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Abstract 

We derive the reflection integral equation of the zeta function by the quaternionic analysis. 

 

Many researchers have attempted proof of Riemann hypothesis, but they have not been successful. 

The proof of this Riemann hypothesis has been an important mathematical issue. In this paper, we 

attempt to derive the reflection integral equation from the quaternionic analysis as preparation 

proving Riemann hypothesis. 

 

We obtain a generating function of the inverse Mellin-transform. We obtain new generating 

function by multiplying the generating function with exponents and reversing the sign. We derive 

the reflection integral equation from inverse Z-transform of the generating function.  
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1 Introduction 

1.1 Issue 

Many researchers have attempted to prove the Riemann hypothesis, but they have not been 

successful. The proof of this Riemann hypothesis has been an important mathematical issue. In this 

paper, we attempt to derive the reflection integral equation from the quaternionic analysis as 

preparation proving Riemann hypothesis. 

1.2 Importance of the issue 

Proof of the Riemann hypothesis is one of the most important unsolved problems in mathematics.  

 

For this reason, many mathematicians have tried the proof of Riemann hypothesis. However, those 

trials were not successful. One of the methods proving Riemann hypothesis is interpreting the zeros 

of the zeta function as the eigenvalues of a certain operator. However, the operator was not found 

until now. The reflection integral equation is considered as the one of the operators. For this reason, 

derivation of the reflection integral equation is an important issue. 

1.3 Research trends so far 

Leonhard Euler introduced the zeta function in 1737. Bernhard Riemann expanded the argument of 

the function to the complex number in 1859. 

 

David Hilbert and George Polya2 suggested that the zeros of the function were probably eigenvalues 

of a certain operator around 1914. This conjecture is called "Hilbert-Polya conjecture. 

Zeev Rudnick and Peter Sarnak3 are studying the distribution of zeros by random matrix theory in 

1996. Shigenobu Kurokawa is studying the field with one element4 around 1996. Alain Connes5 

showed the relation between noncommutative geometry and the Riemann hypothesis in 1998. 

Christopher Deninger6 is studying the eigenvalue interpretation of the zeros in 1998.  

1.4 New derivation method of this paper 

We obtain a generating function of the inverse Mellin-transform. We obtain new generating 

function by multiplying the generating function with exponents and reversing the sign. We derive 

the reflection integral equation from inverse Z-transform of the generating function.  

 

(Reflection integral equation) 

 𝜁(1 − 𝑠) = ∮
𝑑𝑡3

2𝜋2

𝐵(𝑠, 𝑡 + 2)

(𝑡 + 1)𝑡
𝜁(𝑡)

𝑆3

 (1.1) 

 

2 Confirmations of known results 

In this chapter, we confirm known results. 

 

2.1 Complex number 

Euler used the complex number in about 1748. 

 𝑖2 = −1 (2.1) 

We express the complex number as follows. 
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 𝑠 = 𝜏 + 𝑖𝑥 ∈ ℂ (2.2) 

 𝜏, 𝑥 ∈ ℝ (2.3) 

The complex conjugate is shown below.  

 𝑠̅ = 𝜏 − 𝑖𝑥 ∈ ℂ (2.4) 

The function is shown below.  

 𝑓(𝑠) ∈ ℂ (2.5) 

The absolute square is shown below. 

 |𝑠|2 = 𝑠𝑠̅ (2.6) 

In this paper, we have the following symbols.  

 Re(𝑠) =
1

2
(𝑠 + 𝑠̅) = 𝜏 (2.7) 

 Im(𝑠) =
1

2
(𝑠 − 𝑠̅) = 𝑖𝑥 (2.8) 

 

 

2.2 Quaternion 

William Rowan Hamilton7 published the quaternion in 1843.  

 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1 (2.9) 

We express the quaternion as follows. 

 𝑠 = 𝜏 + 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧 ∈ ℍ (2.10) 

 𝜏, 𝑥, 𝑦, 𝑧 ∈ ℝ (2.11) 

Conjugation of quaternions is shown below.  

 𝑠̅ = 𝜏 − 𝑖𝑥 − 𝑗𝑦 − 𝑘𝑧 ∈ ℍ (2.12) 

The function is shown below. 

 𝑓(𝑠) ∈ ℍ (2.13) 

The absolute square is shown below. 

 |𝑠|2 = s𝑠̅ (2.14) 

 

In this paper, we have the following symbols. 
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 Re(𝑠) =
1

2
(𝑠 + 𝑠̅) = 𝜏 (2.15) 

 Im(𝑠) =
1

2
(𝑠 − 𝑠̅) = 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧 (2.16) 

 

 

2.3 Complex analysis 

Augustin-Louis Cauchy 8  introduced the following equation for complex analysis in 1814. 

Riemann9 used this equation for complex analysis in 1851. 

(Cauchy - Riemann differential equation) 

 
𝜕𝑓

𝜕𝜏
+ 𝑖

𝜕𝑓

𝜕𝑥
= 0 (2.17) 

We write the above equation as follows shortly. 

 
𝜕𝑓

𝜕𝑠̅
= 0 (2.18) 

 

Cauchy introduced the following formula. 

(Cauchy's integral formula) 

 𝑓(𝑠) = ∮
𝑓(t)

(𝑡 − s)

𝑑𝑡

2𝜋𝑖𝑆1

 (2.19) 

S1 is the closed path.  

 

2.4 Quaternionic analysis 

Karl Rudolf Fueter 10 introduced the following equation as the analogue of Cauchy - Riemann 

equation for quaternionic analysis in 1934. 

 (Cauchy - Riemann - Fueter differential equation) 

 
𝜕𝑓

𝜕𝜏
+ 𝑖

𝜕𝑓

𝜕𝑥
+ 𝑗

𝜕𝑓

𝜕𝑦
+ 𝑘

𝜕𝑓

𝜕𝑧
= 0 (2.20) 

We write the above equation as follows shortly. 

 
𝜕𝑓

𝜕𝑠̅
= 0 (2.21) 

 

Fueter introduced the following formula as the analogue of Cauchy's integral formula. 

(Cauchy - Fueter's integral formula) 

 𝑓(𝑠) = ∮
(𝑡 − s)−1

|𝑡 − s|2
𝑓(𝑡)

𝑆3

𝐷𝑡

2𝜋2
 (2.22) 

Here S 3 is the three-dimensional closed surface. 
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The detail of the quaternionic analysis described in Sudbery’s paper11 in 1979. 

 

In this paper, we introduce the following new formula. 

(Integral formula of quaternion) 

 𝑓(𝑠) = ∮
−𝑑𝑡3

2𝜋2

𝑓(𝑡)

(𝑡 − 𝑠)3
𝑆3

 (2.23) 

Here S 3 is the three-dimensional closed surface. 

 

 

 

 

 

 

2.5 Mellin transform 

Hjalmar Mellin12 published Mellin transform in 1904. 

(Mellin transform) 

 𝑓(𝑠) = 𝑀[𝐹(𝑥)] (2.24) 

 𝑓(𝑠) = ∫ 𝑥𝑠−1
∞

0

𝐹(𝑥)𝑑𝑥 (2.25) 

 

We express the inverse Mellin transform by the following contour integration.  

(Inverse Mellin transform) 

 𝐹(𝑧) = 𝑀−1[𝑓(𝑠)] (2.26) 

 𝐹(𝑧) = ∮
−𝑑𝑠3

2𝜋2

𝑓(𝑠)

𝑧𝑠+2
𝑆3

 (2.27) 

 

S3 is the three-dimensional closed surface. The surface circles around all poles of the integrand. For 

example, we suppose the surface S3 as follows. The white circles mean poles. 
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Re(s) 

Im(s) 

O 

S3 

 

Figure 2.1: The closed surface S3 

 

 

2.6 Hurewicz’s Z-transform 

Witold Hurewicz 13 published Z-transform in 1947. When the function F (z) is holomorphic over the 

domain D = {0 <|z|< R}, the function can be transformed to the series which converges uniformly in 

wider sense over the domain. 

(Z-transform) 

 𝐹(𝑧) = 𝑍[𝑓(𝑛)] (2.28) 

 𝐹(𝑧) = ∑
𝑓(𝑛)

𝑧𝑛

∞

𝑛=∞

 (2.29) 

 𝐷 = {0 < |𝑧| < 𝑅} (2.30) 

 

The inverse Z-transform of quaternion is shown below.  

(Inverse Z-transform) 
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 𝑓(𝑛) = 𝑍−1[𝐹(𝑧)] (2.31) 

 𝑓(𝑛) = ∮
−𝑑𝑧3

2𝜋2𝑧3
𝑧𝑛𝐹(𝑧)

𝑆3

 (2.32) 

 

The three-dimensional closed surface S3 is shown below. 

 

 
 

Im(z) 

 

O 

iR 

Re(z) 

S3 
D 

 

Figure 2.2: The closed surface S3 

 

 

2.7 Residue theorem of quaternion 

We have the following residue theorem of the complex number. 

(Residue theorem of quaternion) 

 ∮ 𝐹(𝑧)
𝑑𝑧

2𝜋𝑖𝐶

= Res
𝑧→𝑐+

𝐹(𝑧) 𝑑𝑧 (2.33) 

 

We introduced the residue theorem of the quaternion as follows. 
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We suppose that the function F (z) has the isolated singularities c in the three-dimensional closed 

surface S3 and is holomorphic except for the isolated singularities. Then, we have the following 

formula. 

(Residue theorem of quaternion) 

 ∮
−𝑑𝑧3

2𝜋2
𝐹(𝑧)

𝑆3

= Res
𝑧→𝑐+

𝐹(𝑧) 𝑑𝑧3 (2.34) 

 

We suppose that the function F (z) has isolated singularities ck in the three-dimensional closed 

surface S3 and is holomorphic except for the isolated singularities. Then, we have the following 

formula. 

(Residue theorem of quaternion) 

 

 ∮
−𝑑𝑧3

2𝜋2
𝐹(𝑧)

𝑆3

= ∑ Res
𝑧→𝑐𝑘+

𝐹(𝑧) 𝑑𝑧3

𝑛

𝑘=1

 (2.35) 

 

2.8 Euler's gamma function 

Leonhard Euler14 introduced the gamma function as a generalization of the factorial in 1729. 

The gamma function is defined by the following equation. 

(Definitional integral formula of the gamma function) 

 𝛤(𝑠) = ∫ 𝑥𝑠−1𝑒−𝑥𝑑𝑥
∞

0

 (2.36) 

 

We introduced the integral representation of quaternion of gamma function. 

 (Contour integration of gamma function) 

 
1

𝛤(1 − 𝑠)
= ∮

−𝑑𝑧3

2𝜋2𝑧3
𝑧𝑠𝑒𝑧 

𝛾3

 (2.37) 

 

The three-dimensional closed surface γ3 is shown in the following figure. The white circles mean 

poles. 
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Re(z) 

Im(z) 

O 

γ3 
−∞ 

 

Figure 2.3: The closed surface γ3 

 

 

2.9 Euler's beta function 

Leonhard Euler introduced the beta function in 1768 in his book15. We express the Beta function by 

using the gamma functions. 

(Definitional formula of the beta function) 

 𝐵(𝑠, 𝑡) =
𝛤(𝑠)𝛤(𝑡)

𝛤(𝑠 + 𝑡)
 (2.38) 

 

2.10 Riemann zeta function 

Bernhard Riemann16 expanded the argument of the zeta function to the complex number in 1859. 

The definitional series of the function is shown below. 

(The definitional series) 

 𝜁(𝑠) =
1

1𝑠
+

1

2s
+

1

3s
+ ⋯ = ∑

1

𝑘𝑠

∞

𝑘=1

 (2.39) 

 

The function is also defined by the following formula. 

(Definitional integral formula) 
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 𝜁(𝑠) =
1

𝛤(𝑠)
∫ 𝑥𝑠−1

𝑒−𝑥

1 − 𝑒−𝑥
𝑑𝑥

∞

0

 (2.40) 

 

We interpret the above formula as the following Mellin transform.  

(Mellin transform) 

 𝑔(𝑠) = 𝑀[𝐺(𝑥)] (2.41) 

 𝑔(𝑠) = ∫ 𝑥𝑠−1𝐺(𝑥)𝑑𝑥
∞

0

 (2.42) 

 𝐺(𝑥) =
𝑒−𝑥

1 − 𝑒−𝑥
 (2.43) 

 𝑔(𝑠) = 𝜁(𝑠)𝛤(𝑠) (2.44) 

 

The inverse Mellin transform of the function is shown below. The variable ck is the isolated 

singularities. 

(Inverse Mellin transform) 

 𝐺(𝑥) = 𝑀−1[𝑔(𝑠)] (2.45) 

 𝐺(𝑥) = ∮
−𝑑𝑠3

2𝜋2

𝑔(𝑠)

𝑥𝑠+2
𝑆3

 (2.46) 

 𝐺(𝑥) =
𝑒−𝑥

1 − 𝑒−𝑥
 (2.47) 

 𝑔(𝑠) = 𝜁(𝑠)𝛤(𝑠) (2.48) 

 

The contour integration of the zeta function is shown below. 

(The contour integration) 

 
𝜁(𝑠)

𝛤(1 − 𝑠)
= ∮

−𝑑𝑧3

2𝜋2𝑧3

𝑧𝑠𝑒𝑧

1 − 𝑒𝑧
𝛾3

 (2.49) 

 

We interpret the above formula as the following the inverse Z-transform.  

(Inverse Z-transform) 
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 ℎ(𝑠) = 𝑍−1[𝐻(𝑧)] (2.50) 

 ℎ(𝑠) = ∮
−𝑑𝑧3

2𝜋2𝑧3
𝑧𝑠𝐻(𝑧)

𝛾3

 (2.51) 

 𝐻(𝑧) =
𝑒𝑧

1 − 𝑒𝑧
 (2.52) 

 ℎ(𝑠) =
𝜁(𝑠)

𝛤(1 − 𝑠)
 (2.53) 

 

The closed surface γ3 is shown in the following figure. The white circles mean poles. 
 

Re(z) 

Im(z) 

 

O 

2πi 

4πi 

−2πi 

−4πi 

γ3 −∞ 

6πi 

−6πi 

 

Figure 2.4: The closed surface γ3 

 

The Z-transform of the function as follows. 

(Z-transform) 
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 𝐻(𝑧) = 𝑍[ℎ(𝑠)] (2.54) 

 𝐻(𝑧) = ∑
ℎ(𝑠)

zs

∞

𝑠=−∞

 (2.55) 

 𝐻(𝑧) =
𝑒𝑧

1 − 𝑒𝑧
 (2.56) 

 ℎ(𝑠) =
𝜁(𝑠)

𝛤(1 − 𝑠)
 (2.57) 

 

 

The generating functions of Mellin transform and Z-transform have the following relations. 

 𝐻(𝑧) = −𝑒𝑧𝐺(𝑧) (2.58) 

 𝐻(𝑧) = 𝐺(−𝑧) (2.59) 

 

Riemann showed the following reflection formula.  

(Riemann’s reflection formula) 

 𝜁(1 − 𝑠) =
2

(2𝜋)𝑠
𝛤(𝑠) cos (

𝜋

2
𝑠) 𝜁(𝑠) (2.60) 

 

 

Riemann proposed the following conjecture. 

(Riemann hypothesis) 

Nontrivial zeros all have real part 1/2. 

 

We express the examples of nontrivial zeros ρ1 and ρ2 in the following figure and equation. The 

black circles are zeros and the white circle means a pole. 
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Re(s) 1/2 

Im(s) 

1 O -2 

ρ1 

ρ2 

1-ρ1 

1-ρ2 

 

Figure 2.5: Nontrivial zeros of zeta function 

 

 𝜌1 =
1

2
+ 𝑖(14.13 ⋯ ) (2.61) 

 𝜌2 =
1

2
+ 𝑖(21.02 ⋯ ) (2.62) 

 

Since the proof of the Riemann hypothesis has not been successful, it has been an important 

mathematical issue. 

 

2.11 Bernoulli polynomials 

Jakob Bernoulli introduced Bernoulli numbers in 1713 in his book17. Seki Takakazu also introduced 

Bernoulli numbers in 1712 in his book18 independently. Bernoulli numbers are defined by Bernoulli 

polynomials. The definition of Bernoulli polynomials is shown below. 

(Bernoulli polynomials) 

 
𝑥𝑒𝑞𝑥

𝑒𝑥 − 1
= ∑

𝐵𝑛(𝑞)

𝑛!
𝑥𝑛

∞

𝑛=0

 (2.63) 
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The above series are called “formal power series” because it does not converge over the whole 

domain. The convergent radius is 2π because the minimum distance between origin and poles is 2π 

for the generating function. 

 
 

Im(z) 

O 

2πi 

4πi 

-2πi 

-4πi 

D 

Re(z) 

6πi 

-6πi 

 

Figure 2.6: The convergent radius of Bernoulli polynomials 

 

 

2.12 Bernoulli numbers 

We suppose that Bn(q) is Bernoulli polynomials. There are the following two kinds of definitions of 

Bernoulli numbers Bn. 

 𝐵𝑛 = 𝐵𝑛(0) (2.64) 

 𝐵𝑛 = 𝐵𝑛(1) (2.65) 

 

In this paper, in order to unite with the definition of Bernoulli function explained later, the latter 

definition is adopted. At the former and the latter, there is the following difference by n = 1. 

 𝐵𝑛(0) = −
1

2
 (2.66) 

 𝐵𝑛(1) =
1

2
 (2.67) 
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Bernoulli polynomials Bn(1) equals to Bn(0) except n = 1. The definition of Bernoulli numbers is 

shown below. 

(Definitional series of Bernoulli numbers) 

 
𝑥𝑒𝑥

𝑒𝑥 − 1
= ∑

𝐵𝑛

𝑛!
𝑥𝑛

∞

𝑛=0

 (2.68) 

 

Bernoulli numbers has the following formula for even positive integer n. 

(Reflection formula of Bernoulli numbers) 

 𝜁(𝑛) =
(2𝜋)𝑛

2

1

𝑛!
  (−1)

𝑛
2

+1 𝐵𝑛 (2.69) 

 

Bernoulli numbers has the following formula for natural number n. 

(Formula of Bernoulli numbers) 

 𝜁(−𝑛) = −
𝐵𝑛+1

𝑛 + 1
  (2.70) 

 

In this paper, we express the Z-transform of Bernoulli numbers as shown below. 

 𝐻(𝑧) = 𝑍[ℎ(𝑠)] (2.71) 

 𝐻(𝑧) = ∑
ℎ(𝑠)

zs

∞

𝑠=−∞

   (2.72) 

 𝐻(𝑧) =
𝑒𝑧

1 − 𝑒𝑧
 (2.73) 

 ℎ(𝑠) =
−𝐵1−𝑠

𝛤(−𝑠)
 (2.74) 

 

 

3 Derivation of the reflection integral equation  

3.1 The framework of the method to derivation 

The inverse Mellin transform of zeta function is shown below. 
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 𝐺(𝑧) = 𝑀−1[𝑔(𝑠)] (3.1) 

 𝐺(𝑧) = ∮
−𝑑𝑠3

2𝜋2

𝑔(𝑠)

𝑧𝑠+2
𝑆3

 (3.2) 

 𝐺(𝑧) =
𝑒−𝑧

1 − 𝑒−𝑧
 (3.3) 

 𝑔(𝑠) = 𝜁(𝑠)𝛤(𝑠) (3.4) 

 

The inverse Z-transform of the function is shown below. 

 )]([)( 1 zHZsh   
(3.5) 

 ℎ(𝑠) = ∮
−𝑑𝑧3

2𝜋2𝑧3
𝑧𝑠𝐻(𝑧)

𝛾3

 (3.6) 

 𝐻(𝑧) =
𝑒𝑧

1 − 𝑒𝑧
 (3.7) 

 ℎ(𝑠) =
𝜁(𝑠)

𝛤(1 − 𝑠)
 (3.8) 

 

The generating functions of Mellin transform and Z-transform have the following relations. 

 𝐻(𝑧) = −𝑒𝑧𝐺(𝑧) (3.9) 

 𝐻(𝑧) = 𝐺(−𝑧) (3.10) 

 

 

 

The framework of the method to derivation is shown below. 
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Figure 3.1: The framework of the method to derivation 

 

We obtain the reflection integral equation by the above framework. 

(Reflection integral equation) 

 𝜁(1 − 𝑠) = ∮
𝑑𝑡3

2𝜋2

𝐵(𝑠, 𝑡 + 2)

(𝑡 + 1)𝑡
𝜁(𝑡)

𝑆3

 (3.11) 

 

This paper explains this derivation method. 

 

3.2 Derivation of the reflection integral equation from the inverse Mellin transform 

Inverse Mellin transform of the zeta function is shown below. 

 𝐺(𝑧) = 𝑀−1[𝑔(𝑡)] (3.12) 

 𝐺(𝑧) = ∮
−𝑑𝑡3

2𝜋2

𝑔(𝑡)

𝑧𝑡+2
𝑆3

 (3.13) 

 𝐺(𝑧) =
𝑒−𝑧

1 − 𝑒−𝑧
 (3.14) 

 𝑔(𝑡) = 𝜁(𝑡)𝛤(𝑡) (3.15) 

 

The three-dimensional closed surface S3 of the inverse Mellin transform needs to circle around all 

poles of the integrand. Then we adopt the closed surface S3 as follows. The white circles mean 

poles. 
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-1 

 

Figure 3.2: The closed surface S3 

 

On the other hand, Inverse Z-transform of the function is shown below. 

(Inverse Z-transform) 

 ℎ(𝑠) = 𝑍−1[𝐻(𝑧)] (3.16) 

 ℎ(𝑠) = ∮
−𝑑𝑧3

2𝜋2𝑧3
𝑧𝑠𝐻(𝑧)

𝛾3

 (3.17) 

 𝐻(𝑧) =
𝑒𝑧

1 − 𝑒𝑧
 (3.18) 

 ℎ(𝑠) =
𝜁(𝑠)

𝛤(1 − 𝑠)
 (3.19) 

 

The three-dimensional closed surface γ3 is shown in the following figure. The white circles mean 

poles. 
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−∞ 
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Figure 3.3: The closed surface γ 

 

We deform the equation of the inverse Z-transform as follows. 

 ℎ(𝑠) = ∮
−𝑑𝑧3

2𝜋2𝑧3
𝑧𝑠{−𝑒𝑧𝐺(𝑧)}

𝛾3

 (3.20) 

We replace s to 1-s as follows. 

 ℎ(1 − 𝑠) = ∮
−𝑑𝑧3

2𝜋2𝑧3

1

𝑧1−𝑠
{−𝑒𝑧𝐺(𝑧)}

𝛾3

 (3.21) 

 

We obtain the following equation by substituting the equation of the inverse Mellin transform. 

 ℎ(1 − 𝑠) = ∮
−𝑑𝑧3

2𝜋2𝑧3

1

𝑧1−𝑠
{−𝑒𝑧 ∮

−𝑑𝑡3

2𝜋2

𝑔(𝑡)

𝑧𝑡+2
𝑆3

}
𝛾3

 (3.22) 

 

In order to integrate the above equation for the variable z, we deform the above equation as follows. 

 ℎ(1 − 𝑠) = ∮
𝑑𝑡3

2𝜋2
(∮

−𝑒𝑧

𝑧𝑠+𝑡+4

𝑑𝑧3

2𝜋2
𝛾3

) 𝑔(𝑡)
𝑆3

 (3.23) 

We apply the following formula to the above equation. 

(Contour integral formula of the gamma function) 
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1

𝛤(𝑢 + 2)
= ∮

−𝑑𝑧3

2𝜋2𝑧3

𝑒𝑧

𝑧𝑢+1
𝛾3

 (3.24) 

The three-dimensional closed surface γ3 is shown in the following figure. 

Then we obtain get the following equation. 

 ℎ(1 − 𝑠) = ∮
𝑑𝑡3

2𝜋2

𝑔(𝑡)

Γ(𝑠 + 𝑡 + 2)𝑆3

 (3.25) 

 
𝜁(1 − 𝑠)

𝛤(𝑠)
= ∮

𝑑𝑡3

2𝜋2

Γ(𝑡)𝜁(𝑡)

𝛤(𝑠 + 𝑡 + 2)𝑆3

 (3.26) 

 𝜁(1 − 𝑠) = ∮
𝑑𝑡3

2𝜋2

𝛤(𝑠)𝛤(𝑡)𝜁(𝑡)

𝛤(𝑠 + 𝑡 + 2)𝑆3

 (3.27) 

 𝜁(1 − 𝑠) = ∮
𝑑𝑡3

2𝜋2

𝛤(𝑠)𝛤(𝑡 + 2)𝜁(𝑡)

𝛤(𝑠 + 𝑡 + 2)(𝑡 + 1)𝑡𝑆3

 (3.28) 

 

Here, we simplify the above equation by using the following the beta function. 

 
)(

)()(
),(

yx

yx
yxB






 
(3.29) 

 

As the result, we obtain the following equation. 

 (Reflection integral equation) 

 𝜁(1 − 𝑠) = ∮
𝑑𝑡3

2𝜋2

𝐵(𝑠, 𝑡 + 2)

(𝑡 + 1)𝑡
𝜁(𝑡)

𝑆3

 (3.30) 

 

The three-dimensional closed surface S3 is shown in the following figure. The white circles mean 

poles. 
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Figure 3.4: The closed surface S3  

 

4 Conclusion 

We obtained the following results in this paper. 

- We derived reflection integral equation. 

 

5 Future issues 

The future issues are shown below. 

 

- To study the eigenvalues of integral equation. 
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6 Appendix 

6.1 Integral formula of quaternion 

The deriving method of the integral formula of quaternion is shown below. 

 

We consider the 3-dimensional sphere surrounding the point s.  

We divide the sphere to the small 3-dimensional cube. 

The number of the cube is n. 

We number the each cube, m. The positon of the each cube is tm. 

 

The value of the function of positon s is a mean value of the function of all point tm on the sphere. 

 𝑓(𝑠) = ∑
1

𝑛
𝑓(𝑡𝑚)

𝑛

𝑚=1

 (6.1) 

 

We describe the position by the polar coordinate as follows. 

 𝑡 = 𝑟 exp(𝑖𝜙 + 𝑗𝜒 + 𝑘𝜓) (6.2) 

Each side of the cube of the positon tm is shown below. 

 𝛿𝜙𝑡 = 𝑖𝑡 𝛿𝜙 (6.3) 

 𝛿𝜒 𝑡 = 𝑗𝑡 sin 𝜙   𝛿𝜒 (6.4) 

 𝛿𝜓𝑡 = 𝑘𝑡 sin 𝜙 sin 𝜒  𝛿𝜓 (6.5) 

 𝛿𝑡3 =  𝛿𝜙𝑡𝛿𝜒𝑡𝛿𝜓𝑡 = 𝑖𝑗𝑘 𝑡3 sin2 𝜙 sin 𝜒 𝛿𝜙𝛿𝜒𝛿𝜓 (6.6) 

The volume |δV| of the cube is shown below. 

 |𝛿𝑉| = |𝛿𝜙𝑡 𝛿𝜒𝑡 𝛿𝜓𝑡| (6.7) 

On the other hand, the volume |V| of the sphere of the radius R is shown below. 

 |𝑉| = 2𝜋2𝑅3 (6.8) 

We express the radius R as follows.  

 𝑅 = |𝑡 − 𝑠| (6.9) 

We express the number n of the cube as follows. 

 
1

𝑛
=

|𝛿𝑉|

|𝑉|
 (6.10) 

In order to remove the symbol of absolute value, we conform the direction of the volume V and the 

volume δV. 

Then, we divide the side of cube by i, j, and k. 
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 𝛿′𝜙𝑡 =
𝛿𝜙𝑡

𝑖
 (6.11) 

 𝛿′𝜒𝑡 =
𝛿𝜒𝑡

𝑗
 (6.12) 

 𝛿′𝜓𝑡 =
𝛿𝜓𝑡

𝑘
 (6.13) 

We express the operation by the following figure. 

 
 

Re(t) 

Im(t) 

O R 

tm 

tm’ 

tm’ - tm 

(tm’ - tm)/i 
1/i 

 

Figure 6.1: Integral formula of quaternion 
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We express the number n of the cube as follows. 

 
1

𝑛
=

|𝛿𝑉|

|𝑉|
=

|𝛿′
𝜙𝑡 𝛿′

𝜒𝑡 𝛿′
𝜓𝑡|

2𝜋2|𝑡 − 𝑠|3
 (6.14) 

 
1

𝑛
=

𝛿′
𝜙𝑡 𝛿′

𝜒𝑡 𝛿′
𝜓𝑡

2𝜋2(𝑡 − 𝑠)3
 (6.15) 

 
1

𝑛
=

𝛿𝜙𝑡 𝛿𝜒𝑡 𝛿𝜓𝑡

2𝜋2(𝑡 − 𝑠)3𝑖𝑗𝑘
 (6.16) 

We express the function f (s) as follows. 

 𝑓(𝑠) = ∑
𝛿𝜙𝑡𝑚 𝛿𝜒𝑡𝑚 𝛿𝜓𝑡𝑚

2𝜋2(𝑡 − 𝑠)3𝑖𝑗𝑘
𝑓(𝑡𝑚)

𝑛

𝑚=1

 (6.17) 

 𝑓(𝑠) = ∑
−𝛿𝑡𝑚

3

2𝜋2(𝑡 − 𝑠)3
𝑓(𝑡𝑚)

𝑛

𝑚=1

 (6.18) 

 

We obtain the follownig integral formula of quaternion from the above formula. 

(Integral formula of quaternion) 

 𝑓(𝑠) = ∮
−𝑑𝑡3

2𝜋2

𝑓(𝑡)

(𝑡 − 𝑠)3
𝑆3

 (6.19) 
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