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Abstract

The Weyl conformal tensor describes the distorting but volume-preserving tidal effects of gravitation on a material
body. A rather complicated combination of the Riemann-Christoffel tensor, the Ricci tensor and the Ricci scalar, the
Weyl tensor is used in the construction of a unique conformally-invariant Lagrangian. In 1938 Cornelius Lanczos
discovered a clever simplification of the mathematics that eliminated the RC term, thus considerably reducing the
complexity of the overall Lagrangian. Here we present an equivalent but simpler approach to the one Lanczos used.

Introduction

In 1918 the German mathematical physicist Hermann Weyl proposed a unification of gravitation and
electromagnetism based on the invariance of the metric tensor with respect to the conformal (or scale)
transformation gµν → exp(π)gµν , where π(x) is an arbitrary scalar function. A decade later Weyl’s idea was
recast as gauge symmetry, which subsequently became a cornerstone of quantum theory. More recently, the notion
of conformal symmetry has been explored in numerous cosmological models, and there is increasing speculation
that conformally invariant geometry may indeed underlie Nature.

Weyl’s theory, which introduced a non-Riemannian geometry in an effort to embed electromagnetism into general
relativity, necessarily relied upon a Lagrangian that was invariant with respect to a local rescaling of the metric
tensor. Weyl believed that the scale parameter π(x) might be related to the gauge transformation property of
electromagnetism via Aµ→ Aµ + ∂µπ, and thus provide an opportunity for deriving Maxwell’s equations from a
purely geometric foundation. The theory failed, but it spurred a considerable amount of interest in gravitational
theories based on conformal invariance. That interest has continued to this day, with many researchers
contributing to the topic, now properly called Weyl conformal gravity.

While he did not employ it in his 1918 theory, Weyl discovered that even in ordinary Riemannian geometry there
is a unique tensor quantity that is conformally invariant. Now called the Weyl conformal tensor Cλναβ , its definition
in four dimensions is
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where Rλναβ is the Riemann-Christoffel curvature tensor
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and where Rνβ = Rλνλβ and R= gµνRµν are its contracted variants (the single subscripted bar stands for ordinary

partial differentiation). As can be easily verified, the quantity Cλναβ remains unchanged when the metric tensor is
rescaled. Consequently, this tensor was considered early on as a candidate for a generalized version of Einstein’s
1915 gravity theory based on this scale or conformal symmetry. The Weyl tensor leads to a unique conformal
Lagrangian that can be used to build an alternative gravity theory. That Lagrangian is

p

−g CµναβCµναβ which,
using (1), works out to be

p

−g Cµναβ Cµναβ =
p

−g
�

RµναβRµναβ − 2RµνR
µν +
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3
R2
�

(2)

This quadratic quantity is of fourth order with respect to the metric tensor and its derivatives, an undesirable
property that greatly complicates the solution of the associated equations of motion. But worse is its mixing of the
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Riemann-Christoffel curvature tensor with its Ricci cousins, which complicates consideration of spaces that are
Riemann-curved but Ricci-flat (such as the Schwarzschild metric). Nevertheless, if conformal invariance is to be
demanded, the Weyl Lagrangian is the only game in town.

An early admirer (and a noted investigator) of Weyl’s gauge idea was the Hungarian mathematical physicist
Cornelius Lanczos, who in a 1938 paper discovered a way to greatly simplify the mathematics by effectively
getting rid of the troublesome RµναβRµναβ term in the Lagrangian. We won’t reproduce his logic here, but will
demonstrate an alternative approach that is equivalent and considerably easier to follow.

Approach

Following Lanczos, we can eliminate the Riemann-Christoffel term RµναβRµναβ if we can find coefficients for the
RµνR

µν and R2 terms differing from the ones in (2). We therefore assume that a more general conformally
invariant action integral like

I =

∫

p

−g
�

RµναβRµναβ + ARµνR
µν + BR2

�

d4 x (3)

exists, where A, B are constants. We can then subtract (2) from (3) to eliminate the RC term, leaving an invariant
Lagrangian consisting of just two terms.

For the infinitesimal change of scale δgµν =−επgµν in four dimensions, the variation of
p

−g is simple:

δ
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p

−g gµνδgµν = 2επ
p

−g

The variations of RµναβRµναβ , RµνR
µν and R2 are more difficult, but the calculations are greatly simplified by

using the Palatini identity
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where, for the infinitesimal change of scale δgµν =−επgµν ,
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For brevity, we will simply write down the variations we’ll need:

δ
p

−gRµναβRµναβ = 4ε
p

−g gαβRβµανπ|µ||ν
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where the double subscripted bar stands for covariant differentiation. Variation of (3) thus gives

δI = ε

∫

p

−g
�

4ε
p

−g gαβRβµαν + 2ARµν + AgµνR+ 6BgµνR
�

π|µ||νd4 x

It might seem at this point that dividing out the π|µ||ν term would give us a useful identity, but that would still
leave the Riemann-Christoffel term. Instead, let us integrate by parts twice over the parameter π, which gives

δI = ε

∫

p

−g
�

4Rµν ||µ||ν + 2ARµν ||µ||ν + AgµνR||µ||ν + 6BgµνR||µ||ν
�

π d4 x

or

δI = ε

∫

p

−g
�

2(A+ 2)Rµν + (A+ 6B)gµνR
�

|µ||ν π d4 x (4)
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Note that in (4) we have used the interesting (and useful) identity

gαβRβµαν||µ||ν = Rµν ||µ||ν

The Riemann-Christoffel term is now gone, having been converted into a divergence of the Ricci tensor. Setting
(4) equal to zero, we now have

�

2(A+ 2)Rµν + (A+ 6B)gµνR
�

||µ||ν = 0

One obvious solution is A=−2, B = 1/3, but that just gives us back the identity (2). However, if A 6=−2 then we
can write

δ

∫

p

−g
�

RµναβRµναβ + ARµνR
µν + B R2

�

d4 x = 2(A+ 2)ε
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�
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If we now set A+ 3B =−1 we can write this as

δ

∫

p

−g
�

RµναβRµναβ + ARµνR
µν + B R2

�

d4 x = 2(A+ 2)ε

∫

π
p
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�

Rµν −
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�

||µ||ν
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The term on the right contains Bianchi’s identity (it’s also the divergence of the Einstein tensor
Gµν = Rµν − 1

2
gµνR), both of which are identically zero. This is essentially what Lanczos discovered in his 1938

paper (he selected A=−4, B = 1). (In 1964, DeWitt discovered the same identity using a far more complicated
argument.)

Finally, by subtracting (2) from (3) the Riemann-Christoffel term cancels, leaving
∫

p

−g CµναβCµναβd4 x =

∫

p

−g
�

RµνR
µν −

1

3
R2
�

d4 x (5)

where we have dropped the meaningless 2(A+ 2) numerical coefficient. This Lagrangian is considered the
‘‘official’’ Lagrangian of Weyl conformal gravity theory. Its primary advantage, other than relative simplicity, is the
absence of the curvature tensor, allowing for equations of motion that are consistent with Rµν = 0.

Conformal Gravity Theory

An arbitrary variation of the metric tensor in (5) now gives

δ

∫

p

−g Cµναβ Cµναβd4 x =

∫

p

−g Wµνδgµνd4 x

where Wµν is a complicated expression involving the Ricci tensor and scalar and their derivatives (in a space
where matter is present, Wµν would be proportional to the symmetric energy tensor Tµν). An exact solution for
the vacuum case Wµν = 0 has been worked out in great detail by Mannheim and Kazanas using the Schwarzschild
line element

ds2 = eν(d x0)2 − eλdr2 − r2dθ 2 − r2 sin2 θdφ2

The solution they found is

eν = e−λ = 1−
β(2− 3γ)

r
− 3βγ+ γr − kr2

where β , γ and k are arbitrary constants. The resemblance of the Mannheim-Kazanas solution to the ordinary
Schwarzschild solution is obvious. The additional terms very possibly have application to the solution of the
galactic rotation, dark matter and dark energy problems.
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