.23)
A [vxd ])=o. (9.24)
%{q X%}W“"vﬂﬂ’ (9.25)

%§{¢f+gf}+%{¢v%— i %}_(va)@ —0.  (9.26)

Separating the real and imaginary parts and excluding the cross-terms
(taking into account that ¢,e, =0) we get another four equations:

2c¢ Ot (9.27)

o (¥2)+0,(9-2)-(3 ¥}, (3 T)o, 0.
Vot A -0l - 1)

1| 04 - dp, - Op oA
+Z{¢"§_A? ot + 4 atg % 8:} (©-28)
(9A)i-(F-3)7, o
(4 [9x4])-(4,[9x4,]) 0. 929)



%{|:12( x%} —{;lg X aj; H —[@ x gog;l(} +[§ xgog?lg} =0. (9.30)

The expressions (9.18), (9.19), (9.27) and (9.28) are the analogs of
Poynting theorem and Lorentz invariants relations for the neutrino field.

9.3. Plane wave solution for the first-order equation

The first-order wave equation for the neutrino field

c ot

[iet lﬁ—eﬁjwv ~0 9.31)
has the solution in the form of plane wave:

v

W =0, exp{—ia)t-iri(lg-?)} . (9.32)

where  is a frequency, k is an absolute wave vector and the wave
amplitude U, does not depend on coordinates and time. In this case the

dependence of the frequency on the wave vector has two branches:

o, =*ck, (9-33)

where k is the modulus of wave vector (k = ‘lg‘ ). The solution of equation

(9.31) in the form of a plane wave can be obtained directly from the solution
of the first-order equation for a massive field (8.44), equating the mass of
the quantum of field to zero. In general, the solution of equation (9.31) can
be written as a plane wave of the following form:

W, = [el &—iezlgjlﬁv exp{—iwit+i(l€~7)} , (9.34)
¢

where M, is arbitrary sedeon with constant components, which do not

depend on coordinates and time.
Let us analyze the structure of the plane wave solution (9.34) in detail.
Note that the internal structure of this wave is changed under space and time

conjugation. Further we suppose that wave vector k is directed along z
axis. Then the first-order equation (9.31) can be rewritten in the following
equivalent form:
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__+ —
cot "loz)

[18 ¢.a ajweo, (9.35)

where W/ =ie,W,. The solution of (9.35) can be presented in form of two
waves:

W/, =—(l+e,a,)kM, exp{—iw+t+i(l€-?)} , (9.36)

v+

y—

W =(l-e,a,)kM, exp {—iw_t+i(E~?)}. (9.37)

Note that the wave function W/, corresponds to the positive branch of
dispersion law (9.33) and describes the particle with positive energy, while
W’ corresponds to the negative branch of dispersion law (9.33) and
describes the particle with negative energy. Besides, the wave functions
(9.36) and (9.37) are the eigenfunctions of spin operator

S - %e“as. 9.38)
Indeed, it is simple to check that W' satisfies the following equation:
SW =S W, (9.39)

where eigenvalue S =+1/2. Thus, the wave W', describes the particle with
spirality S =+1/2, while W’ describes the particle with spirality
S =-1/2.

9.4. Scalar neutrino source
Let us consider the nonhomogeneous equation of neutrino field
1 N WU
[iet—%—e vjw i, (9.40)

where 1, is phenomenological source. We choose the scalar source in the
form

I, =4n0,, (9.41)
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where o, is the density of neutrino charge and has two components:
o,=0,+i0, . (9.42)
Choosing the potential W, in the form (9.2):
W, =iep, +e A, (9.43)
we obtain following equation for the neutrino field:
[iet%%—eﬁj(z’et% +er;1v)=47z0'v. (9.44)
It follows that only scalar field strength f is nonzero:
f, =4no,. (9.45)
The density of neutrino charge for point source is equal
o,=4,6(r), (9.406)

where ¢, is point neutrino charge:
4, =4, +iq,, - (9.47)

Then the interaction energy of two point neutrino charges can be represented
as follows:

W === [ S SV (9.48)
&
Substituting (9.45) and (9.46), we obtain
Wow =(0.9.2— 9,04, )0(R) , (9.49)

where R is the vector of distance between first and second charges.
9.5. Conclusion

Thus, in this chapter we have developed a description of massless
neutrino field based on space-time algebra of sixteen-component sedeons.
We have derived the second-order relations for the neutrino potentials, which
are analogues to the Pointing theorem and Lorentz invariants relations for
gravito-electromagnetic field. The plane wave solution of first-order wave
equation for massless field is considered. We also derived the expression for
the interaction energy of point neutrino charges.

75



Application 1. Matrix representation of sedeons

Let us consider a matrix representation of the sedeon. In general, the
sedeon is equivalent to the 16 x 16 matrix. Working with such a matrix is
extremely difficult because of its high dimensionality. However, this matrix
cab be represented in the compact form of 4 x 4 block matrices. Let us

consider the sedeon V in the basis e,.e, ,e,,e;:

V=eV,+e,V, +e,V, +e,V,. (A1.1)
The sedeonic product of e, and V can be written as

e,V=e,V +eV,—ie,V,+ie,V,, (A1.1)

therefore the sedeonic unit e, enables the following matrix representation:

010 0
100 0
e, = . Al3
1o 0 0 - ( )
00 i 0
Analogously:
1 000 00 10 00 0 1
0100 00 0 i 00 - 0
e, =1= e, = “1e, = "L (ALY
0010 1 0 00 0 i 00
00 01 0 —i 00 100 0

Thus, using (A 1.3) and (A 1.4), we can write a sedeon V (in €),€,€,,¢e,
basis) in the following matrix form:

Vo, Vi Vv,V

v I ) CR € (A 1.5)
vV, iV, 'V, -V,
_3 _i‘_/Vz i_l _0

On the other hand we can write sedeon V using a,,a,,a,,a, basis in the

following scalar-vector form:
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V=V, +Va +V,a,+Va,.

(A 1.6)

Then the basis elements a,,a,,a,,a, have the following matrix
representation:
1 0 00 01 0 O
01 00 1 0 0 O
a, =1= ) a] = .|
00 10 00 0 —i
0 0 01 00 i O
0 0 1 O 00 0 1
0 0 0 i 00 — 0
a, = ,a, = A 1.7
1 0 00 |0i 00 ( )
0 - 0 0 1 0 0 O
Using (A 1.7) a sedeon V can be written in a,,a,,a,,a, basis as 4 x 4

block matrix:

Vo Vi v, \B

- Vv vV, -iV V.

vt o T Th (A 1.8)
V, iV, vV, -V,
vV, -iV, iV, V,

Thus the sixteen-component sedeon can be written as a 16 x 16 matrix,
which can be represented in two different compact 4 x 4 form. First
representation in e,,e, ,e,,e, basis is (A 1.5) with V, components in
a,,a,,a,,a, basis

Va() Val Vaz Va3

— V V., =iV iV

Va — al . al a3 a2 (A 19)
VaZ lVa3 Va() _iVaI
Va3 _iVaZ iVaI Va()

Second representation in a,,a,,a,,a, basis is (A 1.8) with V, components

in e,,e,,e,,e, basis
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Ve Vi Vi V.

18 28 3p
V, V —iV, iV,

v,=| " KO (A 1.10)
Vzﬁ lVSﬁ V;)ﬁ _lVIﬁ
V3ﬁ _inﬁ iVIﬁ V;)ﬁ

Let us consider the relations between unit vectors a,,a,,a, and Dirac
matrices. Introducing new values

1 .
W, =5(V0+V3), W, = (V1 +zV2),

1
2 (A 1.11)
1 . 1
W, =2 (Vi =iV). Wo=2(V,-V,),

we can write the sedeon (A 1.6) in the basis of eigenfunctions of operator a,
in the following form:
V=W(+a,)+W,(a, —ia,)+ W, (a, +ia,)+ W,(1-a,), (A 1.12)
where set of values
(1+a,), (a, —ia,), (a, +ia,), (1-a,) (A 1.13)

is the new sedeonic basis. Then the action of vector operators a, can be
represented as

a,V=W,(l+a,)+W,(a, —ia,)+W,(a, +ia,)+W,(1-a,),
a,V =—iW,(1+a,)+iW,(a, —ia,)—iW,(a, +ia,) +iW,(1-a,), (A 1.14)

a,V=W,(l+a,)-W,(a, —ia,)+ W, (a, +ia,)— W,(1-a,).

Therefore the unit vectors a,,a,,a, can be written in the new basis as the

following 4 x 4 matrices:

0100 0 - 0 0 100 0
100 0 ;0 0 0 0 -1 0 0

a, = A, = ,a, = . (ALI15)
000 1 00 0 —i 0 0 1
0010 00 i 0 00 0 -1

which coincide with spin operators &, in Dirac theory [27]:
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0100 0 i 0 0 1 00 0
1000 ;0 0 0 0 -1 0 0

G, = ,6,=| " , G, = (A 1.16)
000 1 0 0 0 —i 0 0 1
0010 00 i 0 00 0 -1

Thus, the matrix operators e, and a,, can be presented as 16 x 16

ﬁ b
matrices. The 4 x 4 matrix presentation is valid only for specified bases and
only in case when operators e, and a, act separately and independently.

79



Application 2. Space-time sedenions

The well known sixteen-component hypercomplex numbers, sedenions,
are obtained from octonions by the Cayley-Dickson extension procedure
[48]. In this case the sedenion is defined as

S=0,+0e, (A2.1)

where O, is an octonion and the parameter of duplication e is similar to

imaginary unit (e* = —1). The algebra of sedenions has the specific rules of
multiplication. The product of two sedenions

$, =0, +0ye,
§,=0,+0,e

1s defined as

S8, = (011 + 0123)(021 +0228) = (011021 _522012)+(022011 +012521 )e , (A 2‘2)

where 51 is conjugated octonion. The sedenionic multiplication (A 2.2)

allows one to introduce a well defined norm of sedenion. However such
procedure of constructing the higher hypercomplex numbers leads to the fact
that the sedenions as well as octonions generate normed but nonassociative
algebra [4]. This greatly complicates the use of the Cayley-Dickson
sedenions in the physical applications.

In this section we present an alternative version of the associative sixteen-
component hypercomplex numbers named “space-time sedenions” [49] and
demonstrate some of its application to the generalization of the field theory
equations.

II 2.1. Sedenionic space-time algebra

It is known, the quaternion is a four-component object, which can be
presented in the following form:

g=q,a,+qa, +qga,+q,a,, (A 2.3)
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where components ¢, (« =0,1,2,3) are numbers (complex in general),
a,=1 is scalar units and values a_ (m=1,2,3) are quaternionic units,

which are interpreted as unit vectors. The rules of multiplication and
commutation for a_ are presented in Table 4. We introduce also the space-

time basis e, e,, e, e, which is responsible for the space-time inversions.

The indexes t and r indicate the transformations (t for time inversion and r
for spatial inversion), which change the corresponding values. The value
e, =1 is a absolute scalar unit. For convenience we introduce numerical

designations e, =e, is time scalar unit; e, =e, is space scalar unit ;
e,=e, is space-time scalar unit. The rules of multiplication and
commutation for this basis e, we choose similar to the rules for

quaternionic units (see Table 5).

Tabdammna 4. Tabdamnmna 5.

a, a, a, e, e, e,
a, -1 a, -a, e, -1 e, —e,
a, -a, -1 a, e, —e, -1 e,
a, a, -a, -1 e, e, —e, -1

Note that the unit vectors a,,a,,a, and the space-time units e,,e,,e,
generate the anticommutative algebras:

anam = _aman ’

(A 2.4)

ece =—¢ ¢

n-m m'n?

for n = m, but basis elements e, ,e,,e, commute with elements a,, a,,a,:

ea =a_e,, (A2.5)

n"m mn

for any n u m. Then we can introduce the sixteen-component space-time
sedenion ¥ in the following form:
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The sedenionic components V,

V=e,(Voa, +Vya, +Vy,a, +Va,)

+€ (Vloao + Vllal + Vlzaz + Vlsas)

(A 2.6)
+e, (Vyay +Vya, +Vya, +Vyay)

+ e3 (I/}an + Vv_’blal + Vv_’bZaZ + V3333 )

s are numbers (complex in general).

Introducing designation of scalar and vector values in accordance with the

following relations:

Il
o
s
o~
S

a,,

Il
o
<
—_~

VOlal + VOZaZ + VOJaS) s

=V, =e/)a,,
¢ (Vllal +Vhpa, + Vlsas)v (A2.7)
=V, =¢,V5,,

ll
o
Il

¢, (VZIal +V2232 +V2333) ’

3 e3 I/3030 s

Il
N
Il

|

ISR SIS TN
1]
NV
1]

e3 (V_’slal + V.’sZaZ + V3333) °

w

Then we can represent the sedenion in the following scalar-vector form:

V=Vt+V+V, 4V, +V. +V. 4V, +V,. (A 2.8)

Thus, the sedenionic algebra encloses four groups of values, which are
differed with respect to spatial and time inversion.

Absolute scalars (7) and absolute vectors (V) are not transformed
under spatial and time inversion.

Time scalars (¥,) and time vectors (V,) are changed (in sign) under time
inversion and are not transformed under spatial inversion.

Space scalars (¥.) and space vectors (7.) are changed under spatial
inversion and are not transformed under time inversion.

Space-time scalars (¥, ) and space-time vectors (¥, ) are changed under
spatial and time inversion.

Further we will use the symbol 1 instead units a, and e, for simplicity.
Introducing the designations of scalar-vector values
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=Vo +Vpa, + V0232 + V0333 >
=V, +Va +V,a, +K333v (A 2-9)

V,=Vy+V,a, +Vsa, + stasv

v
4

I73 = V30 + V3131 + V3232 + Vssas .
Then we can write the sedenion using space-time basis in the following
compact form:
V=V, +eV +e,V,+el,. (A 2.10)
On the other hand, introducing the designations of space-time sedenion-
scalars
Vo = (Voo +e1V10 +e2V20 +e3V30) )
Vl = (Vm +e1V11 +e2V21 +e3V31) P
Vz =(V02+61V12+62V22+83V32), (A2.11)
V3 = (V03 +e1V13 +e2V23 +e3V33)
we can write the sedenion in vector basis as
V=V,+Va, +V,a,+Va,, (A2.12)
or introducing the sedenion-vector
V=V+V,+V.+V, =Va, +V,a, +Va,, (A 2.13)
we can rewrite the sedenion in following compact form:

V=V, +V. (A 2.14)

Further we will indicate sedenion-scalars and sedenion-vectors with the bold
capital letters.
Let us consider the sedenionic multiplication in detail. The sedenionic

product of two sedenions A4 and B can be represented in the following
form:

AE:(AO+;1)(BO+E):AOBO+AOB+;IBO+(;1-B)+[Z><B] (A2.15)

Here we denoted the sedenionic scalar multiplication of two sedenion-vectors
(internal product) by symbol “-” and round brackets:
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(4-B)=-AB - 4,B, - 4B, (A 2.16)

and sedenionic vector multiplication (external product) by symbol “x” and
square brackets:

[AxB|=(A,B,~ AB,)a, +(AB — AB,)a,+(AB, - 4,8 )a,. (A 2.17)

Thus the sedenionic product
F=AB=F,+F (A 2.18)
has the following components:
F,=AB,~AB —A,B, — AB,
F,= AB,+AB, +(A,B,~ AB,), (A2.19)
F,=A,B,+ AB, +(A,B — AB,),
F,= AB,+ AB, +(AB, - A,B,).

Note that in the sedenionic algebra the square of vector is defined as

A =(4-A)=-4' -4 -4 . (A 2.20)
On the other hand, the square of modulus of vector is
K

It is positively defined value.

2

=—(Ad-A)=a+ 4+ 4;. (A2.21)

A 2.2. Sedenionic spatial rotation and space-time conjugation

The rotation of sedenion ¥ on the angle 6 around the absolute unit
vector 7 is realized by uncompleted sedenion

U = cos(60/2)+iisin(6/2) (A222)

and by conjugated sedenion:
U’ =cos(0/2)-iisin(0/2). (A 2.23)
They satisfy the following relation:
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U =0'0=1. (A 2.24)
The transformed sedenion ¥’ is defined as sedenionic product:

V' =UOVU . (A 2.25)
Thus the transformed sedenion ¥’ can be written as
V' =[cos(6/2)-iisin(0/2) (¥, +V )[cos(6/2)+iisin(0/2)]
=V, +V cos0—ii(ii-V )(1-cos0)—[ ixV |sin . (A 2.26)

It is clearly seen that rotation does not transform the sedenion-scalar part,

but the sedenionic vector ¥ is rotated on the angle 6 around 7.
The operations of time inversion (R,), space inversion (R,) and space-

time inversion (R, ) are connected with transformations in e, , e,, e, basis

and can be presented as

IétV = —62[762 = I70 —6117, +ezl72 _e3173 >
&V = —61[761 = [70 +e1171 —62172 —63173 > (A2.27)

RV = —e,Ve, =V, —el, —el, +e V.
A 2.3. Sedenionic Lorentz transformations

In sedenionic algebra the relativistic event four-vector can be represented
in the follow sedenionic form:

S=ectter. (A 2.28)
The square of this value is the Lorentz invariant

SS=-c+x>+y" +2°. (A 2.29)
The Lorentz transformation of event four-vector is realized by uncompleted

sedenions
L =cosh9+e,iisinh, (A 2.30)

L =cosh9—e nisinh9, (A 2.31)
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where tanh29=v/c, v is a speed of motion along the absolute unit vector

m . Note that
LL=LL-=1. (A2.32)

For example, the transformed event four-vector 8’ is written as
§'=L S L=(cosh9d—e,sinh@ i) (e,ct +e,7)(cosh+e,sinh i)
=e.ct cosh29+e, (m-F)sinh29 (A 2.33)
+e 7 —e ctm sinh29 —2e, (m-F)msinh®3 +e_(m-7)m(1-cosh29) .
Separating in (A 2.33) the values with e, and e, we get the well known
formulas for time and coordinates transformation [26]:

— 2 -
g_imxvld o x-ty . =2, (A 2.34)

- 2 s> Y Y,z =z
N1=v*/¢é? N1=-v?/¢?

where x is the coordinate along the m vector.
Let us also consider the Lorentz transformation of the full sedenion V .

The Lorentz transformation for any sedenion ¥’ can be written as
sedenionic product
V'=LVL. (A 2.35)

The transformed sedenion has the following components:

V'=v,
V.=V,

tr 2

V!=V,cosh29—e, (m-V,)sinh 29,

inh29,

)
Js

V!=V, cosh29-e, (rh 17
I7'=I7cosh29+2(r71 V)iisinh*9—e,, [xV, |sinh28, (A 2.36)

2
1]

17 cosh29+2(m-V, )m sinh’9—e,, [meJ sinh29,

-~
1]

17 ( 17 )m sinh’3—e, V, msinh29,

V ( I7)m sinh’3—e, V. msinh29 .
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A 2.4. Subalgebras of space-time quaternions and octonions

The sedenionic basis introduced above enables constructing different
types of low-dimensional hypercomplex numbers. For example one can
introduce space-time complex numbers

Z, =z +ez,, (A 2.37)
Z =z +e.z,, (A 2.38)
Z,.=2+€.2,, (A2.39)

which are transformed under space and time conjugation. Moreover we can
consider the space-time quaternions, which differ in their properties with
respect to the operations of the spatial and time inversion

g=q.a,+e¢,(ga, +qa,+qa,), (A 2.40)
4, = 9,3, +e (g3, +g,a, +qa,), (A2.41)
4, = 49,2, +e, (9,3, +q,3, +q,a,), (A2.42)
dw =402y +¢, (g2, +q,2, +¢;a,) . (A 2.43)

The absolute quaternion (A 2.40) is the sum of the absolute scalar and
absolute vector. It remains constant under the transformations of space and
time inversion (A 2.27). Time quaternion ¢,, space quaternion g, and

space-time quaternion g, are transformed under inversions in accordance
with the commutation rules for the basis elements e,, e , e, . For example,
performing the operation of time inversion with the quaternion g, we obtain
the conjugated quaternion

Rq, =—-e.q.e, =q,a,—e, (‘hal +q,a, + 9333) . (A 2‘44)

Moreover, the sedenionic basis allows one to construct various types of
space-time eight-component octonions:
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Gt = GOO +G()lal + GOZaZ + GOJaS +etG10 +et (Gllal + GIZaZ +G13aS ) > (A 245)
Gr = GOO + G()lal + GOZaZ + GOJaS +erG20 +er (GZIal +G2232 +G2333) > (A 246)

Gtr = GOO +G()lal +G0232 +G0333 +etrG30 +etr (GJIal +G3232 +G3333) N (A 247)

A 2.5. Sedenionic equations of relativistic quantum mechanics

In sedenionic algebra the Einstein relation for energy and momentum
E’-c’p*—mic* =0 (A 2.48)
can be presented in the following form:

(etE +e,cp+ie, myc’ )(etE +e,cp+ie, myc’ ) =0. (A 2.49)

Changing classical energy £ and momentum p on corresponding quantum-
mechanical operators:

Eeinl w po-inv, (A 2.50)
ot
we get the sedenionic wave equation for relativistic particle:

10 - myc 10 - m,c
~Z _eVie —Clle—~—eVte —|G=0 .
(etc " eV+e, . J(etcat eV+e, . j\y , (A2.51)

where the wave function is sedenion

U(67) =y, (t7)+y(7F) . (A 2.52)

Note that for electrically charged particle in an external electromagnetic field
we have the following sedenionic wave equation:

e il e Ly e, L dne, TC
cot fic fic fi
(A 2.53)
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This equation describes the particle with spin 1/2 in an external
electromagnetic field [21].

There is a special class of particles described by the first-order wave
equation. For these particles the sedenionic Dirac-like wave equation has the
following form:

r

[etlg—e§+en ’”Och;=o. (A 2.54)
c 7
Analogously the electrically charged particle interacting with external

electromagnetic field is described by the following sedenionic first-order
wave equation:

10 ie = ie - m,c
——+e,—p-eV+e —A+e, —— |y=0. A 2.55
[et c af et thD er er hC etr h ]‘I’ ( )
This equation also describes the particles with spin 1/2 in an external
electromagnetic field [22].

A 2.6. Generalized sedenionic equations for massive force field

The generalized sedenionic wave equation enables another interpretation.
It can be considered as the equation for the force massive field. Let us
consider the nonhomogeneous wave equation for the field potential with the
phenomenological source of field
myc

—J(etl——e ?Jre"%jW:j. (A 2.56)
c h

1 ~
[et —i— eV+e,
c ot ni

Here W is the field potential, J is source of field, parameter m, is the mass

of quantum of field.

In the special case when the mass of quantum is equal to zero the
equation (A 2.56) coincides with the equation for electromagnetic field in a
vacuum. Indeed, choosing the potential as

W=eqp+e A (A 2.57)
and the source of electromagnetic field as

J=—edmp—e 307 (A 2.58)
C
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we obtain the following wave equation:

18 =) 18 o Y ar -
(etza—eer(et Za—eer(et(p+erA) = —et4ﬂp—er7] . (A2.59)

After the action of the first operator in the left-hand side of equation
(A 2.59) we obtain

[et %%— eﬁj(etgo + er;l)

. (A 2.60)
10p . 104, = (= =\ = -
=——Tte, ;5+eHV¢)+(V~A)+|:V><Aj|.
Using the sedenionic definitions of the electric and magnetic fields
E=-1% 3,
c ot (A 2.61)
A =[vxi]
and taking into account the Lorentz gauge condition
10p (= -
——L—(V-4)=0, A2.62
c Ot ( ) ( )
we can rewrite the expression (A 2.60) in the following form:
10 - - B
[et———erVJ(etgo+erA)= -e E+H . (A 2.63)
c ot
Then the wave equation (A 2.59) can be represented as
1 - L 4r -
(et—g—eer(—etrE+H)= —et47rp—er—ﬂj . (A2.64)
c Ot c

Performing sedenionic multiplication in the left-hand side of equation
(A 2.64) we get
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e —te, (V-E)+e, [?xE]
= o o A (A 2.65)
+et25—er (V-H)—er [VXH]:—eAﬂp—erTﬂ]’.

Separating space-time values we obtain the system of Maxwell equations in
the following form:

(A 2.66)

The system (A 2.66) coincides with the Maxwell equations.
A 2.7. Conclusion

Algebra of sedenions is equivalent to the algebra of sedeons. In contrast
to the sedeonic algebra, which uses the multiplication rules of basic elements
proposed by A.Macfarlane [23], the multiplication rules for sedenionic basis
elements coincide with the rules for quaternion units introduced by
W.R.Hamilton [1]. There is a simple relation between these two algebras.
Let as denote sedeon basis as a!' and e (Macfarlane rules) but sedenionic

n

basis as a”’ and e/ (Hamilton rules). Then there are the following relations:

=1ia

S

H
a n o
. H

=1ie_ .

S

(3

There is one disadvantage of sedenions connected with the fact that the
square of the vector is a negative value. However, on the other side the
sedenionic rules of cross-multiplying do not contain the imaginary unit and
this leads to the considerable simplifications in the calculations. But of
course, the physical results do not depend on the choice of algebra, so these
two algebras are equivalent.
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