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Abstract

The aim of the paper is to develop a gauge theory, which shall be on the one hand as

similar as possible to the original ansatz of Einstein's theory of general relativity, and on the

other hand in agreement with other gauge theories as, for instance, those of the electroweak

or of the strong interaction. The result is a nonabelian gauge theory with the general linear

group GL(4, R) as its gauge group.

1. What is the problem?

There are three fundamental forces in nature. Each of them has its own theory by which it is
described. These three theories are:

(a) the nonabelian gauge theory of strong interaction

(b) the nonabelian gauge theory of electro weak interaction

(c) the `allgemeine Relativitätstheorie'

If the third theory is compared with the two other ones, there are considerable di�erences between
them. The theory of general relativity is stemming from the year 1916 and hence an elder lady
of almost one hundred years, while the other two theories are of recent date. On the one hand
the theory of general relativity is not quantized and is treating space as a dynamical background,
while on the other hand the two mentioned gauge theories are quantized, but are acting before
a rigid background. These di�erences are a severe problem for the task to develop a quantum
theory of gravitation, a program that shall not be discussed here (cf. f.i. [5] [6] [7]).

The aim of the present paper is to construct a gauge theory of gravitation, which is satisfying two
conditions: On the one hand it shall be similar to the theory of general relativity as far as possible,
and on the other hand ful�l the standards of modern gauge theories, also as far as possible.

In the next section it is investigated to what extent the theory of general relativity already has the
shape of a gauge theory. As a result it can be shown that part of the theory of general relativity can
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be considered as a nonabelian gauge theory with the general linear group GL(4,R) as its gauge
group, But then di�culties arise. For the remaining part of the theory, Einstein's aim to save
general invariance under arbitrary transformations of the coordinates, is not compatible with the
essentials of modern gauge theories. A short review of electrodynamics shall illustrate the reason
for this discrepancy in section 3. The rest of the paper is oriented towards modern gauge theories.
The ansatz of section 4 is still more general and perhaps useful for astrophysical investigations,
while the ansatz in section 5 is in correspondence with the gauge theories mentioned at the
beginning and rather suited for studying gravitation in subatomic regions.

2. What part of the 'allgemeine Relativitätstheorie' has already the form of a gauge

theory?

The element of general relativity most similar to a gauge theory is the formula

R%
σµν = ∂µΓ%σν − ∂νΓ%σµ + Γ%τµΓτσν − Γ%τνΓ

τ
σµ (1)

Especially the last two terms are reminding of a commutator, like the last two terms in the formula

Fµν = ∂µAν − ∂νAµ + AµAν − AνAµ (2)

being valid in nonabelian gauge theories.

In order to investigate, whether this resemblance is only super�cial or more profound, one should
write equation (1) as

R%
σµν = ∂µΓ%σν − ∂νΓ%σµ +K%

σµν (3)

with the quadratic part
K%
σµν = Γ%τµΓτσν − Γ%τνΓ

τ
σµ (4)

being separated. By interchanging the two factors of the last term it will be achieved that the
indices µ and ν are standing in the same seriation in both terms, and only the remaining indices
%, σ and τ may perhaps occur at di�erent places.

K%
σµν = Γ%τµΓτσν − ΓτσµΓ%τν (5)

If now one is trying to write this expression as

K%
σµν = kαβ%γδσΓαγµΓβδν (6)

with certain constants k, then one has to choose these such that

k%τ%τσσ = +1 kτ%%στσ = −1 kαβ%γδσ = 0 else (7)

The next calculation will reveal that the constants k are the same numbers as the structure
constants h for the Liealgebra gl(4,R) of the general linear group GL(4,R).
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The Liealgebra gl(4,R) of GL(4,R) can be spanned by the 16 generators

(s%σ) = i (δ%σ) row % column σ 1 ≤ %, σ ≤ 4 (8)

with the Kronecker symbol δ%σ. Determining the structure constants by calculating the commu-
tators

[
(
sαγ

)
,
(
sβδ

)
] = i · hαβ%γδσ · (s

%
σ) (9)

one �rst of all will �nd that

(sατ ) ·
(
sβω

)
= i · δα% · δβτ · δωσ

(
sβω

)
· (sατ ) = i · δαω · δβ% · δτσ (10)

This implies
h%τ%τσσ = +1 hω%%σωσ = −1 hαβ%γδσ = 0 else (11)

Plugging this into the formula

R%
σµν = ∂µΓ%σν − ∂νΓ%σµ + hαβ%γδσΓαγµΓβδν (12)

for the tensor of curvature, and taking into acount that the summation over ω may be substituted
by the summation over τ , one will �nd that (11) is identical with (7) and hence (12) with (1).

Result of this section:

A part of Einstein's general relativity can be written as a nonabelian gauge theory for the gauge
group GL(4,R).

3. A short review of electrodynamics

Why is it so di�cult, if not to say impossible, to formulate the rest of the theory of general
relativity as a gauge theory? The reason for this shall be illustrated by the following short review
on the classical electrodynamics.

If one is beginning the reconstruction of this theory with the vector jµ, which is comprising the
charge and the current density, then the potential can be introduced as solution of the wave
equation

∂µ∂
µAν = e jν (13)

with suited boundary conditions. Additionally one has the Lorentz convention

∂µA
µ = 0 (14)

The �eld strengths are de�ned by the representation

Fµν = ∂µAν − ∂νAµ (15)

of the tensor Fµν by potentials. The inhomogeneous Maxwell equations are inherent in the �eld
equation

∂µF
µν = e jν (16)
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while the homogeneous equations are an inference of (15).

Another part of electrodynamics is described by the energy momentum tensor. It is de�ned by

T µν = −F µ
αF

να +
1

4
gµνFαβF

αβ (17)

For the free electromagnetic �eld it is conserved. But, if charges and currents are present, then
one will get

∂µT
µν = F µνjµ (18)

In this case the energy momentum tensor describes the in�uence of the electromagnetic �eld on
the charges and currents and the transfer of energy momentum.

Now the reasons for the already mentioned di�culties with the complete transformation of general
relativity into a gauge theory will become a bit clearer.

Einstein's priority aim was the total invariance of his theory under arbitrary coordinate transfor-
mations. As mathematical tools for this task he had tensor calculus and di�erential geometry at
his disposal. In order to achieve his aim Einstein has reduced the tensor curvature tensor to the
Ricci tensor by the contraction

R%
σµν → Rσν (19)

and then described the interaction between matter and the gravitational �eld by an equation,
which is connecting the Ricci tensor with the energy momentum tensor. But this procedure is an
obstacle to the continuation of the intended construction of a nonabelian gauge theory. By the
projection onto the Ricci tensor the nonabelian character of the theory is lost. The contraction
of the index % with the index µ cannot be carried out, because % and σ belong together in a
gauge theory and are substituted by a single index a.

The essential point is that Einstein is operating with the energy momentum tensor instead of
deriving a �eld equation, which describes, as usual in quantum �eld theory, the interaction by a
current density. This becomes especially clear by the fact that his description of electrodynamics
is containing such an equation (formula (63) on page 813 of the original paper), which is lacking
in his theory of gravitation.

For all these reasons the total transformation of the theory of general relativity into a gauge
theory cannot be achieved. But instead the construction, as far as it already was done in section
2, shall be continued in the next two sections with the style of modern gauge theories as its
guiding principle. The ansatz of section 4 is still more general, while the ansatz of section 5 is
following the design of the already existing gauge theories of strong and electroweak interaction.

4. A general ansatz

There are two obstacles standing against the intention to continue the construction of a gauge
theory:
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(a) In equation (1) there is no coupling constant. But such a constant is needed for the quadratic
term in nonabelian gauge theories.

(b) Instead of the two indices % and σ there is only one variable a in a gauge theory.

In order to remove the �rst fault let be

Γ%σµ = −gA%σµ R%
σµν = −gF %

σµν (20)

Under the condition that the coupling constant g doesn't vanish, one will have

F %
σµν = ∂µA

%
σν − ∂νA%σµ + ghαβ%γδσΓαγµΓβδν (21)

after having divided all parts of the equation through −g. By the further substitution

A%σµ = Aaµ A%τµ = Abµ Aτσµ = Acµ F %
σµν = F a

µν h%τ%τσσ = habc (22)

the second de�ciency will be removed, too. The result is

F a
µν = ∂µA

a
ν − ∂νAaµ − ghabcAbµAcν (23)

As a sake of simplicity and with the intention to write down some explicit results the rest of the
investigation is reduced to one spatial dimension. In this case the Lie algebra gl(2,R) has four
generators

s1 = i

(
0 1
0 0

)
s2 = i

(
0 0
1 0

)
s3 = i

(
1 0
0 0

)
s4 = i

(
0 0
0 1

)
(24)

The commutators
[sa, sb] = i · habc · sc (25)

are listed in the table

[si, sj] s1 s2 s3 s4

s1 0 s3 − s4 −s1 +s1

s2 s4 − s3 0 +s2 −s2

s3 +s1 −s2 0 0
s4 −s1 +s2 0 0

The structure constants are

h123 = −1 h213 = +1
h124 = +1 h214 = −1
h131 = +1 h311 = −1
h141 = −1 h411 = +1
h232 = −1 h322 = +1
h242 = +1 h422 = −1
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Now the interaction between matter and the gravitational �eld must be determined. For this
purpose matter is described by a mass density % and a suited current density ~j, such that the
vector jµ satis�es the continuity relation

∂µj
µ = 0 jµ = (%,

1

c
~j) (26)

This equation is taken as the starting point for the gauge formalism. Potentials are introduced
by means of the covariant derivative

Dµ = ∂µ + gAaµs
a (27)

Variation of the Lagrangian

L = −1

4
F a
µνF

a,µν + gAaµs
ajµ F a,µν = ∂µA

a,ν − ∂νAa,µ − ghabcAb,µAc,ν (28)

with respect to the potentials and their derivatives will give the result

∂µF
a,µν = ghabcAbµF

c,µν + gja,ν ja,ν = jνsa (29)

Additionally, as in electrodynamics, the Lorentz convention

∂µA
a,µ = 0 (30)

is taken as a gauge �xing condition.

5. A special ansatz

In this section the starting point of the gauge formalism is, as usual, the homogeneous Dirac
equation

(iγµ∂µ −m)ψ = 0 (31)

The covariant derivative is
Dµ = ∂µ + igAaµs

a (32)

Equation (32) then changes into
(iγµDµ −m)ψ = 0 (33)

The tensor of the �eld strength is

F a,µν = ∂µA
a,ν − ∂νAa,µ − ghabcAb,µAc,ν (34)

Variation of the Lagrangian density

L = ψ̄(iγµDµ −m)ψ − 1

4
F a
µνF

a,µν (35)

with respect to the three �elds inherent in it will give a system

6



iγµ∂µψ(x)−mψ(x) = gγµψ(x)Aaµs
a

−i∂µψ̄(x)γµ −mψ̄(x) = gψ̄(x)γµAaµs
a

∂µF
a,µν = ghabcAbµF

c,µν + gψ̄(x)γνsaψ(x)

of three coupled equations.

A �nal remark concerning the special case of vanishing current density may be added.

If in the equation
∂µF

a,µν = ghabcAbµF
c,µν + gja,ν (36)

the coupling constant g is set to zero, then (36) will become the free wave equation

�Aaν = 0 � = ∂µ∂
µ (37)

which is only the four-fold copy of the corresponding equation of electrodynamics. But if one
leaves g di�erent from zero and con�nes the gravitational �eld to the region without charges and
currents, then one has jaν = 0. In this case equation (36) will become

∂µF
a,µν = ghabcAbµF

c,µν F a,µν = ∂µAa,ν − ∂νAa,µ − ghabcAb,µAc,ν (38)

An additional term occurs, which is due to the nonabelian character of the general linear group
GL(4,R) and hence lacking in electrodynamics. By inserting F a,µν into the left hand side of the
�rst equation in (38), separating the non linear term, and shifting it to the right hand side, one
will get

�Aaν = ghabc(∂µ(Ab,µAc,ν) + AbµF
c,µν) F c,µν = ∂µAc,ν − ∂νAc,µ − ghcdeAd,µAe,ν (39)

This is an inhomogeneous �eld equation for the potentials Aaµ with an interaction term on the
right hand side. The interaction being inherent in it can be understood as self interaction of the
gravitational �eld with itself. From this fact further questions arise: What does the application
of perturbation theory bring about? Can the existence of black holes be explained by equation
(39)?

But all this must remain a topic for future investigations.
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