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A method allowing us to introduce into the Lagrangian the terms, which characterize an 

arbitrary vector field of a system, is described. As a result of applying the principle of least 

action it becomes possible to find all the main characteristics of this field, including its 

energy and momentum, field equations, force of interaction with the matter. 

Keywords:  four-potential;  pressure field;  acceleration field;  field equations. 

 

1. Introduction 

The field concept is widely used not only in the gravitation theory but also in other 

physical theories. Further we will consider the properties of vector fields in four-

dimensional space. 

The main characteristic of the electromagnetic vector field is the 4-potential 

,A
c



 
  
 

A , where c  is the speed of light,   and A  denote the scalar and vector 

potentials, respectively. If the system contains a set of particles, each of which generates its 

own potential, then the potentials   and A  of the system of particles depend mainly on the 

general system parameters – the dimensions of the system, the total charge, etc. Besides the 

system’s potentials correspond to the superposition principle the potentials of all the 

particles. We can determine all the main characteristics of the system’s electromagnetic field 

with the help of the 4-potential. 

Thus before we find the 4- potential of the system, we need to determine the 4-potential 

of a single particle. This can be done as follows: the invariant scalar potential p  of the 

particle should be divided by the square of the speed of light, so that it becomes a 

dimensionless quantity, and then multiply it by the covariant 4-velocity: 
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The potential p  is considered to be invariant, if it is determined in the reference frame 

pK , which is rigidly associated with the particle . We can see in (1), that p  is associated 

with the scalar potential   and the three components of the vector potential A  of a particle 

in an arbitrary reference frame K , in which the particle has a 4-velocity 
dx

u
d






  (where 

dx  is a 4-displacement with the covariant index,   is the proper time of the particle). In 

order to find the 4-potential of the system, it is necessary to integrate (1) over all of the 

system’s particles. 

 

2. Pressure field 

We will turn now to the pressure field, the properties of which must be taken into account 

in calculating the metric inside the material bodies, as well as in determining the equation of 

motion and of the state of matter. The existing definitions of the pressure field and its 

energy-momentum are derived by means of generalization of the formulas of classical 

mechanics. For example, in the general theory of relativity (GTR) the following pressure 

tensor [1] is used for ideal liquid: 
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     .                                                   (2) 

 

In (2) the pressure p  represents a scalar field. 

 

The tensor u u     is considered to be the matter characteristic in GTR, and the 

total stress-energy tensor of the matter with pressure p  and density   is equal to: 

T P    . 

Now we will answer the question whether we can consider the pressure field not just 

scalar but a four-dimensional vector field? By definition, a vector field at each point is 

described by a certain vector. In continuously distributed matter the particles are so close to 

each other, that they constantly interact with each other. In this case, we can assume that the 

direction of the vector of one particle’s pressure on another is parallel to the vector of 
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particle velocity. If a vector field of velocity is specified for the particles, then the vector 

field of pressure can be considered as the consequence of the velocity field. 

On the other hand, the pressure, even in the absence of particles’ motion when it looks 

like a scalar field, makes its contribution to the mass-energy of the particles. Since the 

pressure has meaning both of a scalar and of a three-dimensional vector, there must be a 4-

vector, where the pressure is part of the scalar and vector components. It is natural to call 

such a 4-vector a 4-potential of the pressure field. 

We will determine the 4-potential of the pressure field similarly to (1): 
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where 0p  and 0  denote the pressure and density in the reference frame pK  of the 

particle, the dimensionless ratio 0

2

0

p

c
 is proportional to the pressure energy of the particle 

per particle’s unit mass,  and Π  are the scalar and vector potentials of the pressure field. 

 

Then applying the 4-rotor we find the antisymmetric pressure tensor f , consisting of 

six components, belonging to two vectors ( , , )x y zC C CC ,   ( , , )x y zI I II : 

 

f                 .                                       (4) 
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Now, using (4) we can construct a tensor invariant 
16

c
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, where   should be 

determined. The pressure field equations are obtained from the principle of least action, 
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while the sum should be substituted into the Lagrangian: 
1

16
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  , where 

J 
 is the mass 4-current. For comparison, all the properties of the electromagnetic field are 

obtained by varying a similar sum: 01
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c
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
  , where j  is the electromagnetic 

current, 0  is the vacuum permittivity, F  is the electromagnetic tensor. 

One of the results of the Lagrangian variation is the stress-energy tensor of the pressure 

field [2]: 

 

2 1
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This tensor with other fields’ tensors is part of the right side of the equation for 

determining the metric, and the left side of this equation contains the Ricci tensor and scalar 

curvature. With the help of tensor (4) or tensor (6) we can determine the density of 4-force 

in the equation of matter motion that arises due to the pressure: 

 

k

kf J P
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We also find the pressure field equations: 
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where      is the Levi-Civita symbol. 

 

Equations (7) in the limit of the special theory of relativity with regard to (5) look like 

Maxwell equations: 
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Here 
2 2

1

1 v c
 


 is the Lorentz factor, v  is the velocity of a point particle of matter. 
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If we substitute (4) in the first equation in (7) in the form: f         , we 

obtain: 
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In case if 4-potential gauge 0

     in the left side of the equation we have 

s

sR  

     , where sR 
 denotes the Ricci tensor with mixed indices. On the other 

hand, 4-d'Alembertian acting on the 4-vector 
  is determined in the general case as 

follows: 
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As a result the terms with the Ricci tensor are canceled and we have the following: 
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Equation (9) represents the wave equation for the 4-potential of the pressure field, which 

allows us to find the pressure distribution inside the massive bodies. In particular, for 

spherical bodies with approximately constant density the pressure decreases from the body 

center to its surface, due to the presence of the negative term in the formula for the pressure, 

which is proportional to the square of the current radius. From (9) we can estimate the 

pressure at the center of the massive body: 
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where 3G  , G  is the gravitational constant, M  and R  denote the body mass and 

radius. 

 

3. Acceleration field 
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The foregoing describes the procedure of obtaining the stress-energy tensor and the 

vector field equations of any kind. In particular, the above-mentioned procedure was also 

applied in [2] in order to find the stress-energy tensor of matter in a covariant way. As the 4-

potential of the acceleration field the covariant 4- velocity was used without additional 

factors: 
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where   and U  denote the scalar and vector potentials, respectively. 

 

The tensor of the acceleration field is given by: 

 

u u u u u              .                                      (11) 
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where the vectors ( , , )x y zS S SS  and ( , , )x y zN N NN  define the particle’s 

accelerations. 

 

The contribution of the acceleration field into the Lagrangian is given by the sum: 

1
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  , where   is to be determined. The stress-energy tensor of the 

acceleration field appears as a result of variation: 
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The 4-acceleration in the equation of motion of a small particle of continuously 

distributed matter is found either with the help of tensor (11) or tensor (13): 
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Like any vector field, the acceleration field is given by the corresponding equations: 
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These equations in the special theory of relativity are the equations for the vectors S  and 

N  from (12): 
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The stress-energy tensors of the pressure field P   (6) and the acceleration field B   

(13) are constructed in a covariant way using the 4-potentials and in the covariant theory of 

gravitation they substitute the tensor P  in (2) and the tensor u u    , respectively. 

Similarly to (9) we obtain the wave equation for the velocity field inside the bodies: 
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The solution of this equation allows us to calculate the velocity of the particles’ motion 

inside the spherical body as a function of the current radius. The kinetic energy of the 

particles depends on their velocity and specifies the kinetic temperature. Consequently, it 

becomes possible to find the equilibrium temperature distribution inside the massive bodies. 

In particular, for the temperature at the center we can approximately write the following: 
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where 3G  , pM  denote the mass of a typical body particle, usually it is the mass of a 

hydrogen atom, k  is the Boltzmann constant. 

 

4. Conclusion 

Despite the fact that the formulas (10) and (16) were found in the assumption of uniform 

density, they are well satisfied for gas clouds, planets and stars. Good agreement is observed 

for Bok globules, the Earth and neutron star, as well as for the temperature inside the Sun 

[3]. The difference occurs only for the pressure inside the Sun, where it is 58 times less than 

in the standard model. This is probably due to the fact that thermonuclear reactions take 

place inside the Sun, which increase the pressure. 

We believe that the massive bodies, held in equilibrium by gravitation force, contain 

radial gradients of the potentials of gravitation, pressure, particles’ kinetic energy and other 

quantities. These gradients are the essential components that ensure the system’s stability at 

a given matter state. If we assume the validity of the gravitation mechanism in Le Sage’s 

theory [4], then at equilibrium the temperature of the interior of a massive cosmic body 

cannot fall below the value that is obtained from the virial theorem. Despite the constant 

emission from the surface of the body, the necessary energy inflow is ensured by gravitons 

falling on the body. In Le Sage’s model the graviton fluxes penetrating the matter not only 

create the gravitational force, but also leave some part of their energy inside the body, 

warming it. 

Thus, we have introduced a procedure, according to which it is necessary first to 

determine the scalar potential of an arbitrary vector field, inherent in a single particle. After 

that by means of standard methods all the characteristics of this field are derived, including 

the field equations, its stress-energy tensor and the type of the force, exerted by the field on 

the particles. 

We must note that the 4-potential of the field is expressed as a covariant 4-vector, and the 

matter energy in this field depends on the product of the 4-potential and the mass 

(electromagnetic) 4-current, taken with the contravariant index. The field tensor has doubly 

covariant indices as the consequence of the 4-curl acting on the 4-potential. In order to find 

this tensor with contravariant indices the metric tensor is required. Contraction of the field 

tensor with itself gives the tensor invariant, which is required in the Lagrangian to carry out 

variation and to express relationship between the matter, metric and field in the appropriate 

equations. Another peculiarity of this approach is that the field equations (8) and (14) are 

similar in form to Maxwell equations. 
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The previously described approach was used in [5], [6], [7] to find also the 4-potential of 

the gravitational field, its stress-energy tensor, gravitational 4-force and field equations in 

the framework of the Covariant Theory of Gravitation (CTG). 

In CTG the gravitational field is divided from the metric field, gravitation becomes an 

independent field with its own energy, momentum and action in the form of gravitational 

force. As a result, the metric is only necessary to describe deviations of the results of 

gravitational experiments from their form in the special theory of relativity. The essential 

part of the Lagrangian in CTG is the constant  , which is called cosmological constant. 

With the help of this constant the Hamiltonian gauge is performed so that the system’s 

energy could be determined unambiguously. 
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