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1.  Introduction 
 

   Cryptography, elliptic curves,  algebraic number theory have been brought 

to bear on integer factorization problem. 

   Until now, no algorithm has been published that can factor in deterministic 

polynomial time. For an ordinary computer the best published asymptotic ru- 

nning time is for the general number field sieve (GNFS) algorithm [8,10].    

   The purpose of this paper is to develop a polynomial-time integer factoriz- 

ation algorithm, factoring in deterministic polynomial time. 

    The plan of this paper is as follows.  In Section 2 we reduce integer facto- 

rization problem to some  2-dimensional integer minimization  problem  and 

show that if there exists a nontrivial divisor of  N,  those divisor is a minimi- 

zer of those   2-dimensional integer minimization  problem, and any minimi- 

zer of those integer minimization  problem is a nontrivial divisor of  N. 

    In Section 3 we introduce and investigate a notion of U-equivalent conve- 

rsion of minimization problems for changing properties of the objective fun- 

ctions and preserving the set of minimizers of the original problem. 

    In Section 4 we reduce integer factorization problem to the convex integer 

minimization 2-dimensional problem solvable in time polynomial in log(N).   

    Finally,  we conclude that since we found a polynomial-time  algorithm to 
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solve an NP-hard problem(an integer minimization problem, U-equivalent to 

the problem, mentioned in Section 2), it would mean that P is equal to NP.   

 

2. Reduction to the Integer Programming problem  
 

     Let us reduce integer factorization problem to some integer  minimization 

problem, so that any minimizer that is found solves integer factorization pro- 

blem.     

     The key idea is to construct the objective function and constraints  so that  

any minimizer satisfies the equation:  x1x2 =  N and therefore is a solution of 

the integer factorization problem. 

     Let us consider the following integer minimization problem: 

 

             minimize     x1x2 

 

                  subject to    x1x2  ≥   N,                                                                    (1)                                       

 

                                 2  ≤  x1  ≤   N – 1,      

 

                                 2  ≤  x2  ≤   N – 1, 

 

                                 x1 ∈ N,  x2 ∈ N,  N ∈ N. 

 

     Let Ω  := { x ∈ R
2
,  x = (x1, x2)  |  x1x2  ≥   N,  2  ≤  x1  ≤   N – 1, 

2  ≤  x2  ≤   N – 1,  x1 ∈ R,  x2 ∈ R }  for a given N ∈ N. 

 

     Hence,  Ω
I
  =  Ω ∩ Z

2
  is a feasible set of the problem (1). 

     It is clear that if there exists a nontrivial solution  of   integer factorization  

problem x1x2 = N, the  objective function:  f(x1, x2) = x1x2  reaches minimum 

at the integer point of the border x1x2  =  N of the region Ω and if there exists 

a nontrivial  solution of integer factorization problem, any  minimizer of  the 

problem (1) provides a (nontrivial) solution of integer factorization problem. 

     Thus, in this case, any minimizer of the problem  (1)   guarantees solution 

of integer factorization problem and there exists at least one such minimizer. 

 

Theorem 1.  If there exists a nontrivial solution of integer factorization pro- 

blem, that solution is a minimizer of problem (1) and if there exists a nontri-  

vial solution of integer factorization problem, any minimizer of the problem 

(1) is a nontrivial solution of integer factorization problem. 
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    As a result, we obtain the following Integer Factorization Algorithm. 

 

  Algorithm 1(Integer Factorization Algorithm). 

  Input:      A positive integer number N.      

  Output:   A nontrivial divisor of N(if it exists). 

                    Solve the problem (1):  

                    Based on the input data compute a minimizer ( x 1 min,  x 2  min )  

                    of the problem (1).  

                    if (x 1 min x 2 min   =   N) 

                    then 

                          Return  a nontrivial divisor x 1 min of  N 

                    else         

                          Return  “N is a prime”        
        

    Let us determine the complexity of the problem (1). 

    Despite in general integer programming is NP-hard or even incomputable,   

see, e.g., Hemmecke et al. [5], for some subclasses of the objective functions  

and constraints it can be computed in time polynomial. 

    Let us recall some well-known definitions. 

    A function f :  R
n
 → R,    defined on the convex set S is called concave on  

the set S if for all  x, y ∈ S, and all  α ∈ (0,1) we have: 

 

      f((1 –  α)x  +  αy)   ≥   (1 –  α)f(x)  +  αf(y) 

 

    A function f :  R
n
 → R,     defined on the convex set S is called convex on  

the set S if for all  x, y ∈ S, and all  α ∈ (0,1) we have: 

 

      f((1 –  α)x  +  αy)   ≤  (1 –  α)f(x)  +  αf(y) 

 

     A  function f :  R
n
 → R   is called quasiconcave if all the upper  level  sets  

{x ∈ R
n

 , f(x)  ≥  α},  α ∈ R  are convex subsets of  R
n
.  

 

     A  function f :  R
n
 → R   is called quasiconvex  if all the lower  level   sets  

{x ∈ R
n

 , f(x)  ≤  α},  α ∈ R  are convex subsets of  R
n
.    

    Note that the dimension of the problem (1) is fixed and is equal to 2. 

    A  fixed-dimensional polynomial minimization in integer variables, where 
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the objective function is a  convex polynomial and the  convex feasible set is 

described by arbitrary polynomials can be solved in time polynomial, -   see,  

e.g., Khachiyan and Porkolab [6]. 

    A  fixed-dimensional  polynomial minimization over the integer variables,  

where the objective function  f0(x)    is a quasiconvex polynomial with integer 

coefficients  and where the constraints are inequalities fi (x)  ≤ 0,  i = 1, … , k  

with  quasiconvex polynomials fi(x) with  integer coefficients,  fi :    R
n
 → R, 

fi(x), i = 0, … , k  are polynomials of degree at most  p ≥ 2, can be solved  in  

time polynomial in the degrees and the binary encoding of the coefficients, -     

see, e.g., Heinz [4], Hemmecke et al. [5], Lee [7].  

    A mixed-integer minimization of a convex function in a  convex, bounded 

feasible set can be done in time polynomial, according to Baes et al. [2], Oe- 

rtel et al. [9].    

    Since  the objective function  f(x1, x2) = x1x2  of the problem (1) is a quasi- 

concave function in the feasible set  Ω
I
  of the problem (1), we cannot use the 

results described in Baes et al. [2], Heinz [4], Hemmecke et al. [5], Khachiy-  

an and Porkolab [6], Oertel [9] in order to solve the problem  (1) in time pol- 

ynomial in log(N).  Note that  Ω
I
    is described by quasiconvex polynomials, 

since (– x1x2  +  N) is a quasiconvex function for x = (x1, x2) > 0.      

     In general, since variables   x1 ∈ N,  x2 ∈ N are bounded by  the finite bo- 

unds:   2  ≤  x1  ≤   N –  1,    2  ≤  x2  ≤   N –  1,  the problem (1)  and  the res- 

pective Algorithm 1 are computable, but at least not solvable in time polyno- 

mial in log(N). 

     

3. U-equivalent minimization  
 

    The following results give us a possibility to change the properties of the  

objective function with preservation of the set of minimizers of the original 

problem.  

 

Theorem 2.  Let  O  be  the minimization problem:  

 

                     O  = {minimize   g(x)  subject  to  x ∈ G},  g:  X → R,  G ⊆  X. 

 

                     Let  E  be  the minimization problem:  

 

                     E  = {minimize   U(g(x))  subject  to  x ∈ G},  G ⊆  X, 

 

where   U:    R → R,  U = U(u)  is any increasing  function. 
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                     Let  MO  be a set of minimizers of problem O and  

 

                     let   ME  be a set of minimizers of problem E.  Then: 

 

                     MO  =  ME .   

 

Proof.   If     x0  ∈ MO  then    g(x0)  ≤  g(x)   for any    x ∈ G.   Hence,  

U(g(x0))  ≤  U(g(x))   for any x ∈ G, since function  U is the increasing func- 

tion  and therefore   x0 ∈ ME   and  MO  ⊆  ME.   If   x0 ∈ ME  then   we have: 

U(g(x0))  ≤  U(g(x))   for any x ∈ G   and  therefore    g(x0)  ≤  g(x)    for any  

x ∈ G, as otherwise  there exists  y0 ∈ G  such that   g(x0)  >  g(y0)  and since 

function U is the increasing function it would mean that U(g(x0))  > U(g(y0))   

in contradiction to the original supposition that  U(g(x0))  ≤  U(g(x))  for any 

x ∈ G.   So, since g(x0)  ≤  g(x) for any  x ∈ G then x0 ∈ MO and  ME  ⊆  MO 

and finally:   MO  =  ME.     

                                                                          

Definition 1.   We say that the minimization problem: 

 

                       E  = {minimize   U(g(x))  subject  to  x ∈ G}, 

 

is  U–equivalent to the minimization problem: 

 

                       O = {minimize   g(x)  subject  to  x ∈ G}, g:  X → R,  G ⊆  X, 

 

where   U:  R → R,  U = U(u)  is some increasing  function. 

 

Corollary 1.   If   E  is U-equivalent to O then E and O  have the same set of 

minimizers. 

 

Proof.      It follows from Theorem 2 and Definition 1.      

 

    Thus, using  U-equivalence we can convert original minimization problem 

into  minimization problem that has objective function with desired properti- 

es, so that both problems, - the original one, and U-equivalent have the same 

set of minimizers and share the same feasible set. 

     Hence, as a result of the  U-equivalent conversion the original feasible set  

and the original set of minimizers remain unchanged,  whereas the  objective 

function is being changed to obtain desired properties (e.g.,  faster minimiza- 
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tion), which can consider it(U-equivalence) as a flexible and effective tool. 

     U-equivalent conversion can be considered as unary operation defined on    

the set of minimization problems, having the same feasible set. 

Example.     Suppose, the  problem (1) is the original minimization problem.    

Let q be  e
u
-equivalent to the problem (1). The objective function of the pro- 

blem (1) is xy, whereas the objective function of q is f(x, y)   =  e
xy

. 

Both problems, due to  the Theorem 2  have the same set of minimizers  (and 

each such minimizer is a solution of the integer factorization problem, accor-

ding to the Theorem 1).  Note that if  N  is not a prime, minimum q =  e
N
.       

     However, no  U-equivalent conversion applied to the original problem (1) 

in order to get a quasiconvex objective function exists, since if a function    g  

is quasiconcave and a function U is increasing, then a function  f,  defined as  

f (x) = U(g(x))  is still quasiconcave. 

      We will use U-equivalence and results obtained in Section 2 at the end of  

Section 4.  

 

4. Convexification. Polynomial-time integer factorization. 

    Minimum Principle.  
 

     We are going now to reduce integer factorization to some convex  integer 

minimization problem.     

      Baes et al.  [2] have shown that minimizing an arbitrary nonnegative pro- 

per  convex function in two integer variables provided that the feasible set  is 

contained in a known finite box  [–B, B]
2
  can be done in time polynomial in  

log(B) as well as the corresponding oracle.  

 

Theorem 3(Theorem 2 in Baes et al. [2]).     Let f : R
2
 → R and gi  : R

2
 → R 

with i = 1, ... , m be convex functions.    Let B ∈ N and let x ∈ [–B, B]
2 
 such 

that  gi(x) ≤ 0 for all i = 1, ... , m.  Then, in a number of evaluations of  f  and 

g1, ... , gm  that is polynomial in log(B), one can either  

 

(a) find an x0 ∈ [–B, B]
2 
 ∩ Z

2
 with f(x0) ≤ f(x) and gi(x0) ≤ 0 for all i = 1, ... , 

m or 

(b) show that there is no such point. 
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     Let us construct a convex target function, so that if  N  is not a prime, any   

minimizer of the target function in the feasible set solves integer  factorizati- 

on problem.    

     Let g: R
2
 → R be analytic, convex and positive function(g > 0).   Let us 

construct a function:   g(x)(x1x2  –  N)/(x1x2  –  N + ε), x = (x1, x2) ∈ Ω,  ε ≥ 

0(see the definition of feasible region Ω in Section 1). 

     If ε = 0, this function is equal to g(x), x ∈ Ω at points x:  x1x2  –  N > 0. 

Let us define this function equal to g(x) at points x:  x1x2  –  N  = 0 (ε = 0) as 

well. Since function g is convex and analytic, there exists a vicinity: V(0, ε0) 

= {ε ∈ R: 0 < ε < ε0, ε0 ∈ R} of  ε = 0, where the above-constructed function 

preserves convexity on Ω due to the smoothness of the constructed function.  

    The corresponding vicinity  V(0, ε0)   can be determined using a necessary   

and sufficient condition of  convexity by determining when the  correspondi-        

ng Hessian matrix of the target function is positive semidefinite.     

    As a result, the following convex integer minimization problem solves the 

problem:                         

 

         minimize      g(x)(x1x2  –  N)/(x1x2  –  N  +  ε),  ε ∈ V(0, ε0), ε is fixed, 

 

          subject to      log(N)  –  log(x1x2)   ≤  0,                                              (2) 

 

                               2  ≤  x1  ≤   N – 1,      

 

                               2  ≤  x2  ≤   N – 1, 

 

                               x1 ∈ N,  x2 ∈ N,  N ∈ N, ε ∈ R, ε0 ∈ R. 

Note that the feasible sets of (1) and (2) are identical: it's Ω
I
. 

 

Theorem 4(Minimum Principle).  If  N is not a prime, any minimizer of (2)  

is a solution of integer factorization problem for  N and any solution of inte- 

ger factorization problem for N is a minimizer of  (2).   

 

Proof.    It follows from (2) and definition of g. If  N is not a prime, the targ- 

et function has a minimum value of 0 at integral points that satisfy x1x2  –  N 

= 0, since g(x) > 0, ε > 0 and x1x2  –  N ≥ 0  in the feasible set Ω
I
.    

 

     Problem (2) completely satisfies Baes et al. [2] and therefore (2) and inte-   

ger factorization problem can be solved in time polynomial in log(N).         

     Finally, we obtain the following algorithm. 
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  Algorithm 2(Integer Factorization Algorithm). 

  Input:      A positive integer number N,  

                   positive convex function g, ε > 0, ε ∈ V(0, ε0).                                     

  Output:   A nontrivial divisor of N(if it exists).                  

                     Solve the problem (2) using algorithms [2]:  

                     Based on the input data compute  

                     a minimizer  ( x 1 min,  x 2  min )  

                     of the problem (2).  

                     if (x 1 min x 2 min   =   N) 

                     then 

                          Return  a nontrivial divisor x 1 min of  N 

                     else         

                          Return  “N is a prime”              
                                      

    So, Algorithm 2 runs in time polynomial in log(N).                                                                  

    Thus, factoring is in FP(the class FP is the set of function problems which 

can be solved by a deterministic Turing machine in polynomial time(see e.g. 

Cormen et al. [3]). 

 

Theorem 5.   Integer factorization is in FP. 

 

   Algorithm 2 can be modified to serve the decision problem version as well 

- given an integer N and an integer q with 1 ≤   q   ≤  N, does N have a factor 

d with 1 < d < q? 

   Let   Ωq  := { x ∈ R
2
,  x = (x1, x2)  |    log(x1x2) ≥  log(N),     2  ≤  x1  ≤   N 

– 1, 2  ≤  x2  ≤   q – 1,  x1 ∈ R,  x2 ∈ R } for a given q, 1 ≤   q   ≤  N, N ∈ N. 

   Let  Ωq
I    

=   Ωq  ∩ Z
2

 . 

   Let us replace (2) by the problem over the feasible set  Ωq
I   

and
   

denote the 

modified minimization problem (corresponding to the problem (2)) 
 
as  (3). 

  

  Algorithm 3(Integer Factorization Algorithm). 

  Input:       Positive integer numbers N,  q < N,  

                    positive convex function g, ε > 0, ε ∈ V(0, ε0).                                 

  Output:    Existence of a factor d with 1 <  d  <  q.                

Solve the problem (3) using algorithms [2]:  

                     Based on the input data compute  

                     a minimizer  ( x 1 min,  x 2  min )  

                     of the problem (3) 
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                     if (x 1 min x 2 min   =   N) 

                     then 

                          Return  “The corresponding factor exists”    

                     else         

                          Return  “The corresponding factor does not exist”    
                         

   Hence, Algorithm 3 runs in time polynomial in log(N) as well.                          

   Thus, factoring is in P. The class  P  is the class of sets accepted by a deter- 

ministic polynomial-time Turing machines (see, e.g., Cormen et al. [3]). 

 

Theorem 6.   Integer factorization is in P. 

 

    Note that algorithms 2-3 can be considered as polynomial-time   primality 

tests and the only provably polynomial-time primality test was developed by 

Agrawal et al. [1].    

    The above-obtained results lead to solution of the famous P  vs.  NP prob- 

lem.  So we do not solve it directly, we solve it using reductions of factoring   

to the integer minimization and maximization problems and using U-equiva-   

lence. 

    Recall that (see, e.g., Hemmecke et al. [5], Section 1, Theorem 2) the min-  

imization problem of a degree-4 polynomial over the integer points of a con- 

vex polygon is NP-hard. 

    The following U-equivalent problem(see Section 3, Corollary 1) to the or-  

iginal problem (1) is NP-hard for all  n  ≥  n0  > 2(otherwise, for all n  >  2, it 

is not NP-hard, which cannot be true for unbounded n ∈ N): 

 

            minimize        (x1x2)
n 

 

                subject to       x1x2  ≥   N,                                                                 (4)                                     

 

                                   2  ≤  x1  ≤   N – 1,      

 

                                   2  ≤  x2  ≤   N – 1, 

 

                                   x1 ∈ N,  x2 ∈ N,  N ∈ N,  n  ∈ N. 

 

    We developed polynomial-time Algorithms 2-3 in order to find minimize-    

rs of (1) (due to Theorems 1 and 4), associated with NP-hard problem (4), 
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which is u
n
- equivalent(and, therefore, has the same set of minimizers) to the 

problem (1). It is well known that if there is a polynomial-time algorithm for 

any NP-hard problem, then, there are polynomial-time algorithms for all pr- 

oblems in NP, and hence, we would conclude that P is equal to NP.                                                                                                        
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