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Indefinite metric vectors are absolutely required as the physical states in Minkowski space because
that is indefinite metric space and the physical space-time. For example, Maxwell equations are wave
equations in Minkowski space. However, traditional Quantum theory ordinarily has been studied
only in definite metric space, i.e., Hilbert space. There are no clear expression for indefinite metric
vectors. Here we show a wave function example using Dirac’s delta function for indefinite metric
vectors in Minkowski space. In addition, we show the vectors can interfere with itself.

I. INTRODUCTION

When we take advantage of non-observable potentials
that can be identified as indefinite metric vectors, we
can interpret single photon and electron interferences and
entanglement without quantum-superposition.[1, 2]

First, we deal with the definition of metric space. Arbi-
trary state vectors |ϕ〉 and |ψ〉 satisfy following conditions
in definite metric space.

〈ϕ|ψ〉 = 〈ψ|ϕ〉∗

〈ϕ|ϕ〉 ≥ 0

〈ψ|ψ〉 = 0⇔ |ψ〉 = 0 (1)

In contrast, the second and third relations are replaced
with 〈ϕ|ϕ〉 = α and 〈ψ|ψ〉 = 0 ⇔ |ψ〉 6= 0 or 0 in indefi-
nite metric space. Where α is an arbitrary number.

Minkowski space is divided into time-like (T), light-like
(L), space-like (S) parts and point of the origin P (x =
0, t = 0). Traditional quantum theory has been studied in
T⊕P. Where ⊕ stands for direct sum. However the non-
observable potentials which can be identified as indefinite
metric vectors propagate at the speed of light. Hence the
vectors will be on the surface of the light cone, i.e., L. Of
course photons in free space are on L. Because there exist
some entity related to the non-observable potentials and
the photons in free space on the light cone but can not be
observe any entities, there must be the vector |ψ〉L 6= 0
with the norm 〈ψ|ψ〉L = 0. Although the vectors exist
on the light cone, P does not belong to L, i.e., |ψ〉P 6=
0⇒ 〈ψ|ψ〉P > 0.

The space-like part S is estimated to have the rest of
the characteristics, i.e., negative norm 〈ψ|ψ〉S < 0.

Therefore we should study the states in T⊕P⊕L as the
physical states instead of (1). In this letter, we show a
wave function example using Dirac’s delta function for in-
definite metric vectors in Minkowski space satisfied with
the following conditions.

〈ϕ|ψ〉T⊕P⊕L = 〈ψ|ϕ〉∗T⊕P⊕L
〈ψ|ψ〉T⊕P ≥ 0

〈ψ|ψ〉T⊕P⊕L ≥ 0

〈ψ|ψ〉T⊕P = 0⇔ |ψ〉T⊕P = 0

〈ψ|ψ〉L = 0⇔ |ψ〉L 6= 0 (2)
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II. AN EXAMPLE EXPRESSION

Let |ϕ〉 is an observable physical state in T⊕P, and
|ψ〉 is an indefinite metric vector in L. Note that |ψ〉 can
be observed in T⊕P. These stats are expressed by wave
functions ϕ(x) and ψ(x) as follows.

〈ϕ|ϕ〉T⊕P =

∫
ϕ∗(x)ϕ(x)dx ≥ 0

〈ψ|ψ〉L =

∫
ψ∗(x)ψ(x)dx = 0

〈ψ|ψ〉T⊕P ≥ 0

〈ϕ|ψ〉T⊕P⊕L =

∫
ϕ∗(x)ψ(x)dx = 〈ψ|ϕ〉∗T⊕P⊕L (3)

We can easily confirm the following ϕ(x) and ψ(x) satisfy
the above relations.

ϕ(x) = f(x) = |f(x)|e−iθ

ψ(x) = aeiαx
√
δ(x) = |a|ei(αx+φ)

√
δ(x) (4)

where f(x), δ(x), a and α are a traditional wave function,
i.e., 〈ϕ|ϕ〉T⊕P = 〈f |f〉 =

∫
|f(x)|2dx ≥ 0, Dirac’s delta

function, an arbitrary complex number and an arbitrary
complex number of dimension [x]−1 respectively.

The dimension of 〈f |f〉 =
∫
|f(x)|2dx and 〈ψ|ψ〉 =∫

|ψ(x)|2dx are [x]0 which means the dimensions of f(x)

and ψ(x) are [x]−
1
2 . Because the dimension of

√
δ(x) is

[x]−
1
2 , the expression of (4) using

√
δ(x) is valid from the

point of view of dimension. From (4), followings can be
calculated.

〈ψ|ψ〉T⊕P =

∫
|a|2e−i(αx+φ)ei(αx+φ)δ(x)dx = |a|2 ≥ 0

〈ψ|ψ〉T⊕P = 0⇒ |a| = 0⇒ ψ(x) = 0

〈ψ|ψ〉L =

∫
|a|2e−i(αε+φ)ei(αε+φ)δ(ε)dx = 0

〈ψ|ψ〉L = 0⇔ |a| 6= 0 (5)

where ε 6= 0 ( 6= P).

〈ϕ|ψ〉T⊕P⊕L =

∫
ϕ∗(x)ψ(x)dx

=

∫
af∗(x)eiαx

√
δ(x)dx

=

∫
|a||f(x)|ei(αx+θ+φ)

√
δ(x)dx (6)
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〈ψ|ϕ〉T⊕P⊕L =

∫
ψ∗(x)ϕ(x)dx

=

∫
a∗f(x)e−iαx

√
δ(x)dx

=

∫
|a||f(x)|e−i(αx+θ+φ)

√
δ(x)dx (7)

In order to clarify the characteristics of
∫ √

δ(x)dx, here

we consider ψ(x) = f(x)
√
δ(x), f(0) 6= 0.∫

ψ∗(x)ψ(x)dx =

∫
|f(x)|2

√
δ(x)

√
δ(x)dx

=

∫
|f(x)|2δ(x)dx

= |f(0)|2 6= 0 (8)

Therefore
∫
af(x)

√
δ(x)dx is estimated to be 6= 0.

If ∫
f(x)

√
δ(x)dx = βf(0) (9)

where β is a coefficient, (6) and (7) are calculated to be
as follows.

〈ϕ|ψ〉T⊕P⊕L = β|a||f(0)|ei(θ+φ)

〈ψ|ϕ〉T⊕P⊕L = β|a||f(0)|e−i(θ+φ) (10)

These relations (5) and (10) correspond to (2) except
〈ψ|ψ〉T⊕P⊕L ≥ 0.

Note that, we must establish the (9) in order to justify
the results.

III. APPLICATION - SELF-INTERFERENCE

When we choose ϕ(x) = f(x) + ψ(x) in (4), i.e.,
|ϕ〉T⊕P⊕L = |f〉T⊕P + |ψ〉L, as a physical state, the norm
is calculated to be as follows. Where 〈f |f〉 = 〈f |f〉T⊕P,
〈ψ|f〉 = 〈ψ|f〉T⊕P⊕L, 〈f |ψ〉 = 〈f |ψ〉T⊕P⊕L and 〈ψ|ψ〉 =
〈ψ|ψ〉L.

〈ϕ|ϕ〉T⊕P⊕L = 〈f |f〉+ 〈ψ|f〉+ 〈f |ψ〉+ 〈ψ|ψ〉
= 〈f |f〉+ 2β|a||f(0)| cos (θ + φ) (11)

When |a| = 〈f |f〉
2 and β = 1

|f(0)| then

〈ϕ|ϕ〉T⊕P⊕L = 2〈f |f〉
{

1

2
+

1

2
cos (θ + φ)

}
(12)

Therefore if |a| = 〈f |f〉
2 and (9) is∫

f(x)
√
δ(x)dx =

f(0)

|f(0)|
(13)

then 〈ϕ|ϕ〉T⊕P⊕L ≥ 0 can be satisfied.
When the maximum norm cos (θ + φ) = 1 is normal-

ized, i.e., 〈ϕ|ϕ〉T⊕P⊕L = 1, 〈f |f〉 = 1
2 will express self

interference of |ϕ〉T⊕P⊕L. This relation

〈ϕ|ϕ〉T⊕P⊕L =
1

2
+

1

2
cos (θ + φ) (14)

can describe the single photon and electron interferences.

IV. GENERALIZATION FOR VECTOR SPACE

Here we generalize the above discussion to vector
space. Let’s consider zero norm vectors set. The set
becomes vector space V0under following conditions.

A) For arbitrarily |γ〉, |γ′〉 ∈ V0, i.e., 〈γ|γ〉 = 〈γ′|γ′〉 =
0, V0 is closed under multiplication, i.e., |γ〉+ |γ′〉 ∈ V0

with associative law, existence of zero element, existence
of inverse element and commutative law of addition.

B) For arbitrarily |γ〉 ∈ V0 and λ ∈ F (field of scalars),
V0 is closed under multiplication of the scalar, i.e., λ|γ〉 ∈
V0 with associative law of scalar multiple, 1|γ〉 = |γ〉,
distributive law of scalar and elements.

From A), the norm |γ〉+ |γ′〉 is calculate to be 〈γ|γ〉+
〈γ′|γ′〉 + 2Re〈γ|γ′〉 = 2Re〈γ|γ′〉 = 0 then 〈γ|γ′〉 = iµ,
where µ is a real number, i.e., 〈γ|γ′〉 is a purely imaginary
number.

From B), the norm |γ〉+λ|γ′〉 is calculate to be 〈γ|γ〉+
|λ|2〈γ′|γ′〉+2Reλ〈γ|γ′〉 = 2Reλ〈γ|γ′〉 = 0 then λ〈γ|γ′〉 =
iµ′, where µ′ is a real number. Because 〈γ|γ′〉 is a purely
imaginary number, then λ ∈ F (field of scalars) must be
a real number. Therefore, V0 is a real vector space.

In contrast, a complex vector space Hphys which is pos-
itive semidefinite space, has been studied as the physical
states in traditional quantum theory.

However we should study the vectors formed by the
direct sum Vphys = Hphys ⊕ V0 as the real physical
states whose norms are positive semidefinite.

For example, the norm of

|ϕ〉(∈ Vphys) = |f〉(∈ Hphys) + |γ〉(∈ H0) (15)

is calculated to be

〈ϕ|ϕ〉 = 〈f |f〉+ 〈γ|f〉+ 〈f |γ〉+ 〈γ|γ〉
= 〈f |f〉+ 〈γ|f〉+ 〈f |γ〉 (16)

Therefore 〈γ|f〉 should be 〈f |f〉2 eiθ because of the positive

semidefinite norm 〈ϕ|ϕ〉 = 2〈f |f〉
{

1
2 + 1

2 cos θ
}
≥ 0.

V. CONCLUSION

Traditional quantum theory has been studied by us-
ing |ψ〉T⊕P. However we should study |ψ〉T⊕P⊕L as the
physical states instead of |ψ〉T⊕P. In order to justify the
above example expression, we must establish the (9) or
(13).
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