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ABSTRACT

In previous papers we have discussed the concept of a theory of gravitation with
local energy conservation, and the properties of a large neutron star resulting when
the energy of gravitation resides locally with the particle mass and not in the
gravitational field [1][2][3]. A large neutron star’s surface radius grows closer to
the gravitational radius as the mass increases, but is always slightly larger. As the
mass increases there is a continuously greater mass defect for incoming particles.
Since the localization of energy also applies to the photon, photons do not decrease
energy rising in a gravitational field, and can escape, but there some caveats that
must be considered. Photon trajectories in a strong gravitational field have some
peculiar features that are not immediately obvious but can be investigated by the
use of ray tracing procedures. The most notable is the fact that only a fraction of
the blackbody radiation emitted from the surface escapes into space (about
0.00004% for Sag A*). The remainder enters orbit below the maximum photon
orbit, and can constitute a horizontal photon atmosphere. Because of the low
percent of escaping blackbody radiation, the heavy neutron stars considered in this
paper will be referred to as a Neutron Dark Star (NDS). In contrast to the Black
Hole (BH) which should be totally dark inside the photon shadow, the NDS will
appear as a fuzzy low luminosity ball with a full width half maximum radius of
about 3.85 Schwarzschild radii inside the shadow. This paper will investigate the
difference in the appearance of a Neutron Dark Star and a Black Hole by using ray
tracing techniques. The Event Horizon Telescope currently under development
should be able to distinguish the difference between the theories.

Introduction

Early on in the development of GR Hilbert recognized that the theory had an
”improper energy theorem” that is, one could define a divergence free quantity,



analogous to the momentum density of Special Relativity, but it is quite arbitrary
and is gauge dependent. It is not covariant under a general coordinate
transformation, or more simply there is no local conservation of energy. In a
defined volume of space the change of energy inside, is not the sum of the energy
entering and leaving through the surface.

Emmy Noether formalized the issue 1918 in a definitive paper "Invariante
Varlationsprobleme" illustrating the problem. Noether’s theorem definitively
shows that contrary to all other forces, energy cannot be conserved nor localized in
a Riemannian gauge field representation. It is presumed here that this is a flaw in
GR, and it is asserted here, that Noether’s theorem is not an indicator of a physical
reality, but an indicator of the approximate nature of GR. This can best be tested in
the observation of the properties of objects cited as being black holes.

Method

The comparison of the appearance of a Neutron Dark Star (NDS) to a Black Hole
(BH) will be made by the use of ray tracing techniques of the photon trajectories.
For GR, the index of refraction for photons traversing space can be made using the
general form of a static and spherically symmetric metric [4][5],

     2 2 2 2 2

1 1

2

ds r dt r dr r d d

2 2 2
1 1

r rr

sin
 

      

          
   

B A

A B =
(1.1)

That has an index of refraction  0c c/ value in flat space of [6]:
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Or the more detailed analytic expression of Karimi1&Khorasani [7]:
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The BH has no solid surface, and as shown analytically by Lacroix & Silk [4] to
have a black gravitational shadow radius of about 5.2  . (Note the Schwarzschild
radius is twice the gravitational radius. sr 2  )



For the Neutron Dark Star (NDS), the index of refraction for the photon suitable
for ray tracing ray tracing from [1] is:
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The difference in the index of refraction for the BH and the NDS is slight for large
radii, but for small radii the effect on the trajectory is substantial. A ray tracing
program has been developed for generating comparison trajectories. The program,
a comparison with other procedures, and the Quick Basic version, are included in
Appendix I.

From calculations in [2], a NDS the size of Sag A* has a solid surface about 1.025
times the gravitational radius, and it will be shown that the shadow radius for
interloping photons for the NDS will be about 5.93  compared with the 5.2 
analytic solution for GR[7]. (see figure [1]).

Photons leaving the surface of an NDS vertically, escape into space, however if
photon leave the source at a slight angle, gravitation can bend the trajectory into an
orbit at a level below the maximum photon orbit. For a neutron star the size of Sag
A*, the maximum angle from vertical for a photon to escape is 0.004 rad. At that
angle the photon will go into the maximum photon orbit, but if the angle is greater,
the orbit lies between the surface and the maximum orbit. Although there may be
a stability issue, as the photons trajectory curves perpendicular to the radius vector,
the structure of Snell’s law will not allow the radial velocity to become negative,
therefore the trajectory at any elevation below the maximum photon orbit will
become a circular orbit.

The narrow escape angle for blackbody photons leaving the surface (~0.004 rad)
means that only about 0.00004% of photons emitted from the surface escape. This
requires the brightness of the Sag A* NDS be reduced by a factor of factor of more
than 1.0e-6 compared to a low mass star of the same temperature. The majority of
the black body radiation emitted from the surface enters an orbit and constitutes a
peculiar horizontal photon atmosphere.

The Neutron Dark Star should, produce blackbody radiation however feeble, and
should be observable within the gravitational shadow. Because of the mass defect
for particles on the surface, and the slower velocity of light, the apparent
temperature of the blackbody radiation will be shifted downward proportional to
the mass defect, and thus the luminosity will be further reduced



Ray Tracing

Ray tracing of photon trajectories for the NDS is a straightforward using Eq.(1.4),
which is deduced from the conservation of energy and the equivalence principle
[1]. Comparative projections by F. Karimi, and S. Khorasani [ 7], [8],for GR are
used to test the projection algorithm.

From T. Lacroix & J. Silk,[4] a semi analytical derivation of the Shadow of a GR
Black Hole from the field equations is illustrated in Figure 1.

Figure 1.

Fig. -. Shadow of a black hole. The radius of the shadow is the minimum
impact parameter of a light ray escaping the black hole, so the .
shadow is a disk representing the black hole as seen by the observer. .
The circular orbit lies on the so-called photon sphere. The black circle .
represents the horizon. [4] .

The black hole has a minimum impact parameter of 1.5 Sr , equivalent to the
photon orbit, and a shadow radius of 2.6 Sr . The ray tracing program for the NDS
yields the same minimum impact parameter 1.5 Sr . , but a shadow radius of about
2.93 Sr .

Overlaying the NDS projections on the Lacroix & Silk graph is shown in Figure 2:



Figure 2.

The NDS photon shadow (2.93 Sr ) is slightly larger than its BH equivalent (2.6 Sr ).

Results

It is noted that in the absence of intervening or accretion material, GR predicts that
there will be a photon void emanating inside the shadow for a BH, thus a dark
image diameter of about 2.6 Sr . This is because there are no photons originating
from the sphere of the black hole, and any interloping photon would be captured.

The NDS does allow photons to escape the surface however the angle of emission
from the surface has to be in a very narrow vertical angle otherwise the photon
goes into an orbit around the star. Photons leaving the surface of a NDS star are
trapped if the vertical angle of emission exceeds the escape angle. For Sag A*
with a surface elevation of 1.0025  , the maximum escape angle is about 0 .004
rad, as shown in Figure 3.



Figure 3.

The simple explanation for this is that as the photon rises in the field, the curvature
of the trajectory increases, the angle with the radius vector increases to 2/
making it perpendicular. If the radial velocity goes to zero before the radius
exceeds the maximum photon orbit of 3 , the photon goes into orbit. The nature of
Snell’s law does not let the trajectory curvature exceed the orbital curvature thus
all the non-escaping photons enter an orbit of the star. These photons do not return
to the surface, Thus a horizontal photon atmosphere develops, which could have
appreciable effect on material objects existing below the elevation of the photon
orbit. It is plausible that such a horizontal photon atmosphere could be the origin of
energy driving black hole particle jets.

From ray tracing of vertical moving photons leaving the surface of a NDS star the
size of Sag A*, at an elevation of 1.0025 , the time out is about 1030 seconds
longer than a photon traveling the same distance in flat space.

Intensity

As photons escape a spot on the surface, those leaving vertically go straight out. As
the angle increases from 0 to 0.004 rad, photons wrap further around the sphere
before escaping. By taking a ratio of the square of the angle between two photons
leaving at a small  2

s at the surface, to the angle difference  2

p at a distant
escape plane, the apparent relative luminosity of a spot on the surface to the
observed value at a distance in space can be determined.
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L is the apparent external luminosity, SL is the luminosity at the surface , S is the
angle separating the photons at the surface, and P is the angle between the same
photons when they escape the system at a distant escape plane.

By tracking two photons having a small  on the surface (1.0e-6 rad) to their exit
from the system the change in the exit angle can be determined, and the relative
apparent luminosity can be determined. By taking a series of these tracks for all the
escaping angles from 0 to 0.004 rad the radial profile of the apparent luminosity
can be calculated

For example two photons leaving the surface, one vertically  0  , and one at an
angle of 0.000001 rad, by ray trace calculations, arrive at a distant perpendicular
plane, out of the system at an angle separation of 0.000566 rad. This gives by
Eq.(1.5), the apparent luminosity by an external observer to be a factor of 3.12e-6
less than at the surface. For a pair of photons leaving the surface at.0022 rad and
0.002201 rad, ray trace calculations, show them turning by 1.38 rad, and arriving at
the distant escape plane at an angle separation of 0.000692 rad, this gives an
apparent relative luminosity between a spot in the center of the star to a spot at
about 80 degrees around sphere of 0.66. It can be noted that two photons in non
gravitational space always maintain the same angle and the luminosity of a spot is
not changed by distance.

For the purpose of illustrating the image of the NDS, an imaginary plane (escape
plane) perpendicular to the radius vector is presumed, at such distance that an
arriving photon is moving in the direction toward a far distant observer, and is
parallel to the radius vector.

By taking a series of projections of photons leaving the surface at an angle with the
vertical, the wrap around angle can be determined, and by the above procedure, the
apparent luminosity of the disk. The distance from the center on the escape plane
then gives the apparent luminosity vs. radius of the NDS disk.

Figure 4 and 5 illustrate the results of these calculations. For the purpose of
replication of the results here, the ray trace program routine, as well as the
calculated values for the angles around the sphere is included in Appendix II.
Figure 4 is the relative luminosity as a function of the distance from the center of
the escape plane, showing a half max at a radius of about 3.85 



Figure 4.

Note the half level intensity for the NDS is very close to the current observed
radius of Sag A* by Gaussian full width at half maximum (FWHM), of about
3.7 . [10]. There has been some discussion as to whether the current measurement
is the star or the measurement of a MHD accretion, offset from the star, so the
measurement is not definitive.

Figure 5, illustrates the exit position on the exit plane of a photon trajectory
originating at positions on the surface. The relative intensity of points on the
surface as viewed at a large distance perpendicular to that plane is plotted on the
left side of the trajectory.

Figure 5.



As noted above, the current measurements are not definitive as to whether the
measurement is the star or an accretion disk, but the measurements are very close
to the projected values which are shown in Figure 6. This is from Sheperd
Doeleman et al,[9] for Sag* A*, with the Neutron Dark Star luminosity profile
superimposed. Note the closeness of the Full width half intensity measurement
with the 50% apparent intensity calculations of the NDS to the measured value.

Figure 6.

Figure: (Doeleman et al) A symmetric emitting surface surrounding a black hole is
gravitationally lensed to appear larger than its true diameter. Here the apparent
size is plotted as a function of the actual object size. The solid black line shows the
apparent diameter with lensing by a non-spinning black hole, and the dashed line
with no lensing effects included. The intrinsic size of Sgr A* observed with1.3mm
VLBI. (horizontal red line) is smaller than the minimum apparent size of the black
hole event horizon (labeled ‘Event Horizon’)[9]

Temperature and Black Body Radiation

The emitted radiation should be thermal and have a constant thermal profile across
the observed disk to represent an even surface temperature. Outside the
gravitational shadow the thermal profile should be more reflective of the average
of galactic stars. Another issue affecting the luminosity is the mass defect. Particles



at the surface have a lower mass, a lower speed of light, and thus a lower rate of
thermal photon emission. In the case of Sag A* the ratio is about 100 to 1 [2], and
the apparent black body radiation for a given temperature is decreased by that same
factor. Thus an external temperature observation will appear about 100 times less
than a surface observation.

The substantial decrease in black body radiation resulting from gravitation
geometry, and mass defect compared to a normal star provides the justification to
refer to The NDS as a dark star.

Conclusion

This paper has presented an the contrast between the image expected of a standard
black hole, with a non-conserved non-localized Riemannian gauge field, and an
image that would exist for a heavy neutron star created under the presumption of
local conservation of energy. The exact numbers shown in this paper may have a
degree of error due to the numerical calculated tracings, but the qualitative
descriptions should be close. The fact that the calculated image diameter is near the
value determined by current measurements for Sag A*, and those measurement are
outside the bounds of current GR theory, gives reason to inspect the theory in more
depth. The forthcoming completion of the Event Horizon Telescope currently
under development should be able to distinguish the difference, and test the
validity of this theory.
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Appendix I

Ray Trace Algorithm

The algorithm used in this paper is a point to point implementation of Snell’s law
using the index of refraction. The routine is constructed in quick basic and has
been tested against other ray trace routines, and analytical solutions. The difference
has been found to be 1-2 percent in the deflection angles of particles passing near
black holes from a range of 4 to 80 (gravitational radii). The results for the NDS
could be slightly in error as a result of the inherent errors in the algorithm, but the
error must be small, and the substantial difference between the NDS and the GR
Black Hole theory results are qualitatively unambiguous.

A comparison of the algorithm output shown in Figure A1, to those of Karimi,
Khorasani [7],[8] demonstrates the results to be within acceptable levels of
difference.

Figure A1.



The top two curves show the projected angle of deflection resulting from photons
subjected to the index of refraction calculated by Karimi Eq. 13, for the anisotropic
solution of the Schwarzschild metric. The top (light green) is from the reference and the
bottom (dark green) is from the computer trace program, both using the index of
refraction
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The results of the output by Khorasani using a Mathematica differential solution and the
current ray trace program have a less than 2% difference.

The two middle curves show the angle of deflection from the analytical solution for the
Schwarzschild metric by Khorasani [a] Eq. 12
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With a 4/  , and the current ray trace program using the Einstein index of refraction:
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In both cases the ray trace program is within acceptable agreement with the other
calculations.

A plot of the differences is shown in Figure 2A.

Figure 2A.



The blue line is the difference between the ray trace program and the anisotropic trace
program of Khorasani, and the red line is the difference between the ray trace program
and the analytic solution. The analytic solution diverges below 5 radii which is not
unexpected since the author suggests the equation is invalid in that range.

The conclusion can be drawn that the ray trace routine is suitable for the purpose for
tracing photon trajectories for a given index of refraction.

Basic Program Ray Trace Routine
' Gravitational Ray Trace
' DT Froedge
' copyright 2014
' GR black hole, and VRM Dark Star

'This is a basic program that calculates ray traces
'in the vicinity of black holes and variable mass stars
'calculations are all in double precision.
'Output is a comma delimited text file that can be imported into Excel
'or other spreadsheets for graphing.
'Program calculates in the first quadrant (quad)by rotation
'then corrects output to proper quadrant by reversing this.
'program only handles counter clockwise motion.
'distance is in gravitational radii. c=1, Mu = 1
'There are 10000 iterations between print iterations

fprmat% = 2 'pick here User choice of 1-5 index of refraction formulas

pi# = 3.14159265358979#
x1# = 6 'initial x position in Mu (to be set by user)
y1# = 0 'initial y position in Mu (to be set by user)
P1# = pi# / 2 'initial angle in radians (to be set by user)

CLS
'Sag a* mass 4.1 e6 0.6 e6 suns = 8.154572e39 grams
'Gm/c^2= Mu = 605181439025 cm = 20.186 light seconds

quad% = 1 'start quadrant
Delt# = .00001 'increments of time
sht% = 0 'increment counter
sht2% = 0 'incremental outputs data after Sht% counts out
r0# = (xo# ^ 2 + yo# ^ 2) ^ .5 'initial radius defined
a#(2) = 0
st% = 2

xxo# = x1#
yyo# = y1#
po# = P1#
fun% = -1

a#(2) = 0
a#(1) = 0
‘ ‘Some Index of refraction formulas tested
IF fprmat% = 1 THEN Formprt$ = " NDS v = (1 - 1 / r#) ^ 2 "
IF fprmat% = 2 THEN Formprt$ = "Einstein v = (1 - 2 / r#) "
IF fprmat% = 3 THEN Formprt$ = "Karimi Isotropic Eq 5b"
IF fprmat% = 4 THEN Formprt$ = "Karimi Anisotropi Eq 13"
IF fprmat% = 5 THEN Formprt$ = "Karimi Component Eq.14"



OutFile$ = "Out.txt"
OPEN OutFile$ FOR OUTPUT AS #2

PRINT #2, "x Eq" + STR$(fprmat%) + ",";
PRINT #2, "y,";
PRINT #2, "x grav cir,y grav cir,r, direction, Rad vel,Ang vel, veloc, direction,";
PRINT #2, "deltV, AngularPos,Delta a ,seconds, rotations,";
PRINT #2, Formprt$

'Initial set
grad# = 1 'defines Circle at gravitational radius

p#(1) = P1# 'initial velocity direction angle from 1 to 2
p#(2) = P1#
x#(1) = x1# 'initial first point x position
y#(1) = y1# 'initial first point y position
r#(1) = (x#(1) ^ 2 + y#(1) ^ 2) ^ .5 'first point r & v values

'velocity at point1
r# = r#(1)
p# = p#(1)

GOSUB selectN
v#(1) = v#

'initial print
x#(2) = x#(1)
y#(2) = y#(1)
r#(2) = r#(1)
p#(2) = p#(1)
GOSUB procede

' calculate 2nd point based on initial conditions

v# = v#(1)
x# = x#(1)
y# = y#(1)
p# = p#(1)

GOSUB Nextpos

x#(2) = x# '2nd point location running along p1
y#(2) = y# '
r#(2) = r#

here: ' main loop back point

r# = r#(2)
p# = p#(2)
GOSUB selectN 'velocity at 2nd point need r#
v#(2) = v#

'angular position from x & y

IF x#(2) = 0 THEN a#(2) = pi# / 2: GOTO skip
a#(2) = ATN(y#(2) / x#(2))
IF (y#(2) / x#(2)) < 0 THEN 'second quad
a#(2) = pi# - ATN(-y#(2) / x#(2))
END IF

skip:
dela#(2) = (a#(2) - a#(1)) 'change in angular photon position

'This rotates coordinates back to first
'quadrant when location goes into third quad
'and keeps up with rotation to correct output

IF y#(2) < 0 THEN 'trigger point 'third quadrant reset to first quad
st% = st% + 1 'counter



IF st% = 4 THEN
st% = 3: a#(2) = a#(2) - pi#
GOTO Plast 'one rotation stop

END IF
x#(2) = -x#(2) 'resign 3rd point to second and

'2nd point to 1st, recycle
y#(2) = -y#(2)
p#(1) = p#(2) - pi# 'resets direction

END IF

'initial component velocity from 1
'arriving at second point (3rd pt)

vx# = v#(1) * COS(p#(1)) 'Sub variables
vy# = v#(1) * SIN(p#(1))

GOSUB calcradv 'rotates coordinates to a = 0 so that x and y velocity
'components align with v angular and v radial.

GOSUB Snell ' apply Snell angle change in radial and angular
' velocities
' and calculate change in direction

p#(2) = p#(1) + DelRef#(2) ' apply change in direction to particle direction.

v# = v#(2)
x# = x#(2)
y# = y#(2)
p# = p#(2)
GOSUB Nextpos
v#(3) = v#
x#(3) = x#
y#(3) = y#
r#(3) = r#

x#(1) = x#(2) 'resign 2nd point, to 1st for recycle
y#(1) = y#(2)
r#(1) = r#(2)
p#(1) = p#(2)
a#(1) = a#(2)
v#(4) = v#(1) 'hold for print
v#(1) = v#(2)

x#(2) = x#(3) 'resign 3nd point, to 2nd for recycle
y#(2) = y#(3)
r#(2) = r#(3)

GOSUB PUTITOUT5 'data out
GOTO here 'main loop back

'Subroutines

Nextpos:
x# = x# + v# * COS(p#) * Delt# '2nd point location running along p
y# = y# + v# * SIN(p#) * Delt#
r# = (x# ^ 2 + y# ^ 2) ^ .5 'r next point

RETURN

Snell: ' Calculates change in direction
IF vrad# = 0 THEN refa#(1) = pi# / 2: GOTO skip2
refa#(1) = pi# / 2 - ATN(vtheta# / vrad#)

skip2:
vtheta#(2) = ((v#(2) / v#(1)) ^ 2) * vtheta# ' Snell velocity change
vrad#(2) = (ABS((v#(2) ^ 2 - vtheta#(2) ^ 2)) ^ .5) 'new velocities components



' leaving point 2 to 3 in rad
IF v#(2) < v#(1) THEN

vrad#(2) = -vrad#(2)
END IF
IF vrad#(2) = 0 THEN refa#(2) = 0: GOTO skip3
refa#(2) = pi# / 2 - ATN(vtheta#(2) / ABS(vrad#(2)))

skip3:
DelRef#(2) = refa#(1) - refa#(2)

RETURN

calcradv: 'Rotates coordinates to a=0 so that x,y velocity align with r,Theta velocity
aa#(2) = a#(2)
IF aa#(2) > pi# THEN aa#(2) = aa#(2) - pi# ' cycling, doesn’t happen in this version
vrad# = vx# * COS(aa#(2)) + vy# * SIN(aa#(2))
vtheta# = vy# * COS(aa#(2)) - vx# * SIN(aa#(2))

RETURN

PUTITOUT5: ' outputs location out file
sht% = sht% + 1 'iteration counter
distance# = distance# + v#(1) * Delt#

'Stop conditions
IF r#(2) <= 1 THEN GOTO Plast
IF x#(2) > 25 THEN GOTO Plast
IF y#(2) > 25 THEN GOTO Plast
IF x#(2) < -25 THEN GOTO Plast
IF y#(2) < -25 THEN GOTO Plast
K$ = ""
K$ = INKEY$: IF K$ <> "" THEN CLOSE : STOP
IF sht% = 10000 THEN sht% = 0: sht2% = sht2% + 1: GOTO procede 'output 1 per 10000
RETURN

procede:
Rx#(2) = grad# * COS(sht2% * pi# / 20) 'gravitational radius
Ry#(2) = grad# * SIN(sht2% * pi# / 20)

PRINT #2, USING "+##.########"; x#(2) * ((-1) ^ st%); 'x file
PRINT #2, ",";
PRINT #2, USING "+##.########"; y#(2) * ((-1) ^ st%); 'y
PRINT #2, ",";
PRINT USING "+##.########"; x#(2) * ((-1) ^ st%); 'x screen
PRINT USING "+##.########"; y#(2) * ((-1) ^ st%); 'y
PRINT USING "+##.########"; r#(2) 'r

PRINT #2, USING "+######.####"; Rx#(2); 'x coordinates of
' gravitational radius

PRINT #2, ",";
PRINT #2, USING "+######.####"; Ry#(2); 'y

PRINT #2, ",";
PRINT #2, USING "+######.####"; (x#(2) ^ 2 + y#(2) ^ 2) ^ .5; 'r

PRINT #2, ",";

PRINT #2, USING "+###.#########"; p#(2) + pi# * (st% - 2); 'direction
PRINT #2, ",";

PRINT #2, USING "+###.#########"; vrad#(2); 'rad vel
PRINT #2, ",";

PRINT #2, USING "+###.#########"; vtheta#(2); ' ang vel
PRINT #2, ",";

PRINT #2, USING "+###.#########"; v#(2); ' mag velocity
PRINT #2, ",";

PRINT #2, USING "+###.#########"; (p#(2) + pi# * (st% - 2)) * 360 / (2 * pi#); 'direction
PRINT #2, ",";



PRINT #2, USING "+#.###################"; v#(1) - v#(4); 'change in velocity
' point to point

PRINT #2, ", ";
PRINT #2, USING "+###.##############"; (a#(2) + pi# * (st% - 2)) * 360 / (2 * pi#);'angular
position

PRINT #2, ",";
PRINT #2, USING "+##.###############"; DelRef#(2); 'refraction angle

PRINT #2, ",";
PRINT #2, sht2% * 20.186; 'seconds to position

PRINT #2, ",";
PRINT #2, (st% - 2) / 2; ' rotations

PRINT #2, ","

RETURN

selectN: 'Selected Index of refraction formulas

' NDS
' b 3.43 sh 5.87 orbit 3.0 escape angle .004

IF fprmat% = 1 THEN
v# = (1 - 1 / r#) ^ 2

END IF

' Einstein (1 - 2 / r#)
' 13c b 4.3450 shadow 6.93 orbit 4.0

IF fprmat% = 2 THEN
v# = (1 - 2 / r#)
END IF

'Karimi, Khorasani Eq 5b
'13c b 4.165 sh 6.72 orbit 3.8100

IF fprmat% = 3 THEN
v# = ((1 - .5 * (((r# / 2) - .5 + (((r# / 2) ^ 2 - (r# / 2)) ^ .5)) ^ (-1))) ^ (-1))
v# = v# * ((1 + .5 * (((r# / 2) - .5 + (((r# / 2) ^ 2 - (r# / 2)) ^ .5)) ^ (-1))) ^ (3))
v# = 1 / v#
END IF

'Anisotropic Karimi, Khorasani Eq. 13
' 3b b= 4.80 sh = 7.62.txt orbit 4.0

IF fprmat% = 4 THEN
va# = (1 - 2 / r#) ^ (.5)
vb# = (2 / r#) * COS(p# - a#(2) - pi# / 2) ^ 2 '- pi# / 2
vc# = (1 - vb#) ^ (.5)
v# = va# * vc#

END IF
'Component Karimi, Khorasani Eq.14

' b= 3.51 >> sh = 5.68 orbit 3.364
IF fprmat% = 5 THEN
transv# = (1 - 2 / r#) * COS(p# - a#(2) - pi# / 2)
radial# = (ABS((1 - 2 / r#)) ^ .5) * SIN(p#(2) - a#(2) - pi# / 2)
v# = (radial# ^ 2 + transv# ^ 2) ^ (.5)

END IF

RETURN

Plast:
CLOSE : STOP

Appendix II



Luminosity data for Figures 4 & 5.

The data provided here is from the ray trace projections. The delta angle for two
photons leaving the surface radius at 1.025 was 1e-6 radians and the change in
angle at the escape plane in is the Delta escape angle. The proportional luminosity
is the proportional luminosity referenced to the value at the vertical angle. The
escape radius is the radial distance of the observed point from the center as viewed
at a distance.
Note that two free photons traveling at an angle from each maintain the same
angle. The delta angle for the initial and final positions would be the same, and the
proportional, as well as the relative luminosity, defined here, would be the same
and equal to one.

Luminosity Data

Initial displaced Delta Initial Displaced Delta
Surface Surface Initial Escape Escape Escape
Angle Angle Angle Angle Angle Angle

0 0.000001 0.000001 0 0.000565536 0.000565536
0.0001 0.000101 0.000001 0.056517909 0.057083284 0.000565375
0.0002 0.000201 0.000001 0.113220451 0.113787254 0.000566803
0.0003 0.000301 0.000001 0.169814872 0.170382234 0.000567362
0.0004 0.000401 0.000001 0.226871927 0.227441138 0.000569211
0.0005 0.000501 0.000001 0.284164253 0.284735259 0.000571006
0.0006 0.000601 0.000001 0.341681253 0.342253749 0.000572496
0.0009 0.000901 0.000001 0.517805883 0.5183849 0.000579017
0.0013 0.001301 0.000001 0.763015878 0.763608122 0.000592244
0.002 0.002001 0.000001 1.231570139 1.232220188 0.000650049
0.0024 0.002401 0.000001 1.539032941 1.539755511 0.00072257
0.0025 0.002501 0.000001 1.624307298 1.6250584 0.000751102
0.0027 0.002701 0.000001 1.81005838 1.810893616 0.000835236
0.0028 0.002801 0.000001 1.911447195 1.9123348 0.000887605
0.0031 0.003101 0.000001 2.263398951 2.264505018 0.001106067
0.0033 0.003301 0.000001 2.566210905 2.5676693 0.001458395
0.0037 0.003701 0.000001 3.543882473 3.547295329 0.003412856
0.0038 0.003801 0.000001 4.099719907 4.108902673 0.009182766

Remainder of chart columns

Initial Proportional Relative Escape
Surface Luminocity Luninocity Plane

Angle
 
 

L





2
s

2
s

0L / L Radius



0 3.12665E-06 1 0
0.0001 3.12843E-06 1.000569615 0.147365031
0.0002 3.11269E-06 0.995534308 0.296405398
0.0003 3.10656E-06 0.993573551 0.442326311
0.0004 3.08641E-06 0.987129073 0.592008235
0.0005 3.06703E-06 0.9809326 0.741544887
0.0006 3.05109E-06 0.975833219 0.88985953
0.0009 2.98275E-06 0.953976951 1.349009536
0.0013 2.85101E-06 0.911841119 1.984376818
0.002 2.36651E-06 0.756882253 3.025269097
0.0024 1.91531E-06 0.612576961 3.556394611
0.0025 1.77256E-06 0.56692117 3.695953764
0.0027 1.43345E-06 0.458460688 4.001035464
0.0028 1.26929E-06 0.405957932 4.15570472
0.0031 8.17405E-07 0.261431335 4.629029083
0.0033 4.70164E-07 0.150373109 4.983267875
0.0037 8.58547E-08 0.027458992 5.455776922
0.0038 1.18591E-08 0.003792918 5.678647639


