СУЩЕСТВУЕТ ЛИ ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ?

Д.т.н., проф. В.Эткин

Показано, что токи смещения и проводимости определяются конвективной производной вектора индукции и направлены встречно, а цепи переменных токов, разорванные конденсаторами, не образуют вихревого электрического поля. Сделан вывод о необходимости пересмотра ряда положений электродинамики и физики в целом

Введение. Известно, что при создании теории электромагнитного поля Дж. К. Максвелл исходил из предположения, что всякое изменение магнитного (вихревого) поля вызывает появление вихревого электрического поля (и наоборот) [1]. Для этого было необходимо, чтобы в разрыве цепи переменного тока, образованной конденсатором, протекал некоторый ток \mathbf{J}^c , который как бы «продолжал» ток проводимости \mathbf{J}_e и «замыкал» его. Максвелл назвал его «током смещения», определив его плотность \mathbf{j}^c как частную производную $\partial \mathbf{D}/\partial t$ по времени t от вектора электрического смещения \mathbf{D} . Этот ток предполагался способным порождать магнитное поле \mathbf{H} наравне с током проводимости, что позволяло представить «полный ток» в виде суммы переменного тока проводимости \mathbf{j}_e и тока смещения \mathbf{j}^c , и тем самым обобщить понятие вихревого электрического поля (rot $\mathbf{E} \neq 0$) на цепи переменного тока. Дополненный таким образом закон стал именоваться вторым уравнением Максвелла:

$$rot \mathbf{H} = \mathbf{j}_{e} + \partial \mathbf{D}/\partial t. \tag{1}$$

В последующем он объединил вихревое электрическое поле с магнитным в единое электромагнитное поле, представив его носителем электромагнитных волн и, в частности, света. Однако с изгнанием эфира из физики XX столетия существование каких-либо зарядов и токов в вакууме стало противоречить господствующей парадигме естествознания. Обнаружился также ряд эффектов, не укладывающихся в рамки теории Максвелла [2]. Это указывало на неполноту его теории и на необходимость более тщательного анализа ее исходных положений. В настоящей статье мы рассмотрим, насколько обосновано требование создания замкнутой цепи переменного тока и утверждения о вихревом характере электрического поля.

1. Общефизическое представление о потоках смещения.

Рассмотрим некоторую континуальную среду, характеризующуюся неравномерным распределением по объему системы V плотности $\rho_i = \rho_i(\mathbf{r},t)$ каких-либо энергоносителей Θ_i

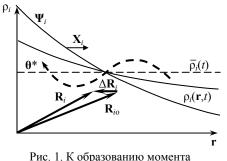


Рис. 1. К образованию момента распределения.

(массы M, заряда Q_e , энтропии S, чисел молей k-х веществ N_k и т.п.) как функции радиус-вектора точки поля ${\bf r}$ и времени t^{-1} [3]. На рис. 1 такое распределение $\rho_i = \partial \Theta_i / \partial V$ и соответствующего ей обобщенного потенциала Ψ_i показано сплошными линиями. Как явствует из рисунка, при отклонении распределения Θ_i от равномерного (горизонтальная линия) с плотностью $\overline{\rho}_i(t)$ некоторое количество Θ_i^* величины Θ_i переносится из одной части системы в другую. Это вызывает смещение радиус-

¹ Под энергоносителем понимается материальный носитель *i*-й составляющей энергии, количественной мерой которого служит физическая величина Θ_i . Так, масса k-го вещества M_k является носителем энергии покоя; заряд Θ_e — носителем электростатической энергии системы; импульс компонента $M_k \mathbf{v}_k$ — носителем ее кинетической энергии и т.п.

вектора центра \mathbf{R}_i этого параметра из первоначального положения \mathbf{R}_{i0} на величину $\Delta \mathbf{R}_i$. Положение \mathbf{R}_i центра какой-либо экстенсивной величины Θ_i , в текущем (неоднородном) и исходном (однородном) состояниях определяется известными выражениями:

$$\mathbf{R}_{i} = \Theta_{i}^{-1} \int \rho_{i}(\mathbf{r}, t) \, \mathbf{r} dV \, ; \, \mathbf{R}_{i0} = \, \Theta_{i}^{-1} \int \overline{\rho}_{i}(t) \, \mathbf{r} dV \qquad (i = 1, 2, ..., n)$$

Таким образом, состояние пространственно неоднородной системы характеризуется возникновением специфических «моментов распределения» \mathbf{Z}_i энергоносителей Θ_i :

$$\mathbf{Z}_{i} = \Theta_{i} \Delta \mathbf{R}_{i} = \int_{V} \left[\rho_{i} \left(\mathbf{r}, t \right) - \overline{\rho}_{i} \left(t \right) \right] \mathbf{r} dV. \tag{3}$$

Здесь $\Delta \mathbf{R}_i = (\mathbf{R}_i - \mathbf{R}_{i0})$ – векторы смещения центра величины Θ_i (массы, заряда, энтропии, импульса относительного движения частей системы и т.п.) от ее равновесного положения. В результате этого возникают некоторые «моменты распределения» \mathbf{Z}_i экстенсивных параметров Θ_i с плечом $\Delta \mathbf{R}_i$.

Для выяснения связи моментов распределения $\mathbf{Z}_i = \mathbf{Z}_i(\Theta_i, \mathbf{R}_i)$ с векторами электрической и магнитной индукции \mathbf{D} и \mathbf{B} рассмотрим величину этого момента для системы единичного объема:

$$\mathbf{Z}_{iV} \equiv \partial \mathbf{Z}_{i}/\partial V = \Theta_{i}\partial \Delta \mathbf{R}_{i}/\partial V + \Delta \mathbf{R}_{i}\partial \Theta_{i}/\partial V. \tag{4}$$

При $V \to 0$ («стягивании» системы в точку) $\Delta \mathbf{R}_i \to 0$ и $\rho_i = \partial \Theta_i / \partial V \to \overline{\rho}_i (t)$, первое слагаемое в правой части (4) обращается в нуль, так что $\mathbf{Z}_{iV} = \rho_i \Delta \mathbf{R}_i$. Отсюда следует, что полная производная от \mathbf{Z}_{iV} как функция \mathbf{R}_i и времени t имеет вид:

$$d\mathbf{Z}_{iV}/dt = (\partial \mathbf{Z}_{iV}/\partial t) + (\mathbf{v}_{i}^{c} \cdot \nabla)\mathbf{Z}_{iV}. \tag{5}$$

Первое слагаемое в правой части этого выражения характеризует так называемое «локальное» изменение параметра \mathbf{Z}_{iV} , обусловленное теплообменом, массообменном, электризацией и т.п. и не связанное с процессом перераспределения ($\mathbf{R}_i = const$); второе – «конвективное» изменение этого момента, обусловленное смещением энергоносителя Θ_i со скоростью $\mathbf{v}_i^{\, \mathrm{c}} = d\mathbf{R}_i/dt$, т.е. возникновением потока его смещения с плотностью

$$\mathbf{j}_{i}^{c} = \rho_{i} \mathbf{v}_{i} , \qquad (6)$$

где

$$\rho_i = \text{div} \mathbf{Z}_{iV} \tag{7}$$

- плотность этого энергоносителя.

Применяя выражение (7) к частному случаю диэлектриков и магнетиков, нетрудно заметить, что параметр \mathbf{Z}_{iV} для них имеет смысл векторов электрической и магнитной индукции $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$ и $\mathbf{B} = \mu_0 \mathbf{H} + \mathbf{M}$, где \mathbf{P} и \mathbf{B} – векторы поляризации и намагничивания.

Как видим, понятие плотности «потока смещения» (заряда, вещества, энтропии, импульса и т.п.) вполне адекватно существу процесса перераспределения и имеет вполне определенный физический смысл. Его отличие от удельного расхода этих энергоносителей через границу системы состоит лишь в том, что они не пересекают их, т.е. являются внутренними. Отсюда и другая особенность потоков смещения — их принципиальная нестационарность и финитность (ограниченность во времени). Такой их характер обусловлен тем, что процессы перераспределения экстенсивных параметров Θ_i заканчиваются с установлением нового распределения — как равновесного, так и неравновесного, в то время как обычные потоки через границы системы, как и токи проводимости в замкнутой цепи, могут протекать как угодно долго (быть стационарными).

В изолированных системах, подчиняющихся законам сохранения энергии, массы, заряда, импульса и его момента, такие (внутренние) потоки являются единственно возможными. Поэтому с ними приходится иметь дело во многих областях знания, а не только в электротехнике. Например, в механике сплошных сред, гидродинамике и аэродинамике полные потоки смещения \mathbf{J}_{i}^{c} по своей сути и размерности тождественны понятию количества движения (импульса) относительного движения макроскопических частей неподвижной в целом системы $J_m^c = Mv^c$ [3]. В частности, в процессах перемешивания (диффузии) они называются диффузионными потоками k-х компонентов системы $\mathbf{J}_k^{\,\mathrm{c}}$ и выражаются произведением массы переносимого вещества M_k на скорость ее смещения $\mathbf{v}_k^{\ \mathbf{c}}$ относительно общего центра массы. В диэлектриках такие потоки возникают при их поляризации (относительном смещении положительных и отрицательных зарядов в их молекулах). Имеются они и в магнетиках, возникая в процессе их намагничивания (создания магнитных диполей с разнесенными в пространстве полюсами). В теории теплообмена потоки смещения встречаются при термической релаксации системы, сопровождающейся перераспределением энтропии S между частями системы. Соответствующие потоки смещения энтропии \mathbf{J}_s^c связаны с потоком тепла \mathbf{J}_q в законе Фурье простым соотношением $\mathbf{J}_s^c = \mathbf{J}_q/T$. Наблюдаются такие потоки смещения и в акустике, например, при продвижении фронта ударной волны в закрытом волноводе, а также в электрохимии гальванических и топливных элементах, где потоки реагентов J_k^c связаны стехиометрическим соотношением. С полными потоками смещения приходится иметь дело и в электротехнике. Так, в законе Ампера сила взаимодействия F двух проводников длиной L и сечением f пропорциональна именно полному току смещения свободного заряда через проводник $J_e^c = \int_e^c dV$, где dV= dfdL. В термоэлементах полный поток тепла Томсона $Q_{\rm T}$ через поверхность их электродов также пропорциональна полному току в объеме каждого электрода $J_e = \int_{i_e} dV$.

Словом, возникновение потоков смещения в материальных средах является общефизическим явлением. Отличить эти потоки $\mathbf{J}_i^{\ c} = d\mathbf{Z}_i/dt = \Theta_i \mathbf{v}_i^{\ c}$ от понятия расхода $d\Theta_i/dt$ какой-либо величины Θ_i можно не только по их векторной природе, но и по размерности. Что же касается их плотности $\mathbf{j}_i^{\ c} = \rho_i \mathbf{v}_i$, то они отличаются только тем, что их локальная скорость \mathbf{v}_i уменьшается до нуля на концах линии тока (на границах системы).

Представляет теперь интерес выяснить, насколько соответствует понятие тока смещения Максвелла данному здесь общефизическому представлению о них.

2. Реальны ли токи смещения Максвелла?

Нетрудно заметить, что в соответствии с (5) полная производная по времени вектора электрической индукции **D** включает наряду с локальной составляющей $(\partial \mathbf{D}/\partial t)$ в общем случае токи смещения как свободных $\mathbf{j_c}^c = \rho_e \mathbf{v_e}$ и связанных зарядов $\mathbf{j}^c = \rho_c \mathbf{v_c}$:

$$d\mathbf{D}/dt = (\partial \mathbf{D}/\partial t) + \varepsilon_0^{-1}(\mathbf{v}_e \cdot \nabla)\mathbf{E} + (\mathbf{v}_c \cdot \nabla)\mathbf{P} = (\partial \mathbf{D}/\partial t) + \mathbf{j}_e + \mathbf{j}^c.$$
 (8)

Здесь \mathbf{v}_e , \mathbf{v}_c – скорость смещения свободных и связанных зарядов для системы единичного объема. Отсюда следует, что токи смещения не только свободных, но и связанных зарядов в цепях переменного тока определяются «конвективной» составляющей $(\mathbf{v} \cdot \nabla) \mathbf{D}$, вектора \mathbf{D} , так что отнесение их Максвеллом к локальной производной $(\partial \mathbf{D}/\partial t)$ лишено каких-либо оснований. Эта величина отлична от нуля и в отсутствие какого-либо тока через вакуумный промежуток конденсатора, например, вследствие квазистатического (бесконечно медленного) накопления заряда на обкладках конденсатора (когда $\mathbf{j}^c \to 0$). Естественно поэтому, что производную $(\partial \mathbf{D}/\partial t)$ «нельзя считать скоростью переноса чего-либо» [2]. Максвелл ввел производную $(\partial \mathbf{D}/\partial t)$ в закон Ампера

$$rot\mathbf{H} = \mathbf{j}_{e} \tag{9}$$

с тем, чтобы избежать казавшееся ему недопустимым нарушение непрерывности цепи переменного тока. Действительно, взяв дивергенцию гот \mathbf{H} (которая всегда равна нулю), найдем, что согласно (9) $\mathrm{div}\mathbf{j_c}=0$. Максвелл интерпретировал это обстоятельство так, как будто ток проводимости в конденсаторе непрерывно переходит в некоторый ток $\mathbf{j^c}=\partial\mathbf{D}/\partial t$, который он назвал «током смещения». Это было сделано для того, чтобы оправдать возникновение в зазоре конденсатора созданного этим током локального вихревого поля с $\mathrm{rot}\mathbf{H}\neq 0$. Лишь много позднее Э.Парселл показал, это поле может быть обусловлено и токами в проводниках, подводящих заряд к обкладкам конденсатора [4]. С учетом (8) это допускает отсутствие вообще какого-либо тока через конденсатор не проходит ($\mathbf{j_c}$, $\mathbf{j^c}=0$). Таким образом, необходимость дополнения закона Ампера (9) членом $\partial\mathbf{D}/\partial t$ вытекала в действительности не из условия замкнутости цепи переменного тока, а из необходимости рассматривать в соответствии с (5) полную производную по времени от любых параметров неоднородной системы \mathbf{Z}_{iV} , и в том числе от вектора индукции \mathbf{D} . Это не требует интерпретации производной $\partial\mathbf{D}/\partial t$ как некоторого тока.

Характерно, что само по себе открытое М.Фарадеем явление магнитной индукции, т.е. возникновения тока при изменении напряженности магнитного поля, отнюдь не требовало замкнутости электрического контуров, в которых наводится ЭДС индукции [5]. Способность переменных токов свободных зарядов существовать и в разомкнутых контурах, приводя к возникновению в них колебательных процессов, была известна давно. Поэтому лишь стремлением Максвелла доказать существование электромагнитного поля с $\text{rot}\mathbf{E} \neq 0$ можно объяснить его предположение о том, что вихревое магнитное поле в зазоре конденсатора имеет ту же величину и направление, что и на остальных участках цепи.

Чтобы окончательно убедиться в ошибочности такого допущения, воспользуемся данным в [3,6] энергодинамическим выводом уравнений Максвелла, опирающимся на первичные принципы неравновесной термодинамики. Термодинамический метод, как известно, базируется на свойствах полного дифференциала ряда функций состояния типа $\mathbf{Z}_i = \mathbf{Z}_i(\Theta_i, \mathbf{R}_i)$. В соответствии с этим второе уравнение Максвелла принимает вид:

$$rot \mathbf{H} = d\mathbf{D}/dt, \tag{10}$$

что с учетом (8) означает необходимость дополнения закона Ампера полной производной от вектора электрической индукции \mathbf{D} . В таком случае взятие дивергенции от обеих частей (8) приводит к соотношению:

$$\operatorname{div}[\mathbf{j}_{e} + \mathbf{j}^{c} + (\partial \mathbf{D}/\partial t)] = 0. \tag{11}$$

Отсюда следует, что для неполяризуемых диэлектриков и вакуума ($\mathbf{j}^c = 0$) div $\mathbf{j}_e^c = -(\partial \mathbf{D}/\partial t) = \partial \rho_e/\partial t$, т.е. ток смещения свободных зарядов вызывает лишь накопление заряда на обкладках конденсатора и в конце этого процесса исчезает. В более общем случае $\mathbf{j}_e = -\mathbf{j}^c - (\partial \mathbf{D}/\partial t)$, т.е. в цепях переменного тока наряду с зарядкой конденсатора наблюдаются токи смещения связанных зарядов \mathbf{j}^c , которые направлены *навстречу* току свободных зарядов, но отнюдь не «продолжают» их. На это указывает сам факт прекращения процесса зарядки конденсатора, какой бы смысл мы ни вкладывали в \mathbf{j}_e^c и \mathbf{j}^c . Иными словами, предположение о замкнутости цепи переменного тока не соответствует существу дела. Особенно очевидным становится это, если мы разведем обкладки конденсатора на противоположные концы спрямленного проводника, и в середину его включим генератор переменного тока. Тогда мы получим диполь Герца, в котором токи свободных зарядов периодически смещаются в ту или иную сторону, не выходя при этом за границы диполя. Это и порождает в излучателе и его ближней зоне электромагнитные колебания. По мере удаления от антенны энергия этих колебаний преобразуется в энергию колебаний плотности эфира. При этом колебания становятся синфазными, образуя бегущую продольную волну

плотности эфира. Именно так представлял себе процесс излучения Н. Тесла, который считал, что «беспроводный передатчик...производит продольные волны в эфире, поведение которых похоже на поведение звуковых волн в воздухе, за исключением того, что огромная упругость и крайне малая плотность данной среды делает их скорости равной скорости света» [7]. Таким образом, к выводу Максвелла о существовании вихревого электрического поля вела целая цепочка допущений. Последствия, к которым привели эти допущения, оказались слишком серьезными.

Прежде всего, допущение о существовании в эфире вихревого электрического поля противоречило экспериментально обнаруженному потенциальному характеру кулоновского поля зарядов. В действительности вихревыми являются только магнитные поля, которые, строго говоря, являются полями не сил, а их моментов [8].

Далее, согласно тому же Максвеллу, на единичный заряд в замкнутом электрическом контуре помимо электростатического поля $\mathbf{E} = -\nabla \varphi$ действует в общем случае магнитная сила $\partial \mathbf{A}/\partial t$, создаваемая переменным во времени векторным магнитным потенциалом \mathbf{A} , а также сила Лоренца $\mathbf{v}_e \times \mathbf{B}$, связанная с этим потенциалом соотношением $\mathbf{B} = \mathrm{rot} \mathbf{A}$. Циркуляцию суммы этих сил по замкнутому контуру длиной L_e он назвал электродвижущей силой (ЭДС) [1]:

ЭДС =
$$\oint (-\nabla \varphi - \partial \mathbf{A}/\partial t + \mathbf{v} \times \mathbf{B}) d\mathbf{L}_e$$
 (12)

В стационарном электрическом поле интеграл от $\nabla \phi$ по замкнутому контуру исчезает. Таким образом, электрическое поле $\mathbf{E} = -\nabla \phi$ не совершает работы на замкнутом пути в силу своей потенциальности. Работу на таком пути совершают лишь «фарадеевская» $\partial \mathbf{A}/\partial \mathbf{t}$ и «лоренцова» $\mathbf{v} \times \mathbf{B}$ силы, имеющие вихревую природу и называемые обычно «сторонними» силами. Поэтому поле результирующих сил, выражаемых соотношением (12), следовало бы называть не электрическим полем, а *полем электродвижущих сил*. Само же электрическое поле $\mathbf{E} = -\nabla \phi$ как составляющая этой электродвижущей силы, создаваемая неподвижными зарядами, не может быть вихревым 1).

Следующее противоречие порождает предположение Максвелла о взаимном превращении вихревых электрических и магнитных полей в вакууме. Известно, что между четырьмя параметрами ${\bf E, H, D}$ и ${\bf B, \phi}$ игурирующими в его уравнениях, в эфире или ЭМП существуют 3 уравнения связи: ${\bf D}=\epsilon_{\rm o}{\bf E; B}=\mu_{\rm o}{\bf H}$ и ${\bf H}={\bf H(E)}^{2)}$. Это означает, что если систему уравнений Максвелла относить не к электротехническим устройствам, с которыми проводил эксперименты Эрстед, Ампер и Фарадей, а к воображаемому электромагнитному полю, то из 4-х указанных параметров независимым останется лишь один из них. В таком случае ЭМП обладает лишь одной степенью свободы, так что никакого преобразования в нем одной из них (электрической) в другую (магнитную) или наоборот быть не может [10].

Еще одно противоречие в теории Максвелла связано с его предположением о существовании единого электромагнитного поля (ЭМП), энергия которого в вакууме определяется выражением $E = \varepsilon_0 \mathbf{E}^2/2 + \mu_0 \mathbf{H}^2/2$, где ε_0 и μ_0 – постоянные величины, названные им диэлектрической и магнитной проницаемостью вакуума. В условиях синфазного изменения параметров \mathbf{E} и \mathbf{H} , обнаруженного Фарадеем опытным путем еще в 1831 году, это означает нарушение закона сохранения энергии электромагнитного поля.

¹⁾ Это относится и к случаю, когда потенциалы $\varphi = \varphi(\mathbf{r},t)$, т.е. искусственно изменяются в течение одного витка орбиты электронов, как это осуществляется, например, в бетатронах, предназначенных для их ускорения. Такое поле следовало бы назвать спиралевидным [9], поскольку линия вектора \mathbf{E} оказывается незамкнутой.

нутой. ²⁾ Последнее обусловлено синфазностью изменений напряженностей электрического и магнитного полей в электромагнитной волне.

Наконец, предположение Максвелла о существовании в эфире электромагнитных волн, якобы обнаруженных в дальнейшем Г.Герцем, опровергается экспериментами Н.Тесла, который, повторив их в диапазоне более высоких частот, пришел к заключению, что «было бы большой ошибкой полагать, что излучаемая энергия распространяется в виде электромагнитных волн» [7]. Действительно, ниоткуда не следовало, что энергия электромагнитных колебаний в излучателе или детекторе Герца переносится в пространстве без какого-либо ее преобразования в другие формы, т.е. электромагнитными колебаниями в среде, свободной и от зарядов, и от токов. О нереальности такого преобразования свидетельствуют многочисленные эксперименты, приближающие нас к пониманию неэлектромагнитной природы света [11].

Не менее серьезны и последствия мировоззренческого характера, к которым привело представление Максвелла об электромагнитном поле как о некоторой материальной сущности, не зависящей от создающих это поле зарядов и токов. Оно привело к «материализации» электромагнитных и других полей, и выразилось в делению материи на вещество и поле. Между тем достаточно в законе Кулона

$$\mathbf{F}_e = Q_1 Q_2 / 4\pi \varepsilon_0 R_{12}^2 \tag{10}$$

удалить из системы все заряды Q_2 , кроме одного (Q_1) , или считать это заряд равномерно «размазанным» по всему пространству, как исчезнет электрическое поле \mathbf{F}_e . Точно также исчезнет магнитное поле, если в законе Ампера для силы взаимодействия двух параллельных проводников единичной длины

$$F_{M} = \mu_{0} J_{1} J_{2} / 2\pi R_{12} \tag{11}$$

положить один из токов, J_1 или J_2 , равным нулю. То же самое характерно и для гравитационных полей. Следовательно, эти поля порождены не наличием масс, зарядов или токов, а их неравномерным распределением в пространстве их носителей. Поэтому подмена эфира или физического вакуума как его квантового аналога электромагнитным полем означает по существу измышление излишних материальных сущностей в противовес «принципу (бритве) Оккамы».

Обосновывая независимость ЭМП от его материальных источников, Максвелл полагал, что ЭМП и есть та среда, где находится энергия «после того как она покинула одно тело и еще не достигла другого». Однако переносится в принципе только внутренняя (собственная) энергия, присущая, например, колеблющемуся эфиру. Электромагнитная же энергия является внешней (взаимной), и принадлежит всей совокупности взаимодействующих масс, зарядов и токов, а не какому-либо материальному объекту в отдельности. Такая энергия может только превращаться из одной формы в другую при изменении конфигурации системы. Поэтому поле следует трактовать лишь как напряженное состояние эфира или физического вакуума, проявляющееся в возникновении в пространстве какихлибо сил, но не как самостоятельную сущность [11]. Такая подмена лишь порождает путаницу и вызывает больше вопросов, чем дает ответов.

3. Эвристическая ценность обобщения понятия потока смещения.

Придание токам смещения четкого физического смысла потока материального носителя той или иной формы энергии позволяет дать альтернативное решение многим проблемам современной физики [3]. Будучи производными по времени от моментов распределения \mathbf{Z}_i разнообразных носителей энергии Θ_i , эти потоки требуют рассмотрения в качестве объекта исследования всей совокупности взаимодействующих (взаимно движущихся) тел и их частей как единого неравновесного целого. Для такой (замкнутой или

изолированной) системы все процессы являются внутренними, а все потоки — потоками смещения. Это гарантирует выполнение в таких системах всех законов сохранения (энергии, массы, заряда, импульса и его момента). Далее, это дает возможность применения термодинамического метода исследования к континуальным средам, считающимся системами с бесконечным числом степеней свободы, поскольку число параметров их состояния Θ_i и \mathbf{R}_i становится конечным. Наконец, появляется возможность реализовать системный подход к исследованию любого объекта исследования, спецификой которого является изучение его «от целого к части» с сохранением при этом тех «системообразующих» связей, которые отсутствуют у любой ее части. Все это не только придает исследованию междисциплинарный характер, но и поднимает его на более высокий качественный уровень.

В электродинамике такой подход позволил доказать ошибочность замены Γ . Герцем и О.Хэвисайдом в уравнениях Максвелла полных производных $d\mathbf{D}/dt$ и $d\mathbf{B}/dt$ на частные производные $(\partial \mathbf{D}/\partial t)$ и $(\partial \mathbf{B}/\partial t)$ и дополнить их конвективными составляющими токов смещения не только связанных зарядов $\mathbf{j}_e^{\ c}$, но и полюсов $\mathbf{j}_{\mathrm{M}}^{\ c}$ [12]; получить из модернизированных таким путем уравнений выражение сил Лоренца, не прибегая для этого к релятивистским соображениям [13]; обосновать существование в проводящих средах продольных электромагнитных волн [14], вскрыть вращательную природу векторного магнитного потенциала [15], вывести закон Био-Савара [16], вскрыть противоположную направленность потоков электрической и магнитной энергии в векторе Пойнтинга [17] и т.д.

Существование конвективных токов смещения связанных зарядов и магнитных полюсов, возникающих при движении диэлектриков и магнетиков, позволило объяснить ряд явлений, не укладывающихся в рамки теории Максвелла. Наиболее известным из них является «парадокс Фарадея», заключающийся в возникновении ЭДС при вращении диска униполярного генератора Фарадея вместе с магнитом, когда $\partial \mathbf{B}/\partial t = 0$, т.е. поток вектора \mathbf{B} через поверхность диска не меняется; эффекты Роуланда — Эйхенвальда и Рентгена - Эйхенвальда (возникновение электрического или магнитного поля при движении поляризованного диэлектрика или магнетика); эффект Вильсона — Барнета (поляризацию диэлектрической пластины при ее движении в магнитном поле) и т.п. Таким образом, придание потокам смещения общефизического смысла снимает ряд трудностей электродинамики, связанных с известными исключениями из правила потока [2].

Литература

- 1. *Максвелл Дж*. Трактат об электричестве и магнетизме. В двух томах. М.: Наука, 1989.
- 2. *Фейнман Р., Лейтон Р., Сэндс М.* Фейнмановские лекции по физике. Т. 5. Электричество и магнетизм. М.: Мир. 1965.
- 3. *Этин В.А.* Энергодинамика. Синтез теорий переноса и преобразования энергии. СПб. «Наука», 2008. 409 с.
- 4. *Парселл* Э. Электричество и магнетизм. Берклеевский курс физики. Т.2. М. «Наука», 1975. 439 с.
- 5. *Фарадей М.* Экспериментальные исследования по электричеству: Пер. с англ./ Под ред. Т.П. Кравца. М.: Изд-во АН СССР. Т .1. 1947; Т. 2. 1951; Т. 3. 1959.
- 6. Эткин В.А. Энергодинамический вывод уравнений Максвелла. // Доклады независимых авторов. 2013. Вып. 23.- С. 165-168.
- 7. Тесла Н. Лекции. Статьи. М., Tesla Print. 2003. 386 с.
- 8. *Этин В.А.* Коррекция электродинамики с позиций энергодинамики. http://www.sciteclibrary.ru/rus/catalog/pages/12177.html. 13.07.2012.
- 9. Канн К.Б. Электродинамика здравого смысла. Saarbrücken, Lamb. Acad. Publ., 2012.
- 10. Этикин В.А. Описывают ли уравнения Максвелла электромагнитное поле?

- http://www.sciteclibrary.ru/rus/catalog/pages/12201.html. 2.09.2012.
- 11. Э*тикин В.А.* О неэлектромагнитной природе света. // Доклады независимых авторов. $2013. \text{Вып.}\ 24.\ \text{C.}\ 160...187.$
- 12. Эткин В.А. О неполноте уравнений Максвелла. http://ntpo.com/physics/opening/9.shtml. 06.09.2004.
- 13. *Этин В.А.* Вывод выражения силы Лоренца из уравнений Максвелла. viXra:1208.0013
- 14. Эткин В.А.Продольные волны как следствие уравнений Максвелла. http://sciteclibrary.ru/rus/catalog/pages/13093.html . 25.09.2013.
- 15. Эткин В.А. О смысле векторного потенциала. http://www.sciteclibrary.ru/rus/catalog/pages/12770.html. 3.04.2013.
- 16. Э*ткин В.А.* Закон Био-Савара-Лапласа как следствие энергодинамики. http://vixra.org/abs/1310.0193.
- 17. Этикин В.А. Описывает ли вектор Пойнтинга поток электромагнитной энергии? http://sciteclibrary.ru/rus/catalog/pages/12299.html. 18.10.2012.