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Abstract 

This paper introduces a new approach to relativity; a non-equivalent alternative, 

explains the same phenomena discussed by Special and General Relativity. This approach is 

based on the famous mass energy equation as the main postulate as well as the relativity 

principle and a new theoretical intuitive definition for Kinetic Energy. Then, by using pure 

mathematical methods, it explains clearly the phenomenon of the fixed speed of light in 

different inertial frames of reference, as well as those of non-accelerated light when 

moving toward, or away from a mass, the bending of light near masses and the additional 

perihelion advance in astronomic objects' orbits. Results do not match perfectly those 

predicted by General or Special Relativity. However, the known experiments results do not 

agree with the classical relativity theories more than they do with this study. 

 

1 Introduction 

The famous equation 𝐸 = 𝑚𝑐2 is very simple and general. E is the energy of some physical system, m is 

its mass, and c2 is the constant squared speed of light. This equation states that the quantity of material 

(mass) is equivalent to the quantity of life (energy). In fact, we can apply similar equations to a very wide 

range of subjects, for instance in economics, where the value of a company (financial mass) depends 

completely on its actual and predicted profits (financial life or energy). Therefore, this is really a 

philosophical principle, not just a physical one. 

Searching for references for a philosophical essay, I expected to find many articles showing how all 

aspects of relativity can be concluded directly or indirectly from this basic equation. It turned out that this is 

not an easy or common subject, and it requires a reconsideration of the whole theories of relativity. 

Firstly, we are going to review some general physical definitions, in later sections we are going to see how 

these definitions result in physical laws unification and simplification, and we will get their indirect 

mathematical applications. 
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2 Mass and Energy 

2.1 The Mass-Energy Equation 

Let us look to this equation 𝐸 = 𝑚𝑐2. c2 here is just a constant value that depends completely on the 

physical unit system. Why is it equal to the squared speed of light? This is simply because the unit of energy 

was considered for a very long time proportional to the squared unit of speed. We can eliminate this value 

from the equation by choosing a suitable unit system obtainable by dividing the unit of energy by the 

squared speed of light and dividing the unit of speed by the speed of light. Then, the speed of light becomes 

1. In this paper, unless otherwise stated, a unit system is used where speed of light is 1. 

I do not think mass is an ambiguous thing at all, rather, it is the easily measurable quantity of material 

e.g. by using balances. On the contrary, energy is not an obvious term and no tool to measure it directly is 

available. 

2.2 The Definition of Energy 

If we accept that energy is life (as we may assume here), we can say that energy is proportional to speed, 

since speed is proportional to life, i.e. a static thing is not alive, and when its movement increases (speed), 

we say it gains more life. 

If two cars move in one direction, then the system of the two cars has more life than another system, 

consisting of just one car. Therefore, life is proportional also to the amount of material i.e. mass.   

Thus, we can give this definition for energy: 

𝐸 = 𝑚|𝑣| 

Where m is the mass of a moving object, v its speed and E the energy resulting from object's movement. I 

write velocity here as an absolute scalar value (speed), not a vector, because energy and mass are both 

scalar and the amount of life is not related to the direction of movement. 

We will call this energy, which is related to speed and mass, Kinetic Energy, giving it the symbol Ek. This 

looks like a new definition, which differs from the commonly known one  𝐸𝑘 = ½𝑚𝑣2, to be discussed more 

deeply later. 

As is well known, no object can be considered truly solid, since every material object consists of 

numerous minute molecules, atoms, and particles that are always in motion. Thus, every material object is, 

in fact, alive in a sense, and has life we may call Internal Energy, giving it the symbol EI. Hence, the total 

energy of a system can be calculated as follows: 

𝐸 = 𝐸𝑘 + 𝐸𝐼 = 𝑚|𝑣| + 𝐸𝐼 

This is a definition, a new one, not a law. 
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2.3 Mass-Speed Relation Equation 

Since energy is just another facet of mass, we can define mI as the internal mass of object (not to be 

confused with inertial mass) which equals EI, therefore: 

𝐸 = 𝑚|𝑣| + 𝑚𝐼 

In addition, by applying the mass–energy equivalence equation another time but on E, we get: 

𝑚 = 𝑚|𝑣| + 𝑚𝐼 

The equation above may be called mass-speed relation equation. 

According to Special Relativity, the equation called energy-momentum relation is: 

𝐸2 = 𝑝2 + 𝑚2 

Where E is the total energy of the system, p is the momentum of a moving body and m is the rest mass 

(Okuň, 2009). 

The Relativistic Mass, the mass of the moving body, which is not widely used and accepted (Okuň), equals 

the total energy of the system (when the speed of light is 1), and momentum is the product of mass and 

velocity. Therefore, the energy-momentum relation equation can be expressed as follows: 

𝑚2 = 𝑚2𝑣2 + 𝑚𝐼
2 

Thus, the only difference between the latter equation and the former is that all the parts of the latter are 

squared, as Einstein and other Relativity theorists used the common kinetic energy definition 𝐸𝑘 = ½𝑚𝑣2, 

considering it a good approximation, when speed is much slower than the speed of light (Okuň), which can 

be explained as follows: 

𝑚 = 𝐸 = 𝐸𝑘 + 𝐸𝐼 = ½𝑚𝐼𝑣
2 + 𝑚𝐼 = 𝑚𝐼(1 + ½𝑣2) 

1 + 1

2
𝑣2 ≈

1

√1−𝑣2
 𝑤ℎ𝑒𝑛 |𝑣| ≪ 1. Therefore, it follows that: 

𝑚 =
𝑚𝐼

√1 − 𝑣2  
⇒ 

𝑚2 = 𝑚2𝑣2 + 𝑚𝐼
2

 
⇒ 

𝐸2 = 𝑝2 + 𝑚𝐼
2 

 

In that case, the total energy formula 𝐸 = 𝐸𝑘 + 𝐸𝐼 applies if we define the kinetic energy as  𝐸𝑘 =
𝑚𝐼

√1−𝑣2
− 𝑚𝐼 , an unreasonably complicated definition. 

2.4 The Kinetic Energy Common Definition 

A question arises here about the origin and justification of the formula 𝐸𝑘 = ½𝑚𝑣2, knowing it was not 

used by Newton at all, and remarkably, the French philosopher Descartes believed that Vis Viva or Living 

Force -the old term for kinetic energy- is as we assume here:  𝑚|𝑣| (Ilits, 1971). 
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Three reasons historically have suggested the use of the formula 𝐸𝑘 =  ½ 𝑚𝑣2, an experiment devised by 

Willem Gravesande, Laws of elastic collision, and the kinetic–Potential Energy equation for an object 

affected by a gravitational field. 

Firstly, Willem Gravesande devised an experiment based on dropping weights from different heights into 

a block of clay. Gravesande determined that their penetration depth was proportional to the square of their 

impact speed. Émilie du Châtelet recognized the implications of the experiment and published an 

explanation saying this is evidence that Vis Viva is proportional to the square of speed (American Physical 

Society). However, why is the penetration considered proportional to Vis Viva or kinetic energy in the first 

place? This consideration is unjustified. 

Secondly, it is found that, in order to explain the results of an elastic collision, we need both the 

conservation of the momentum principle, as well as the conservation of the kinetic energy principle. 

Suppose we have two objects, a and b, moving toward each other on a shared straight line, having 

velocities 𝑣1⃗⃗⃗⃗  and 𝑣2⃗⃗⃗⃗  before collision, velocities 𝑣3⃗⃗⃗⃗  and 𝑣4⃗⃗  ⃗ after collision, and masses ma and mb respectively. 

Then the conservation of momentum can be expressed as follows: 

𝑚𝑎𝑣1 + 𝑚𝑏𝑣2 = 𝑚𝑎𝑣3 + 𝑚𝑏𝑣4 

While the conservation of kinetic energy can be expressed as: 

1

2
𝑚𝑎𝑣1

2 +
1

2
𝑚𝑏𝑣2

2 =
1

2
𝑚𝑎𝑣3

2 +
1

2
𝑚𝑏𝑣4

2 

Effectively, collision does not occur instantly since an infinite repulsion force would be needed; rather, it 

takes some time. If we take the center of the mass of the system as a reference frame center, then during 

the collision period there is a moment when both objects are practically static. Here, the question arises: 

How can kinetic energy be conserved when objects are moving at one moment and stationary at another? It 

cannot. Anyway, a way to express the conservation of energy is needed, as will be shown later. 

Assuming the collision complies with Newton's laws of movement, as if there is a repulsion force causing 

the two objects to change their directions (which is in fact caused by repulsion forces of objects' atoms' 

electrons), then the difference in their velocities after collision is opposite to the difference before collision. 

On a straight line, as viewed by an observer on that same line, we have: 

𝑣4 − 𝑣3 = −(𝑣2 − 𝑣1)
 

⇒ 

𝑣4 + 𝑣2 = 𝑣3 + 𝑣1    (1) 

In addition, on a straight line the conservation of momentum would become: 

𝑚𝑎𝑣1 + 𝑚𝑏𝑣2 = 𝑚𝑎𝑣3 + 𝑚𝑏𝑣4
 
⇒ 

𝑚𝑏(𝑣2 − 𝑣4) = −𝑚𝑎(𝑣1 − 𝑣3)    (2) 

By multiplying (1) and (2) we get: 

𝑚𝑏(𝑣2
2 − 𝑣4

2) = −𝑚𝑎(𝑣1
2 − 𝑣3

2)
 

⇔ 

𝑚𝑎𝑣1
2 + 𝑚𝑏𝑣2

2 = 𝑚𝑎𝑣3
2 + 𝑚𝑏𝑣4

2

 
⇔ 

1

2
𝑚𝑎𝑣1

2 +
1

2
𝑚𝑏𝑣2

2 =
1

2
𝑚𝑎𝑣3

2 +
1

2
𝑚𝑏𝑣4

2 
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Therefore, the so-called conservation of kinetic energy in elastic collision is just a pure mathematical 

result, which is right only before the collision moment or after it. 

Thirdly, the famous Vis Viva equation expresses the relation between kinetic energy and the so-called 

potential energy, where kinetic energy is assumed to be 𝐸𝑘 = ½𝑚𝑣2: 

1

2
𝑚𝑣2 −

𝐺𝑚µ

𝑟
= 𝑘𝑚 

Where m is the mass of an object orbiting another, v is its velocity, relative to the other object, µ the sum 

of the two objects, G the gravitational constant, k is constant, 1
2
𝑚𝑣2 the orbiting object's kinetic energy, and 

−
𝐺𝑚µ

𝑟
 its potential energy. 

What is the potential energy? The mass–energy equation implies that any energy has a mass, which 

raises the question, where is the mass of this potential energy? It is non-existent. 

This formula is just a mathematical result from Newton's laws of gravitation, an artificial way to say that 

the conservation of energy principle is correct, even when an object is accelerated, owing to a gravitational 

force. 

Furthermore, certain formulas and terms can be used to justify the common kinetic energy formula e.g. 

mechanical work. These are just definitions. 

Hence, the expression 𝐸𝑘 = ½ 𝑚𝑣2 does not have a solid basis and is replaceable with the more 

intuitively recognizable: 𝐸𝑘 = 𝑚|𝑣| . 

One may be skeptical about replacing one term with another without experiments. However, the concept 

of energy is theoretical, rather than concrete, as distance or mass. In the International System of Units, 

where the speed of light does not equal 1, the new kinetic energy formula would be 𝐸𝑘 = 𝑚𝑐|𝑣|, which, 

most of the time, is enormously greater than ½𝑚𝑣2, knowing the correctness of a theoretical quantity 

depends on the simplification of physical laws, as long as its indirect applications are consistent with 

experiments results. 

2.5 The True Meaning of the Mass-Speed Relation Equation 

The Special Relativity equation   𝑚2 = 𝑚2𝑣2 + 𝑚0
2 , has always been interpreted based on the 

understanding that the mass of a system (relativistic mass) increases with the speed of the moving object, 

while its internal mass remains constant. 

Here, using the new mass-speed equation, I will assume the opposite. The total mass (and energy) of the 

system remains constant and irrelevant to the speed of the object, while its internal mass decreases: 

𝑚 =  𝑚|𝑣| + 𝑚𝐼
 
⇒ 

𝑚𝐼 = (1 − |𝑣|)𝑚 

𝑊ℎ𝑒𝑛 𝑣 = 1 (𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡)
 

⇒ 

𝑚𝐼 = 0 
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This explains m, the constant mass of the system. I note that possible ambiguity and misconception of 

relativistic mass caused this term not to be used widely in Special Relativity. 

Moreover, this assumption complies with the conservation of energy principle, as it produces a new 

formula, stating that both mass and energy are conserved, if no [energy and mass] have been exchanged 

with outer systems. This is a very general and universal conservation of energy. However, what is called 

conservation of energy in thermodynamics and mechanics can be considered as a result of elastic collision 

laws. 

It is noteworthy that this assumption can be tested directly, since Special Relativity predicts that a system 

weighs more, when heated. On the contrary, we assume that no change in a system's mass will occur unless 

mass has been exchanged between systems. Has any such experiment taken place? I have not heard of such 

an experiment. 

That said, this equation tells us that a particle having a null internal mass and non-null total mass (and 

energy) moves always with the speed of light i.e. the photon. 

 

3 Relativistic Velocity 

3.1 Relativistic Speed Addition Formula 

Let us, now, look at a system of three objects, a, b, and c, having the total mass ma, mb and mc 

respectively. b is moving with velocity 𝑣  away from a, while c is moving with velocity 𝑢⃗  away from b on the 

same line and direction of 𝑣 . 𝑤⃗⃗  is the velocity of c relative to a. 

The kinetic energy of c for a, is the kinetic energy as a result of its movement relative to a, which 

equals  𝑚𝑐|𝑤|. However, if we consider b and c as one system moving relative to a with velocity 𝑣 , then, the 

kinetic energy of c for a is the sum of its kinetic energy as a result of the movement of the system bc relative 

to a, and c's kinetic energy as a result of its movement relative to b for a.  

c's kinetic energy as a result of  the movement of the system bc for a is 𝑚𝑐|𝑣|. c's kinetic energy as a 

result of  c's movement relative to b for a is 𝑚𝑐|𝑢|(1 − |𝑣|). Because the kinetic energy of c as a result of its 

movement for b which equals: 𝑚𝑐|𝑢|, is internal in the system bc for a, then it is considerable as an internal 

mass and then must be multiplied by the factor (1 − |𝑣|) to get its value for an observer staying at a. 

It follows that: 

𝑚𝑐|𝑤| = 𝑚𝑐|𝑣| + 𝑚𝑐|𝑢|(1 − |𝑣|)
 
⇒ 

|𝑤| = |𝑣| + |𝑢|(1 − |𝑣|)
 
⇒ 

|𝑤| = |𝑣| + |𝑢| − |𝑣|. |𝑢| 

This is the relativity formula of velocity addition regarding new assumptions, or the relativistic speed 

addition formula, for velocities on same line and direction.  

v u 

w 

a b c 
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It does not look quite new for mathematicians, since similar formulae can be found in the Probability 

Theory, Sets Theory and -interestingly- Musicology, where the same formula is used to add musical 

distances, as string fractions on a guitar's string. 

If |𝑢| = 1 then: 

|𝑤| = |𝑣| + 1 − |𝑣|. 1 = 1 

This explains why the speed of light is constant in different inertial frames of reference. 

If 𝑣  and 𝑢⃗  were perpendicular, then we cannot just add kinetic energies absolute values, instead, we must 

add them using the vector addition methods as we add vector velocities. Thus, in this case if we use 

Cartesian coordinates with the x-axis parallel and of direction of v and the y-axis parallel and of same 

direction of u, we get: 

 

𝑚𝑐|𝑤𝑥| = 𝑚𝑐|𝑣𝑥| + 𝑚𝑐|𝑢𝑥|(1 − |𝑣|)
 

⇒ 

|𝑤𝑥| = |𝑣| 

𝑚𝑐|𝑤𝑦| = 𝑚𝑐|𝑣𝑦| + 𝑚𝑐|𝑢𝑦|(1 − |𝑣|)
 

⇒ 

|𝑤𝑦| = |𝑢|(1 − |𝑣|) 

 
⇒ 𝑤⃗⃗ = 𝑣 + 𝑢⃗ (1 − |𝑣|)

 
⇒ 

𝑤2 = 𝑣2 + 𝑢2(1 − |𝑣|)2 

 

Note that in both vertical and horizontal equations we multiply the kinetic energy between b and c 

by (1 − |𝑣|), because we consider it as an internal mass in the system bc, a mass which is moving in speed 

|v| relative to a. 

When 𝑢⃗  and 𝑣  have opposite directions on same line, assuming |𝑣| > |𝑢|, then we cannot just add the 

kinetic energies as we did when velocities were on same direction, since the movement of c relative to b in 

fact decreases the kinetic energy of the system bc for a. It is rather hard to obtain the addition formula in 

this case directly; therefore, we will use an easy indirect method: 

 

 

v a b 

w u c 

v 

u 

w 

a b 

c 

x 

y 
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|𝑣| = |𝑤| + |𝑢| − |𝑤|. |𝑢|
 

⇒ 

|𝑣| = |𝑤|(1 − |𝑢|) + |𝑢|
 
⇒ 

|𝑤| =
|𝑣| − |𝑢|

1 − |𝑢|
= |𝑣| − |𝑢|

1 − |𝑣|

1 − |𝑢|
 

 

In all the three cases studied above, the amount of speed between b and c for a, if measured by an 

observer placed at a, is less than its amount if measured by an observer at b or c. In the first and second 

cases, it is multiplied by (1 − |𝑣|) (< 1), and in the third case, is multiplied by  
1−|𝑣|

1−|𝑢|
 (< 1). 

The speed of a satellite with a circular orbit can be exactly calculated upon its mass and distance from the 

Earth's center of mass and the mass of the Earth. In fact, any observer can calculate this very speed, since it 

depends completely on the gravitational acceleration and distance that have absolute, rather than relative 

values. Even an observer inside that satellite can calculate this velocity, which is tangential relative to the 

Earth's center of mass. 

Here arises the need to distinguish between two types of velocity, observed speed, and locally-known 

speed. Satellite observed speed for an observer sitting inside it, is null; however, its locally-known speed for 

that observer is its absolute tangential speed around the Earth. At any time, the locally-known speed can be 

considered null, but when acceleration occurs, then the locally-known speed shall be reconsidered and 

calculated. Of course, this does not require awareness, or a memorable knowledge by the observer himself, 

but rather by a physicist, studying the case. 

Therefore, a speed inside the satellite has the same value for an observer inside the satellite and an 

observer at the center of satellite’s circular orbit, thus satellite’s tangential speed may not result in 

relativistic speeds addition. 

  This conclusion, that knowing a condition by a physicist studying the case has impact on the result, 

reminds us with the two slits experiment, the fundamental experiment in the field of Quantum Mechanics. 

In this experiment when using electrons, if we can know through which slit an electron has passed, we know 

that its possible path does not include interference. 

3.2 Rapidity 

Rapidity, a term already in use in Special Relativity, denotes a virtual velocity that can be dealt with, in 

the same way as classical mechanics deals with velocity. That means rapidity inside a system does not 

decrease, due to system rapidity relative to an outer observer. Therefore, two rapidities can be added using 

traditional vectors addition method to get a third rapidity. 

Using polar (or spherical) coordinates centered at an observer's place, the relativistic radial speed 

addition formula, as we have already concluded is: 
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|𝑤| = |𝑣| + |𝑢| − |𝑣|. |𝑢|
 

⇔ 

(1 − |𝑤|) = (1 − |𝑣|)(1 − |𝑢|) 

A given multiplication operation can be easily converted into an addition operation by using the 

logarithm function; therefore: 

ln(1 − |𝑤|) = ln(1 − |𝑣|) + ln(1 − |𝑢|) 

Radial rapidity can then be defined as: 

𝑅𝑟 = ln(1 − |𝑣𝑟|) 

Where vr is the real observed relativistic radial speed, Rr is a virtual term can be dealt with in the same 

way as classical mechanics would deal with velocity i.e. Radial rapidities can be added together normally. 

Yet, in order to get a positive value, radial rapidity should be defined as: 

𝑅𝑟 = ln (
1

1 − |𝑣𝑟|
) 

That serves the same purpose. 

The vector formula will be: 

𝑅⃗ 𝑟 = ln (
1

1 − |𝑣𝑟|
) 𝑣𝑟 

Where 𝑣𝑟 is the unit vector on the same line and direction of 𝑣 𝑟. 

Noticeably, a similar method is being used in musicology. For example, when stopping a C string at 1:4 of 

its total length, then, playing the string produces the F note. Again, when stopping the string at 1:3 of the 

remaining length, playing the string produces the next C note. We have: 

1

4
+

1

3
(1 −

1

4
) =

1

4
+

1

3
−

1

4
×

1

3
=

1

2
 

Where 1:2 is the ratio of length that should be stopped on a C string in order to get the pitch of the next C 

note. 

The known interval ratio (ratio of frequencies) law is: 

𝑖𝑟 =
1

1 − |𝑠𝑟|
 

Where ir is the interval ratio and sr is the string ratio. For example, the string ratio between C and F is 1:4, 

and then the interval ratio between C and F is 4:3, meaning the sonic frequency of the note F equals 4:3 the 

sonic frequency of the note C. 

v u 

w 

a b c 
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Two interval ratios can be multiplied to get a third interval ratio: 

(
1

1 −
1

4

) × (
1

1 −
1

3

) = (
1

1 −
1

2

)
 

⇔ 

4

3
×

3

2
=

2

1
 

Where 4:3 is the interval ratio between C and F, 3:2 is the interval ratio between F and next C and 2:1 is 

the interval between C and the next C. 

However, in the daily practice of music, interval multiplication is not used; rather, interval addition is, 

since music intervals are calculated using logarithms to convert the difficult process of multiplication to 

addition: 

ln (
1

1 −
1

4

) + ln(
1

1 −
1

3

) = ln(
1

1 −
1

2

)
 

⇔ 

ln (
4

3
) + ln (

3

2
) = ln (

2

1
) 

Because an octave has 12 semitones, the above equation can be multiplied by 12/ln(2): 

ln (
4

3
) × 12/ln (2) + ln (

3

2
) × 12/ln (2) = ln (

2

1
) × 12/ln (2)

 
⇒ 

5 + 7 = 12 

Where 5 is the interval in semitones between C and F, 7 is the interval in semitones between F and the 

next C, and 12 is the interval in semitones between two consecutive Cs (one octave). 

Taking such time to explain musical intervals addition is very beneficial, since it helps us to understand 

the relativistic addition law of the radial speeds and distinguish multiplicative amounts from additive ones, 

mentioning that, the laws of musical interval addition, was one of the inspirations for this paper. 

Tangential speeds can be added in the traditional Euclidean way; however, a radial speed affects 

tangential speed in a relativistic way. For a velocity having two non-null components, radial and tangential, 

tangential rapidity can be obtained as: 

𝑣 𝑡 = 𝑅⃗ 𝑡(1 − |𝑣𝑟|)
 

⇒ 

𝑅⃗ 𝑡 =
𝑣 𝑡

(1 − |𝑣𝑟|)
 

Then: 

𝑅⃗ = 𝑅⃗ 𝑟 + 𝑅⃗ 𝑡
 
⇒ 

𝑅2 = 𝑅𝑟
2 + 𝑅𝑡

2 

= ln2 (
1

1 − |𝑣𝑟|
) +

𝑣𝑡
2

(1 − |𝑣𝑟|)
2
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Rapidity is a very important principle because it greatly facilitates working with velocities and it obviates 

the need for the space-time principle. Velocities are the real observed and measured values, which are not 

additive, although it looks so with not very high speeds, while rapidity is a theoretical principle, and is always 

additive. 

3.3 Time Dilation 

All speeds inside a moving system with relativistic speed, decrease for a relatively stationary observer. 

Since no theoretical principle requires or causes change in distance, the decrease in the speed indicates a 

corresponding decrease in time interval, making it appears as though there is time dilation inside a moving 

system with a relativistic speed. This does not mean that the time itself changes, but simply everything slows 

down, and every process then takes more time. 

Special Relativity predicts both a decrease in distance (length contraction) and in time dilation. However, 

a relativistic distance change has never been proven by experiments, while time dilation has. The extent of 

time dilation predicted by Special Relativity does not equal the extent predicted here; therefore, a dedicated 

experiment can compare Special Relativity with this time dilation reinterpretation.   

3.4 The Twin Paradox 

Whenever time dilation is discussed, the Twin Paradox appears, a thought experiment involving identical 

twins, one of them makes the high-speed journey into space in a high-speed and returns home, while the 

other one stays on the -assumed stationary- Earth. Because each twin sees the other twin as traveling, it can 

be falsely predicted that each of them would find that the other has aged more slowly. 

Although the solution to this paradox is known, it is not well explained in most references. 

Before traveling, both twins must be stationary, relative to Earth, in order to realign their watches to 

match. Remembering that the watches speeds should be matched in addition to their times. 

Then, twin A stays on Earth, while twin B travels at a speed |v| away from it. Evidently, acceleration is 

needed to launch B's spaceship; therefore, twin B cannot claim that his post-launching speed is null, since 

the velocity increases due to acceleration and his locally-known speed does not equal zero. A similar 

situation takes a place when twin B needs to return to Earth, and since he would experience acceleration 

again, the returning locally-known speed would be the same speed observed by twin A. This means the 

traveling twin B ages slower, and his watch delays; something both twins would realize. 

Tangential speed (circulation) has same impact, since it is absolute and can be known upon acceleration. 

Therefore, a twin orbiting another will age slower. 

 

4 Relativistic gravitation 

4.1 Newton's Universal Law of Gravitation 

Suppose an object b attracts an object a by its gravitational mass, and b's mass is very much bigger than 

a's that we can ignore a's mass effect on b. r is the variable distance between a and b, ar the acceleration of 



12 
 

a, and G the gravitational constant. Then, Newton's universal law of gravitation in polar coordinates 

centered at b is given as follows: 

𝑎𝑟 = −𝐺
𝑚

𝑟2
 

Note that, when expressing the universal law of gravitation using acceleration, without the use of the 

Newtonian Force principle, the mass of the attracted object does not count at all; thus, we do not care 

whether it equals zero, or infinity, or even negative. It would be a very common misconception to assume 

that the mass of the attracted object has some effect on its own acceleration and speed. 

Why is acceleration inversely proportional to the squared distance (𝑎𝑟 ∝
1

𝑟2 )? The simplest explanation is 

acceleration is inversely proportional to the surface area of a sphere with radius r, since a sphere surface 

area is proportional to its squared radius. 

The law of sphere surface area is given as: 

𝐴(𝑟) = 4𝜋𝑟2 

And the Universal Law of Gravitation can be expressed as: 

𝑎𝑟 = −4𝜋𝐺
𝑚

4𝜋𝑟2
 

Then: 

𝑎𝑟 = −4𝜋𝐺
𝑚

𝐴
 

Defining 𝑔 = 4𝜋𝐺, we get: 

𝑎𝑟 = −𝑔
𝑚

𝐴
 

Therefore, acceleration does not decrease in respect to radial distance. Rather, it distributes over the 

sphere's surface. 

4.2 Relativistic Universal Law of Gravitation 

The formula of acceleration in polar coordinates can be obtained as follows: 

𝑥 = 𝑟 𝑐𝑜𝑠(𝜃)
 
⇒ 

𝑥̇ = 𝑟̇ 𝑐𝑜𝑠(𝜃) − 𝑟 𝜃̇ 𝑠𝑖𝑛(𝜃)
 
⇒ 

𝑥̈ = 𝑟̈ 𝑐𝑜𝑠(𝜃) − 𝑟̇ 𝜃 ̇ 𝑠𝑖𝑛(𝜃) − 𝑟̇ 𝜃̇𝑠𝑖𝑛(𝜃) − 𝑟𝜃̈ 𝑠𝑖𝑛(𝜃) − 𝑟𝜃̇2 𝑐𝑜𝑠(𝜃)
 
⇒ 

𝑥̈ = (𝑟̈ − 𝑟𝜃̇2) 𝑐𝑜𝑠(𝜃) − (2𝑟̇𝜃̇ + 𝑟𝜃̈) 𝑠𝑖𝑛(𝜃) 

Where the dot represents the first-order derivative in respect to time and the two dots represent the 

second-order derivative in respect to time. 

When 𝜃 = 0, 𝑥̈ represents radial acceleration ar, and when 𝜃 = 𝜋

2
 , −𝑥̈ represents tangential acceleration 

at. Therefore: 
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𝑎𝑟 = 𝑟̈ − 𝑟𝜃̇2 

𝑎𝑡 = 2𝑟̇𝜃̇ + 𝑟𝜃̈ 

Acceleration is defined as the rate at which velocity changes with time, however, mathematically this 

change is commonly calculated by subtracting the old velocity from the new. The change of an additive 

physical quantity may be calculated by subtraction, while non-additive ones may not. 

As we have discovered, relativistic velocities are not additive i.e. two velocities may not be added to get a 

third velocity. On the contrary, rapidity is additive, and adding two rapidities may produce a third rapidity. 

Then, the corresponding relativistic velocities are added relativistically. 

As regards the radial acceleration law concluded above, 𝑟̈ is replaceable by the first order derivative of 

radial rapidity in respect to time. In addition, the term (𝑟𝜃̇2) equals (𝑣𝑡𝜃̇) and the tangential velocity is 

replaceable by the tangential rapidity. Hence: 

𝑎𝑟 = 𝑅̇𝑟 − 𝑅𝑡𝜃̇ 

=
𝑑 (ln (

1

1−|𝑟̇|
))

𝑑𝑡
−

𝑣𝑡

1 − |𝑟̇|
𝜃̇ 

=
𝑟̈

1 − |𝑟̇|
−

𝑟𝜃̇2

1 − |𝑟̇|
 

Note here that 𝑅𝑟
⃗⃗ ⃗⃗  has the same direction of 𝑣𝑟⃗⃗  ⃗; therefore, 𝑅𝑟 equals (ln (

1

1−|𝑟̇|
)) when 𝑟̇ has positive 

value and equals (− ln (
1

1−|𝑟̇|
)) when 𝑟̇ has negative value; therefore, the function 𝑅𝑟 is continuous and can 

be derived on the range ]−1,1[, and 𝑅̇ has the same sign of 𝑟̈. 

Then the relativistic universal law of gravity is 

𝑟̈

1 − |𝑟̇|
−

𝑟𝜃̇2

1 − |𝑟̇|
= −𝐺

𝑚

𝑟2
 

This formula applies for an observer placed at the center of gravitation. 

For an observer placed at attracted object, let us firstly consider the case where 𝑟̇ is initially null. In this 

case, any gained radial speed, due to acceleration, is noticeable by the observer as a locally-known speed, 

and the same equation above applies. 

Secondly, when 𝑟̇ has a value other than zero, assuming, for simplicity sake, that 𝑟̇ does not change 

immediately after that, the relativistic universal law of gravitation for an observer on the attracted becomes: 

𝑟̈ − 𝑟𝜃̇2 = −𝐺
𝑚(1 − |𝑟̇|)

𝑟2
= −𝐺

𝑚𝐼

𝑟2
 

Assuming that the gravitational mass is the internal mass that decreases upon speed of moving, toward 

or away from attracted object. Apparently, the equation above is the very same previous one, albeit written 

alternatively. Thus, the moment from which we start studying the case onward, or the location and speed of 

the observer, do not have any bearing on the result, and both gravitation and acceleration are affected by 

radial speed in the same way, which means that all equivalence principles are right. This important result is 
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not obtainable when using another definition for rapidity; this confirms the new definition of kinetic energy 

introduced in this paper, which is the basis of the definition of rapidity. 

It is noteworthy that the equation above complies very well with what we know well about the behavior 

of light near huge masses. For instance, a given mass does not cause a photon to accelerate, when moving 

toward, or away from it since the gravitational mass becomes zero, for the photon, that is why the speed of 

light is limited. Moreover, when |𝑟̇| ≪ 1, the equation becomes very much alike the Newtonian equation, 

which implies that when the photon's velocity is not purely radial relative to mass, its path shall curve. 

In the context of General Relativity, Einstein introduced the concept of curvature of space-time, which 

has been considered widely as an explanation of gravity. A theoretical explanation needs to be simpler, more 

intuitive, or more general (i.e. more than one other phenomenon, or physical law can be concluded from it) 

than the explained phenomenon, but none of these conditions apply, if we try to consider the curvature of 

space-time, as an explanation of gravity. It is not simpler, does not explain more than one phenomenon, nor 

is it more intuitive, since if you ask yourself how mass causes the curvature of space-time, the first thing that 

hits you is that there is some kind of force that forces space-time to curve. 

Furthermore, the main postulate in Einstein's theories is that any speed, including the speed of gravity, 

may not exceed the speed of light. On the contrary, here, the constant speed of light is just a result that only 

applies to objects in motion, thus, gravity needs not to travel in the speed of light i.e. its effect can be 

instantaneous. 

 

5 Orbits 

5.1 The Relativistic Orbits Equation 

Next, we will use a geometric unit system, where G = 1. 

As we assume here, the gravitational acceleration in polar coordinates centered at center of gravity, is 

purely radial, meaning the tangential acceleration is null: 

𝑎𝑡 = 2𝑟̇𝜃̇ + 𝑟𝜃̈ = 0
 
⇒ 

2𝑟𝑟̇𝜃̇ + 𝑟2𝜃̈ = 0 ⇒ 

d(𝑟2𝜃)̇

d𝑡
= 0 

Therefore, the quantity ℎ = 𝑟2𝜃̇ is constant in respect to time. 

Let 𝑢 =
1

𝑟  
⇒ 

1

𝑢2
=

ℎ

𝜃̇
    (1) 

𝑟̇ =
𝑑 (

1

𝑢
)

𝑑𝑡
= −

𝑢̇

𝑢2
= −ℎ

𝑢̇

𝜃̇
= −ℎ

𝑑𝑢

𝑑𝑡
.
𝑑𝑡

𝑑𝜃
= −ℎ

𝑑𝑢

𝑑𝜃
    (2) 
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⇒ 𝑟̈ = −ℎ

𝑑 (
𝑑𝑢

𝑑𝜃
)

𝑑𝑡
= −ℎ

𝑑 (
𝑑𝑢

𝑑𝜃
)

𝑑𝜃
.
𝑑𝜃

𝑑𝑡
= −ℎ

𝑑2𝑢

𝑑𝜃2
. 𝜃̇ 

By substituting (1), it follows that: 

𝑟̈ = −ℎ2𝑢2
𝑑2𝑢

𝑑𝜃2
    (3) 

As we conclude here, the relativistic universal law of gravitation can be written in a similar formula as the 

Newtonian equation, considering the attractive mass is the variable internal mass: 

𝑟̈ − 𝑟𝜃̇2 = −
𝑚(1 − |𝑟̇|)

𝑟2
= −

𝑚𝐼

𝑟2
 

Still, we will apply Newtonian formula firstly by considering mI constant, giving it the symbol m, because 

this would help analyze the new equations by comparing them to the well-understood and analyzed ones: 

𝑟̈ − 𝑟𝜃̇2 = −
𝑚

𝑟2
    (4) 

By substituting (2) and (3) in (4) and using 
1

𝑢
 instead of r, we get: 

−ℎ2𝑢2
𝑑2𝑢

𝑑𝜃2
−

(ℎ𝑢2)2

𝑢
= −𝑚𝑢2 

By dividing by  −𝑢2ℎ2 we get: 

𝑑2𝑢

𝑑𝜃2
+ 𝑢 =

𝑚

ℎ2
 

This is a second-order linear ordinary differential equation, whose known solution is: 

𝑢 = 𝑐1 𝑐𝑜𝑠(𝜃) +
𝑚

ℎ2
 

 

Making 𝐿 =
𝑚

ℎ2 we get: 

𝑢 = (𝑢0 − 𝐿) 𝑐𝑜𝑠(𝜃) + 𝐿 

Reverting to use r, we get: 

𝑟 =

1

𝐿

(
1

𝐿𝑟0
− 1) 𝑐𝑜𝑠(𝜃) + 1

 

This is the equation of a conic section, which is an ellipse, hyperbola, or parabola, based on the value of 

the eccentricity parameter 𝜀 = (
1

𝐿𝑟0
− 1) = (

ℎ2

𝑚𝑟0
− 1) , producing those forms, when the eccentricity is less 

than, greater than or equal to 1, respectively. 

Now, considering that mI is in fact variable: 
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𝑟̈ − 𝑟𝜃̇2 = −
𝑚(1 − |𝑟̇|)

𝑟2
    (5) 

When using the absolute value of 𝑟̇, we have two different cases: 

1- 𝑟̇ > 0
 
⇒ 𝑚𝐼 = 𝑚(1 − 𝑟̇)

 
⇒ 𝑟̈ − 𝑟𝜃̇2 = −

𝑚(1−𝑟̇)

𝑟2  

2- 𝑟̇ < 0
 
⇒ 𝑚𝐼 = 𝑚(1 + 𝑟̇)

 
⇒ 𝑟̈ − 𝑟𝜃̇2 = −

𝑚(1+𝑟̇)

𝑟2  

By substituting (2) and (3) and using 
1

𝑢
 instead of r in the first case, the differential equation becomes: 

𝑑2𝑢

𝑑𝜃2
+ 𝑢 =

𝑚 (1 + ℎ
𝑑𝑢

𝑑𝜃
)

ℎ2  
⇒ 

𝑑2𝑢

𝑑𝜃2
+ 𝑢 =

𝑚

ℎ2
+

𝑚

ℎ
.
𝑑𝑢

𝑑𝜃
 

It is also a second-order linear ordinary differential equation. Bu using a software application, I get a 

solution: 

𝑢 = 𝑐1𝑒
1
2
(
𝑚
ℎ

−√(
𝑚
ℎ

)
2
−4)𝜃

+ 𝑐2𝑒
1
2
(
𝑚
ℎ

+√(
𝑚
ℎ

)
2
−4)𝜃

+
𝑚

ℎ2
 

Let 𝐿 =
𝑚

ℎ2
, 𝐿2 =

𝑚

2ℎ
 then: 

𝑢 = 𝑒𝐿2𝜃 [𝑐1𝑒
−√𝐿2

2−1 𝜃
+ 𝑐2𝑒

√𝐿2
2−1 𝜃

] + 𝐿 

For the majority of orbiting objects, 𝑚 ≪ ℎ, hence, 𝐿2
2 ≪  1, then: 

𝑢 = 𝑒𝐿2𝜃 [𝑐1𝑒
−𝑖√1−𝐿2

2 𝜃
+ 𝑐2𝑒

𝑖√1−𝐿2
2 𝜃

] + 𝐿 

 

It follows that u is a real value, only when c1 = c2. Defining c3 = 2c1 = 2c2, we get: 

𝑢 = 𝑐3𝑒
𝐿2𝜃 [

𝑒
−𝑖√1−𝐿2

2 𝜃
+ 𝑒

𝑖√1−𝐿2
2 𝜃

2
] + 𝐿

 
⇒ 

𝑢 = 𝑐3𝑒
𝐿2𝜃 𝑐𝑜𝑠 (√1 − 𝐿2

2 𝜃) + 𝐿
 

⇒ 

𝑢 = (𝑢0 − 𝐿)𝑒𝐿2𝜃 𝑐𝑜𝑠 (√1 − 𝐿2
2 𝜃) + 𝐿 

If 𝑚 >  2ℎ
 

⇔𝐿2 > 1, then the term inside the cosine function becomes (√𝐿2
2 − 1 𝜃). 
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Where 𝑟̇ < 0 in the second case, only the sign of L2 changes, then, the equation of orbital movement 

becomes: 

𝑢 = (𝑢0 − 𝐿)𝑒−𝐿2𝜃 𝑐𝑜𝑠 (√1 − 𝐿2
2 𝜃) + 𝐿 

Reverting to the use of r, instead of 𝑢 =
1

𝑟
 , we get the following two equations: 

𝑟̇ > 0
 
⇒ 

𝑟1 =

1

𝐿

(
1

𝐿𝑟0
− 1) 𝑒𝐿2𝜃 𝑐𝑜𝑠 (√1 − 𝐿2

2 𝜃) + 1
 

𝑟̇ < 0
 
⇒ 

𝑟2 =

1

𝐿

(
1

𝐿𝑟0
− 1) 𝑒−𝐿2𝜃 𝑐𝑜𝑠 (√1 − 𝐿2

2 𝜃) + 1
 

 

These equations are not very different from that of the orbits from the Newtonian universal law of 

gravity. In fact, only two differences appear: 

1- The angle 𝜃 inside the cosine function is multiplied by the factor √1 − 𝐿2
2, meaning the period of 

the cosine amount does not equal 2𝜋, but rather,  
2𝜋

√1−𝐿2
2
; therefore, in the case of a barely elliptical 

orbit, the orbit rotates in every cycle by a very small degree in the same angular direction of orbiting. 

2- When 𝑟̇ > 0 , and the orbiting object is moving away from the center of gravity, eccentricity 

(
1

𝐿𝑟0
− 1) is multiplied by 𝑒𝐿2𝜃; and when 𝑟̇ < 0, and the orbiting object is moving toward the center 

of gravity, eccentricity is multiplied by 𝑒−𝐿2𝜃. This means that the eccentricity of an orbit increases 

then decreases geometrically in every orbiting cycle. Therefore, for a barely elliptical orbit, the shape 

is akin to a chicken egg i.e. one of its heads is flatter than the other one. 

However, the difference between Newtonian orbits and relativistic orbits, as introduced here, is so tiny 

and it is very hard to observe. Other factors e.g. the gravities of other planets, or tidal forces, usually have a 

greater observed impact on planets' orbits. 

5.2 Perihelion and Aphelion 

In a barely elliptical orbit, Perihelion is the point of the nearest distance, and Aphelion is the point of 

farthest distance. 

Next, we are going to use the function u, instead of r, to facilitate the process. 

When 𝑟̇ > 0, the symbol u1 is used for u, and r1 for r; thus, the orbital equation becomes: 
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𝑢1(𝜃) = (𝑢0 − 𝐿)𝑒𝐿2𝜃 cos (√1 − 𝐿2
2 𝜃) + 𝐿 

Let 𝐿3 = √1 − 𝐿2
2, Then: 

𝑢́1(𝜃) = (𝑢0 − 𝐿)𝑒𝐿2𝜃(𝐿2 cos(𝐿3 𝜃) − 𝐿3 sin(𝐿3 𝜃)) 

𝑒𝐿2𝜃 may not be null, nor (𝑢0 − 𝐿) may be, unless the  orbit is a perfect circle. Otherwise: 

𝑢́1 = 0
 
⇒ 

𝐿2 cos(𝐿3 𝜃) − 𝐿3 sin(𝐿3 𝜃) = 0 
 
⇒ 

𝐿2 cos(𝐿3 𝜃) = 𝐿3 sin(𝐿3 𝜃)
 
⇒ 

𝐿2

𝐿3
= tan(𝐿3 𝜃 + 𝜋𝑘)

 
⇒ 

𝜃1,𝑘 =
1

𝐿3
(atan (

𝐿2

𝐿3
) + 𝜋𝑘) 

Where k is an integer, 𝜃1,𝑘 are the roots of 𝑢́1. 

When 𝑟̇ < 0,  u2 is used for u, and r2 for r, the calculation becomes: 

𝑢2(𝜃) = (𝑢0 − 𝐿)𝑒−𝐿2𝜃 cos(𝐿3 𝜃) + 𝐿 

Then: 

𝑢́2(𝜃) = (𝑢0 − 𝐿)𝑒−𝐿2𝜃(−𝐿2 cos(𝐿3 𝜃) − 𝐿3 sin(𝐿3 𝜃)) 

With similar steps to the case of u1, we get: 

𝜃2,𝑘 =
1

𝐿3
(−atan(

𝐿2

𝐿3
) + 𝜋𝑘) 

Where 𝜃2,𝑘 are the roots of 𝑢́2. 

It seems, the roots of 𝑢́1 do not match those of 𝑢́2; in fact, they are the same, since when 𝑢1 is applicable 

(𝑟́ >  0 
 

⇔ 𝑢́ <  0) and reaches a root of 𝑢́1, then 𝑢́ becomes larger than zero, and 𝑟́ less than zero, and 𝑢2 

becomes the function being applied, starting with a 𝑢́2 root. 

For a barely elliptical orbit, the roots  𝜃1,𝑘, or the identical 𝜃2,𝑘, are the points of perihelion and aphelion. 

Even so, eccentricity increases, then decreases in every cycle, the extent of perihelion and aphelion (least 

and greatest distance from the center of gravity) stays the same, since, in every cycle, the increase in 

eccentricity, when the function r1 (u1) applies, is cancelled totally by the decrease in eccentricity, when r2 (u2) 

applies. 

It is noteworthy that the power of the value 𝑒𝐿2𝜃 in the function u1 or the value  𝑒−𝐿2𝜃 in the function u2 

may not be substituted simply by the value of 𝜃, but with the value of (𝜃 − 𝜃0) , where 𝜃0 is the last angle 

reached, when the other function is applied. 
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The amount of perihelion, then, is the result we get by substituting 𝜃1,0 in the equation of r1 (or the equal 

result we get by substituting 𝜃2,0 in the equation of r2), that we will call r00, the value of which can be 

calculated the following way: 

𝑟00 =
1

(
1

𝑟0
− 𝐿) 𝑒

𝐿2
𝐿3

atan(
𝐿2
𝐿3

)
cos (atan (

𝐿2

𝐿3
)) + 𝐿

 

=
1

(
1

𝑟0
− 𝐿) 𝐿3𝑒

𝐿2
𝐿3

atan(
𝐿2
𝐿3

)
+ 𝐿

 

Where r00 is the real observed perihelion, knowing the difference between r0 and r00 is minute. 

5.3 Perihelion Procession 

Perihelion Procession is the term describing the rotation of an orbit. As mentioned above –and whether 

u1 or u2 applies-, there will be a steady, easily calculable rotating factor: 

∆𝜑 =
2𝜋

𝐿3
− 2𝜋 = 2𝜋

[
 
 
 

1

√1 − (
𝐺𝑚

2ℎ𝑐
)
2
− 1

]
 
 
 

 

 

6 A Comparison with the Tests Done on General Relativity 

6.1 Mercury Perihelion Procession 

The Mercury perihelion procession phenomenon was the first test considered a proof of General 

Relativity. 

Almost every solar planet's orbit rotates a little every cycle. While a large amount of that procession can 

be considered as an effect of other planets' gravities, a small amount remains unexplained by the Newtonian 

Universal Law of Gravity. A case in point is Mercury's perihelion, which was the most studied, since its orbital 

eccentricity is large enough to be observed accurately, and some scientists thought that an unknown planet 

orbiting between the Sun and Mercury causes that additional procession. However, such a planet did not 

exist. 

The additional procession, as observed and calculated at the turn of the 20th century, was 48`` every 

century. The calculations, based on General Relativity, predict the very same value, and then considered a 

good proof of General Relativity. 

Using our new equations of orbits, the amount of procession, as previously mentioned becomes: 

∆𝜑 = 2𝜋

[
 
 
 

1

√1 − (
𝐺𝑚

2ℎ𝑐
)
2
− 1

]
 
 
 

≈ 2𝜋 (1 +
1

2
(
𝐺𝑚

2ℎ𝑐
)
2

− 1) =
𝜋

4
(
𝐺𝑚

ℎ𝑐
)
2
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In the case of Mercury, by substituting values obtained from the NASA web site, perihelion procession is: 

∆𝜑 ≈
𝜋

4
(

132,712,000,000

2,713,080,000 × 299,792.458
)

2

≈ 2.09𝐸−8 

This value is in radian. Since Mercury orbits 415 times every Earth century, then the perihelion procession 

of Mercury in seconds of arc would equal: 

2.09𝐸−8 × 415 × 360 × 3600 ÷ (2𝜋) ≈ 1.79`` 

This amount is about 1/24 of the procession amount predicted by General Relativity, considered 

consistent with observations. 

Does General Relativity win the argument? Not necessarily. 

Today, new calculations and observations using additional factors give a different result than was 

accepted then. For instance, according to Smulsky (2011), the additional perihelion procession equals, 0.53``, 

every 100 Earth years, an indication that our prediction is more accurate than Einstein's. 

6.2 Light Bending Near the Sun 

Another more famous test of General Relativity was the measurement of the light bending extent near 

the Sun. 

General Relativity predicts light bends near a mass, when its path is not purely radial. Measuring the 

bending light from distant stars, near the mass of the Sun, seems an easy test. Yet, it can be done only during 

a total eclipse, when the effect of solar light may be omitted. 

When studying the path of light and the movement of photons, the use of Newtonian mechanics would 

be irrelevant, as it predicts that a photon accelerates, as any other slower body does, contradicting reality. 

However, the calculations of light bending, based on Newtonian mechanics can be useful, as a basis for 

comparison. 

 

Approximate calculations based on Newtonian mechanics equations predict that the bending light angle 

near a mass equals: 

𝛿𝑁𝑒𝑤𝑡𝑜𝑛𝑖𝑎𝑛 ≈ 2
𝑚

𝑟0
 

When using a unit system, where c = 1, G = 1 and angle is in radian (Brown, 2011). 

In the case of light bending near the Sun, the mass of the Sun, in used units, is about m = 1475, and a 

beam of light distance from the Sun's center is equal to the Sun's radius, r0 = 6.95×108; therefore, the 

Newtonian prediction would be, 0.000004245 radians, which equals 0.875 seconds of arc (Brown). 

In 1915, Einstein gave a different prediction based on his General Relativity, which doubles Newtonian: 

𝛿𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛𝑖𝑎𝑛 ≈ 4
𝑚

𝑟0
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This is about 1.75`` seconds of arc in this case (Brown). 

In 1919, in the aftermath of the First World War, scientific expeditions were sent to Sobral in South 

America and Principe in West Africa to make observations of the solar eclipse. The reported results comply 

with Einstein's predictions. This was taken as a fundamental proof of General Relativity (Brown). 

Complicated calculations are not needed to determine the degree of the bending of light, based on the 

equations mentioned in this new research, since the use of datasheet software application would yield an 

accurate result. 

In the case studied here, upon new equations, the bending angle is about 0.875 seconds of arc, a bit 

larger than the bending angle upon Newtonian's, where its accurate value is 0.873 seconds of arc. 

This means, based on the new orbit equations introduced here, prediction approximates the prediction 

based on Newtonian's Mechanics, rather than General Relativity. 

Does General Relativity win the argument? Again, not necessarily. 

Many references contend that all the later experiments on the bending of the light near the Sun confirm 

the experiment of 1919, which complies with the prediction of General Relativity. They do not! In fact, 

certain tests yield a noticeably larger value for the bending of light that don't comply with Einstein's 

predictions, as in Sumatra on 9 May, 1929, where the reported result is 2.24 ± 0.01 and in the USSR on 19 

June, 1936, where the reported result is 2.73 ± 0.31 (Brown). 

It seems, another factor affects the results, in addition to gravitation. In fact, a very strong candidate is 

already known i.e. light refraction caused by gases in the Sun's atmosphere (neutral gas, not plasma). 

According to Xu (2002), the light refraction by the Sun's atmosphere can deflect a starlight ray, touching the 

solar limb by 26``, a value 15 times larger than the gravitational bending predicted by General Relativity, and 

30 times than the gravitational bending predicted in this paper. This value decreases very rapidly when the 

light ray passes farther away from the edge of the Sun. For instance, when this distance is 460 kilometers, 

the deflection would be roughly 0.8``, thus, any observation would yield 1.75`` in this precise distance, 

thereby confirming this theory, rather than General Relativity. 

700 kilometers farther away from the limb, this deflection becomes very insignificant. Measurements 

made in 1919, 1922 and 1929 demonstrate that, in the range between 0.5 to 5 solar radii above the Sun's 

edge, the results are noticeably greater than any theoretically-predicted value, including the sum of General 

Relativity's gravitational deflection and the deflection from gas refraction. Above that distance, the 

measurement results become very chaotic (Freundlich, Klüber and Brunn, 1931). 

Therefore, it is clear that some hitherto uncounted factor has an impact; perhaps, it is the gas refraction, 

where the temperature is very high in the solar corona. That said, there is a clear difference between the 

measurements and all known theories, and measurements may not be taken, as a confirmation of any 

gravitational theory, unless light refraction and any other possible factors have accurately been calculated.  
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7 Conclusion 

Considering the energy-mass equation 𝐸 = 𝑚𝑐2, as a main postulate, and giving a very intuitively 

acceptable definition of energy, all the relativistic phenomena, such as the constant speed of light and other 

ones predicted by Special or General Relativity, can be readily explained. In addition, newly predicted values 

of the Mercury perihelion procession, as well as the degree of the bending of light near the Sun, are not 

necessarily worse than the values predicted in General Relativity regarding accuracy with experiment results. 

I cannot compare the results herein predicted with those of all the experiments done to test other 

relativity theories. In fact, I should not. Tests made by other physicists, dedicated to comparing this theory 

with the Special and General Relativity could add more credibility and confirm my study. 

Another important factor, to be considered when evaluating this study, is its compatibility with other 

widely accepted theories, especially Quantum Mechanics. An issue that needs a lot of theoretical work, 

however, assuming that the upper limit speed applies only to objects in motion, and obviating the need for 

the concept of curved space-time as introduced in General Relativity, give this theory a much better chance 

to be compatible with the principles of Quantum Mechanics. 

Acknowledgement 

I thank Mr. Fadi Abdelhak, the TESOL-certified English teacher, for aiding me with the language. 

References 

American Physical Society, This month in physics history: December 1706:  Birth of Émilie du Châtelet, 

http://www.aps.org/publications/apsnews/200812/physicshistory.cfm (March, 2014) 

Brown, K., 2011, Reflections on Relativity, p. 432-441, http://www.mathpages.com/rr/s6-03/6-03.htm 

(March, 2014) 

Freundlich, E., Klüber, H. and Brunn, A., 1931, Ergebnisse der Potsdamer Expedition zur Beobachtung der 

Sonnenfinsternis von 1929, Mai 9, in Takengon (Nordsumatra), Zeitschrift für Astrophysik, v. 3, p. 171-198 

Iltis, C., 1971, Leibniz and the Vis Viva Controversy, Isis, v. 62, no. 1 (spring, 1971), p.21-35 

NASA, Mercury Fact Sheet, http://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html (March, 

2014) 

NASA, Sun Fact Sheet, http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html (March, 2014) 

Okuň, L. B., 2009, Energy and Mass in Relativity Theory, World Scientific Publishing, 311 p. 

Smulsky, J., 2011, New components of the mercury's perihelion precession, Science, v. 3, no. 4, 

 p. 268-274. 

Xu, F., 2002, Light Deflection near the Sun's Limb: Refraction by the solar Atmosphere, Solar Physics, 

 v. 206, p. 243-248. 


	Abstract
	1 Introduction
	2 Mass and Energy
	2.1 The Mass-Energy Equation
	2.2 The Definition of Energy
	2.3 Mass-Speed Relation Equation
	2.4 The Kinetic Energy Common Definition
	2.5 The True Meaning of the Mass-Speed Relation Equation

	3 Relativistic Velocity
	3.1 Relativistic Speed Addition Formula
	3.2 Rapidity
	3.3 Time Dilation
	3.4 The Twin Paradox

	4 Relativistic gravitation
	4.1 Newton's Universal Law of Gravitation
	4.2 Relativistic Universal Law of Gravitation

	5 Orbits
	5.1 The Relativistic Orbits Equation
	5.2 Perihelion and Aphelion
	5.3 Perihelion Procession

	6 A Comparison with the Tests Done on General Relativity
	6.1 Mercury Perihelion Procession
	6.2 Light Bending Near the Sun

	7 Conclusion
	Acknowledgement
	References

