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Black Holes have no Interior Singularities  

 

Abstract 

   

The singularity problem is arguably the most troubling result of Einstein's General Relativity, if not 

of all physics. This pathology contradicts the laws of thermodynamics and quantum mechanics. It is 

also refuted by observations confirming the existence of Hawking's Radiation. Previous solutions to 

the problem have utilized a regime which keeps General Relativity intact, except at the singularity 

point, at which the classical spacetime is bridged by a discrete quantum one. Here I propose a simple 

solution to the gravitational, spherical black hole. Specifically, I show that a simple Newtonian 

Relativity theory yields a black hole size which equals the Schwarzschild radius. For a supermassive 

black hole at a galaxy center, the theory yields a simple expression for the mechanics of the host 

galaxy. The derived solution predicts that a black hole has no singularity at the interior, and that it is 

part of a binary system with a naked singularity located at redshift z =   
 

  ≈ 0.7071, suspected to be 

a quasar with extreme velocity offsets or an active galactic nucleus.  

No less important, it is shown that the proposed theory, while being intimately related to Newtonian 

mechanics, is consistent with quantum mechanics and with ΛCDM cosmology.  

 

Keywords: Black holes, Singularity, Schwarzschild radius, Relativity, General Relativity. 

 

Black Holes - A brief History 

The name "Black Hole" was coined by John Wheeler in in 1964, but the possibility of its existence 

within the framework of Newtonian physics was conjectured in 1784 by John Michell, who argued 

that there might be an object massive enough to have an escape velocity greater than the velocity of 

light [1]. Twelve years later Simon Pierre LaPlace also predicted the existence of black holes. 

Laplace argued that "...[It] is therefore possible that the largest luminous bodies in the universe may, 

through this cause, be invisible." [2]. A better understanding of black holes, and how gravity and 

waves intermingle, had to wait until 1915, when Albert Einstein delivered a lecture on his theory of 

General Relativity to the German Academy of Science in Berlin. Within a month of the publication 

of Einstein’s work, Karl Schwarzschild, while serving in the German Army on the Russian front, 

solved Einstein’s field equations for a non-rotating, uncharged, spherical black hole. For a star of a 

given mass, M, Schwarzschild found the critical radius R (= 
     

  , where G is the gravitational 

constant  and c is the velocity of light), at which light emitted from the surface would have an infinite 



3 
 

gravitational redshift, and thereby infinite time dilation. Such star, Schwarzschild concluded, would 

be undetectable by an external observer at any distance from the star. Nonetheless, the Schwarzschild 

metric suffers from a singularity point in spacetime, such that any matter or wave intering the event 

horizon is predcted to be thrown out, through the singularity, to an undefined spacetime. .  

Our understanding of the processes involved in the evolution and decay of black holes was is largely 

due to quantum mechanical and thermodynamic theories. Early in 1974 Stephen Hawking predicted 

that a black hole should radiate like a hot, non-black ("gray") body [5]. Hawking's theory of black 

holes, and the discovery of the Hawking Radiation, confirmed the generalized second law of 

thermodynamics of Jacob Bekenstein, stating  that the sum of the black-hole entropy and the ordinary 

thermal entropy outside black holes cannot decrease. According to this prediction, black holes should 

have a finite, non-zero and non-decreasing temperature and entropy [6]. 

The first X-ray source, widely accepted to be a black hole, was Cygnus X-1 [7]. Since 1994, 

numerous black holes, of different sizes and redshifts, were detected by the Hubble Space Telescope, 

and by other space-crafts and extremely large ground telescope [see e.g., 8, 9]. We now know that 

black holes exist in two mass ranges. Small ones of (M ≲ 10 M⊙) (M⊙, solar mass), believed to be 

the evolutionary end points of the gravitational collapse of massive stars, and supermassive black 

holes of M ≳     M⊙, responsible for the powering of quasars and active galactic nuclei (AGN) [10, 

12]. Supermassive black holes, residing at the centers of most galaxies, are believed to be intimately 

related to the formation and evolution of their galaxies [10- 14]. 

 

Pathology and Previous Solutions 

As mentioned above, the solution of Einstein’s field equations [3, 4] yields a critical hole radius of R 

= 
    

   . However, Schwarzschild's solution suffers from a serious pathology, since it predicts a 

singularity where the fabric of spacetime is torn, causing all matter and radiation passing the event 

horizon to be ejected out to an undefined space-time, leaving the black hole empty. Thus, in violation 

of thermodynamics and quantum mechanics [e.g., 14-15], we end up with an enormously massive 

black body with and zero entropy and temperature. In fact, Many believe that the black holes' (and 

the Big Bang) singularities, mark a breakdown in General Relativity. Nonetheless, it is perhaps 

because GR is a major pillar of current cosmology, the singularity problem is usually tolerated or 

ignored.  

Attempts to solve the singularity problem in quantum mechanics include the analyses carried out by 

Ashtekar and others [16-17] who proposed a loop quantum gravity model [18-19] which avoids the 

singularities of black holes and the Big Bang. Their strategy was to utilize a regime which keeps 
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General Relativity intact, except at the singularity point, at which the classical spacetime is bridged 

by a discrete quantum one. Although the solution is mathematically difficult, its strategy is simple. It 

begins with a semi-classical state at large late times (‘now’), and evolves it back in time, while 

keeping it semi-classical till one encounters the deep Planck regime near the classical singularity. In 

this regime it allows the quantum geometry effects to dominate. As the state becomes semi-classical 

again on the other side, the deep Planck region serves as a quantum bridge between two large, 

classical space-times [16]. 

 

The Proposed Solution 

Here I propose another solution to the black holes problem. As a case study, I consider here a 

spherical supermassive, gravitational black hole. The solution proposed is based on a new relativity 

theory, termed Newtonian Relativity (NR). First I present the theory, and then I use it to solve the 

black holes' paradoxes encountered by General Relativity. Specifically, I show that a simple relativity 

theory, based on two plausible and well accepted axioms, yields a solution to the black hole size 

which equals the Schwarzschild radius, but with no singularity at the interior. The proposed solution 

portrays black holes as "gray", extremely dense, and gigantically gravitational objects, which absorb, 

but also emit radiation. The theory is in agreement with quantum and thermodynamics predictions 

that an event horizon area of each black hole and its entropy do not decrease [e.g., 6, 14, 15, 20], but 

could rather increase. Moreover, the proposed solution predicts that black holes are part of binary 

systems, with a naked singularity at redshift z =   
 

  ≈ 0.7071, suspected to be a quasar with extreme 

velocity offsets or an active galactic nucleus (AGN). 

 

Theory 

The theory, here applied to inertial systems, is based on the following two postulates: 

1. Information regarding physical entities is translated from one laboratory to another via light and 

electromagnetic waves of equal velocity (information postulate). 

2. The laws of physics are the same in each internal system, and at sufficiently low velocity, these 

laws are described by Newtonian mechanics (invariance postulate). 

The information postulate is justified by the necessity, dictated by quantum mechanics, to specify the 

methods and devices used in observations, including the medium by which information is translated 

from one frame of reference to another. As prescribed by Niels Bohr, accounts of the experimental 

arrangements, and of the results of the observations, must be expressed in unambiguous language 

with suitable application of the terminology of classical physics [21]. In fact one should also 
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postulate that the measurement methods used in all laboratories are the same, but this requirement 

could be considered as a default. Note that the same laws of physics could be derived for any 

information carrier velocity. Nevertheless, applying the theory to cosmology, and to high velocities 

and energies, makes the velocity of electromagnetic waves the only practical choice. 

The first axiom implies that information sent from a body, when it is at distance d from the observer's 

laboratory, will reach the observer with time dilation of ∆t = 
 

 
, where c is the velocity of the wave 

signal relative to the observer. Notably, this consequence of the information postulate does not require 

that the body is in relative motion with respect to the observer. The fact that a light ray propagating 

from the sun reaches Earth in about eight minutes and 20 seconds depends on the distance between 

Earth and the sun and not on the fact that they are in relative motion with respect to each other. The 

same applies to wave travel between any two bodies. 

The second axiom, although in agreement with Special relativity's first axiom, is more specific 

regarding the nature of laws which should apply to all systems. The specification that the observations 

of physical realities at low velocities should accord with classical physics is in agreement with the 

subjective Copenhagen interpretation of Quantum Theory [22-23], according to which wave functions 

are mere mathematical objects that allow us to calculate probabilities of future events. In other words, 

quantum states are interpreted here in accordance with the classic argument by Albert Einstein [24-

25], that is as states of knowledge [26], rather than as states of objective reality [27]. 

The requirement that at low velocities the laws of physics are classical Galileo-Newton laws has a 

profound implication on the strategy used in the proposed theory. Not only must we expect that all 

laws should converge at low velocities to the laws of classical mechanics; we must also require that in 

considering different frames of reference, any relativistic effect should be uniquely a function of 

relative velocities. Although the case treated here concerned inertial systems, we expect the same 

proposition to hold for non-inertial systems, with non-zero acceleration vector  ⃗. The possibility of 

such extension is guaranteed by the equivalence principle, positing that gravitational forces, if present, 

could be replaced by an equivalent acceleration vector,  ⃗   from which the relative velocities at any 

time t could be determined. The advantage of this approach over General Relativity is twofold: On the 

one hand, it disentangles the force of gravity from relativity in space and time, allowing a 

commonsensical integration between the relativity of inertial (special) and non-inertial (general) 

systems, such that the laws of the former could be obtained from the laws of the latter by setting  ⃗ = 0. 

Second, unlike General Relativity, the present approach maintains a smooth and natural continuity 

between relativistic and classical (non-relativistic) physics. 

In essence, the proposed theory is a relativity theory of large, fast moving systems. Nonetheless, its 
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two postulates are anchored, philosophically, on basic principles of quantum mechanics. In addition, 

although not stated as a third postulate, it is accepted that small, Planck's scale, systems, are best 

described as quantum states of knowledge and thermodynamics, and are best analyzed by quantum 

mechanical and thermodynamic models. In other words, NR should be viewed as an alternative to GR 

in describing the large scale dynamics, while at Planck scales, the system dynamics are best described 

by quantum mechanics. 

 

Transformations        

The derivation of the theory's transformation is straightforward and simple. To derive the time 

transformation, consider two frames of reference, F and     which depart from each other along the x 

axes (in F), with constant relative velocity v. Without loss of generality, assume that at    =   
  = 0, x = 

   = 0. For an observer in F, at time t sec. in F (   
  in    , the systems should be at a distance d = v t. 

Now assume that exactly at time    
  in     (t in F) a light wave signal is sent from the point x = d, 

indicating that    has just passed this point. If the velocity of the wave signal, as measured by an 

observer in F, is c, then the information, indicating the arrival of      at point x = d, will be delayed by 

 

 
 = 

   

 
. Thus we can write: 

t =   +
   

 
 =   +                                                                                           ..…. (1) 

where    =   
 

 
 

Or: 

 

   =  
 

   
                                                                                                        ..…. (2) 

 

Note that Eq. (2) is similar to the Doppler Formula, except that the Doppler Effect describes red- and 

blue-shifts of waves propagating from a departing or approaching wave source, whereas the result 

above describes the time transformation of moving bodies. Also note that 
 

    
 is larger than one (time 

dilation) if F and   depart from each other, and smaller than one (time contraction) if they approach 

each other. 

Similar derivations of the distance, mass density and kinetic energy yields the transformations 

depicted in Table 1 (see section A in the supporting material).  
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  Table 1 

     Transformations 

Physical Term Relativistic Expression 

Time (sec)  

  
  

 

   
                     …. (3) 

Time (round trip)  

  
  

 

    
                     ….(4) 

Distance (m) 

 

 

    
   

   
                      ….(5) 

Mass density (kg/m
3
)
   

   = 
   

   
                       ….(6) 

Kinetic energy (Joule) E= 
 

 
     

       

   
      ....(7) 

Newton's Second Law      F = 
       

      
   a         ….(8)  

 

Black holes in Newtonian Relativity 

Figure 2 depicts a schematic representation of a supermassive black hole with mass M and radius r 

residing at a center of its host galaxy. The figure shows three particles at different distances from the 

center of the black hole. 

 

 

 

 

 

 

 

 

  

 

 

 

 

As depicted in the figure, the more distant particle will be deflected towards the black hole, but will 

escape it due to its large distance, and continue its travel in space. In contrast, the closest particle to 

the black hole will experience a strong enough gravitational force to cause its absorption into the black 

 

m v

m 

M 

     Figure 2 Three particles near a black hole   
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hole. Now consider the third particle, which travels tangentially to the hole's radius vector. Such 

particle could be a baryon or wave quanta entrapped at a critical distance, ensuring that it rotates 

around the black hole or a baryon or a Hawking Radiation quanta hovering just at the hole's event 

horizon. For such particle, the acceleration | ⃗| supporting a uniform radial motion with radius R 

should satisfy: 

  | ⃗| = 
  

 
 = 

  

 
                                                                                         … (9) 

A relativistic derivation of Newton's Second Law (see Section B in SM) yields: 

F = 
       

      
      a                                                                                     .… (10) 

Substitution the value of a from Eq. 9 in Eq. 10 yields: 

F = 
       

      
       a =  

         

       
    

  

 
         

         

       
    

 

 
          …. (11) 

Using Newton's general law of gravitation, we get: 

G 
     

  
 =       

         

       
    

 

 
                                                                .… (12) 

Solving for r yields: 

r = 
    

   
       

                                                                                               ….. (13) 

Assuming spherical symmetry, Eq. 13 describes the dynamics of the host galaxy as a function of 

velocity. For a light photon (      we have: 

 

r ((      R= 
     

  
                 ….. (14)  

 

Which exactly equals the Schwarzschild radius, but with no singularity in the hole's interior.  

Interestingly, the solution (Eq. 13) has a naked singularity at   satisfying: 

                            .... (15) 

Solving for β, we have: 

β =√ 
 

 -1 ≈ 0.4142                ….. (16) 

Fig. 3a depicts the radius r as a function of β, and Fig. 3b shows an enlargement of the figure in the 

range β = 0.6 -1.  



9 
 

 

 

Figures 3a-3b Black hole radius as function of velocity 

 

Expressing the radius r in Eq. 13 as a function of the redshift yields: 

 

r = 
    

  
  

         

               
                   ….(17) 

 

With corresponding redshift of: 

z = 
  

    
 = 

 

√ 
  ≈ 0.7071                        ….. (18) 

The above results are quite interesting. They imply that a non-rotating black hole, with 

Schwarzschild radius R, is part of a binary system with a naked singularity. The picture drawn by the 

solution is of a black hole at relatively high redshift, paired with a quasar with extreme velocity 

offsets or an active galactic nucleus (AGN), at redshift z ≈ 0.7071. 

Eq. 17 has some peculiar properties. For z = φ ≈ 1.618 we have r = z, which indicates a Golden Ratio 

symmetry. In addition, r has a minimum of    ≈ 1.5867, at redshift z ≈ 2.0782. 

β = √ 
 

 - 1 ≈ 0.4142  
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The present results confirm with an ΛCDM model with    = 
 

 
 and    = 

 

 
 . Fig. 4 depicts the radius 

r as a function of redshift for a range of M -    M. together with results adopted from [28] for a 

cosmology of    = 70 km     Mp   ,    = 0.3 and    = 0.7 for intermediate and massive black 

holes. Comparison of the two figures reveals a remarkable similarity between the predictions of the 

two models.  

  

Figure 4 Radius as function of redshift  

 

Figure 5 Intermediate and massive black holes for    = 0.3,    = 0.7 (Source: Hook, 2005) 

 

 Area 

Assuming a spherical hole, its area A as a function of its mass could be expressed as: 

A = 4 π    = 4 π   
     

     = 16 π 
  

                     ….(19) 

Alternatively, the mass of the black hole as a function of its surface area is:  

√ 
 

 
+1 ≈ 1.7071 ≈2.618   

     r ≈1.618 
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M =   
   

  
 √

 

  

 
                             ….(20) 

 

Kinetic Energy 

Assuming a uniform black hole, the kinetic energy density at a distance r > R from the center of a 

black hole (see table 1) is given by: 

e = 
 

 
    

       

   
                  ….(21) 

Which could be written in redshift z as: 

e = 
 

 
    

  
  

             
                            ….(22) 

As shown in Fig. 5 the ratio 
 

 

 
      

  as function of z is normal like. Strikingly, the point of maximum, 

obtained by deriving the term in Eq. 22 with respect to z and equating the result to zero, is equal to: 

    = 
√ 
 

  

 
 = φ ≈ 1.618                ….(23) 

Where φ is the famous Golden Ratio. The max value of 
 

 

 
      

 is given by  

 
 

 
      

 =  
 

 
     ≈                          ….(24) 

Strikingly, the obtained maximum is equal to L. Hardy’s probability of entanglement (29-30). 

 

 

 

 

 

 
Figure 6 Kinetic Energy as a function of redshift 
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 Summary and Concluding Remarks 

The present paper describes a simple 
(1)

 relativity theory, termed Newtonian Relativity. The theory is 

based on two plausible postulates: That information translation, by light or other electromagnetic 

waves, suffers from time dilation, and that at low velocities all the relativistic terms reduce to the 

classical Galileo-Newton terms. Based on the above two axioms, I derived new relativistic terms for 

time, distance, mass density, kinetic energy, as well as a relativistic modification of Newton's Second 

Law. Application of the theory to non-rotating, purely gravitational, spherical black holes yielded the 

following prediction: 

1. The radius of a black hole is equal to the is equal to the Schwarzschild radius (R= 
     

      

2. At the interior of the hole, the solution has no singularity. 

3. At the exterior of the hole, the solution has one naked singularity at redshift z = 
 

√ 
  ≈             

0.7071. 

4. The energy density (normalized by 
 

 
     

 ) is predicted to reach its peak at redshift z = φ ≈ 1.68, 

where φ is the Golden Ratio. This is a novel testable prediction, since it implies the existence of 

extreme galactic activity located in the neighborhood of z= φ.   

5. For a spherical black hole, the area A of the event horizon is proportional to the square of its mass 

(A = 16 π 
  

        

6. A gravitational black hole is a part of a binary system with an extreme galactic activity located at 

redshift z =   
 

  ≈ 0.7071, suspected to be a quasar with extreme velocity offsets, or a weaker active 

galactic nuclei (AGN).  This prediction is supported by many observations [e.g., 31-33]. For 

example, Steinhardt et al. [32] reported the the discovery of a Type 1 quasar, SDSS 0956+5128, with 

extreme velocity offsets at redshifts z  = 0.690, 0.714, and z 0.707.  

For an observer located at the exterior of a galaxy, assuming radial symmetry, the picture emerging 

from the present analysis and from previous results reported in [34] is sketched in Fig 7. The galaxy 

is centered at supermassive black hole with Schwarzschild radius, located at z >> 1.  For 0 ≤z≤ 0.5 

the   galaxy is dominated by baryons and kinetic energy and a z > 0.5 it is dominated by dark matter 

and dark energy. 

 

Footnote 1: If we believe that the rules of nature should be simple ones and if Occam's razor principle is taken 

seriously, then the mathematical simplicity of the theory, rendering it comprehendible by high school science 

students, if not taken as an asset, should, at least, not be taken as a liability. 
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Notwithstanding, the density distribution of kinetic energy reaches its peak at z ≈ 1.618, the point of 

quantum criticality. The nearby exterior of the black hole is gray. The rim of the event horizon is 

luminous, due to trapped highly energized waves (Cosmic rays, X-rays, light), bursting out as 

Hawking Radiation when acquiring superluminal escape velocities. The interior of the black hole is 

dark. 

The above galaxy mapping provides several testable predictions. One interesting prediction concerns 

the domination of baryonic matter and kinetic energy vs. dark matter and dark energy in a galaxy. A 

second prediction concerns the normal shaped distribution of kinetic energy in the galaxy, centered at 

redshift equaling the Golden Ratio. A third prediction concerns the quadratic relationship between 

the surface area of a black hole's event horizon and its mass (Eq. 19).     

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Illustration of the predicted black hole region 

 

The luminous halo at the event horizon is comprised of light photons and quasi-luminal particles, like 

neutrinos, with critical velocity that supports a circular motion on the rim of the event horizon.  

Obviously, the present analysis and the conclusions drawn above suffer from oversimplifications. It 

assumed radial motion whereas the dynamics of most galaxies are quasi-elliptical and spiral. It also 

assumed that the black hole has no electric charge and that except for the gravitational force of the 

Q
u

an
tu

m
 c

ri
ti

ca
lit

y 
 

 

(Q
u

as
ar

) 
 

 

N
ak

e
d

 S
in

gu
la

ri
ty

 

 

Event horizon (z →∞) 

z ≈ 0.7071 z ≈ 1.618 

Redshift 

z ≈ 0.5 

D
o

m
in

at
io

n
 o

f 
b

ar
yo

n
s 

an
d

 k
in

et
ic

 e
n

er
gy

 

Domination of dark matter and dark energy   



14 
 

black hole, all other forces, including the electromagnetic force and the gravitational forces of 

quasars and active galactic nuclei (AGNs) are negligible.  
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A. Derivation of the distance, mass density and energy transformations 

A1. Distance 

Consider the two frames of reference in Figure a1. Assume that a body moving in the +x direction 

arrives            in F (  
  in     to the point         (  

  in     and continues to point    in F (  
  in 

    at which it arrives at time    in F (  
  in       Assume further that the body's arrival at each point 

is signaled by a light pulse sent in the –x direction to two observers, one stationed at the point x = 0 in 

F and another stationed at point       in      and that the light signals travel with velocity c relative 

to F. 

The signal indicating the body's arrival at   
  reaches the observer stationed at      at time   

  which 

equals: 

  
  = 

  
 

   
                                         …. (a1) 

Where v is the velocity of     relative to F, and c is the velocity of light as measured in F. 

Similarly, the time   
  indicating the body's arrival at   

  is given by: 

 

  
  = 

  
 

   
                                       .… (a2) 

 

 

Figure a1. Observers in two reference frames moving with velocity v with respect to each other 

 

The time arrivals in F at    and    are given, respectively, by:    = 
  

 
 and    = 

  

 
. Thus, we can write: 
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   -   = 
       

 
                                                 .… (a3) 

And: 

  
  -   

 = 
  

    
  

   
                                                         …. (a4) 

From Eqs. a3 and a4 we have:  

         

  
    

  
 = 

   

 
 
       

  
      

   = (1 + β)  
       

  
      

                                                               … (a5) 

Substituting the time transformation from Eq. 2 (see main text) in Eq. a5 and defining x =    –     and 

      
    

   the distance transformation could be written as: 

 

  
 =  

       

       
                                                   …. (a6) 

The relative distance  
 

    as a function of β, together with the respective relative distance according to 

SR (in dashed black), are shown in Fig a2. While SR prescribes that irrespective of direction, objects 

moving relative to an internal frame will contract, CR predicts that a moving object will contract or 

expand, depending on whether it approaches the internal frame or departs from it.   

 

Figure a2. Distance transformation for the one-way trip. The dashed line depicts the corresponding 

prediction of SR 

 

A.2 Time and Distance in the Round-Trip 

For the round trip from F and back, synchronization of the start time is not required. For this case, 

using Eq. (2), the total relative time is given by:  

 

t = ⃗ + ⃖ = (
 

     
 +

 

     
      (

 

   
2)                                                     .…(a7) 

Or,  
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= 

 

   
2                                                                                                                                                                     …. (a8) 

Similarly, using Eq. (a6), the distance transformation for the round trip is given by: 

x = ( 
       

       
  + 

       

       
 )    = 

    

      
                           .… (a9)  

Or:  

 

  
 = 

    

      
                          … (a10) 

The relative time and distance as functions of β in the round trip are depicted in figures a3 and a4, 

respectively. The dashed lines depict the corresponding predictions of SR. Note that for the round trip 

the results of CR and SR are qualitatively similar, except that the time dilation predicted by CR is 

larger than that predicted by SR. For small β values, the two theories yield almost identical results. 

Conversely, while SR predicts distance contraction, CR predicts distance expansion. 

 

 

Figure a3.Time transformation for the round trip. The dashed line depicts the corresponding 

prediction of SR 

 

Figure a4: Distance transformation for the round trip. The dashed line depicts the corresponding 

prediction of SR 



20 
 

A3 mass density and kinetic energy 

Consider the two frames of reference F and   shown in Figure a4. Suppose that the two frames are 

moving relative to each other at a constant velocity v. Consider a uniform cylindrical body of mass  

   and length of     placed in    along its travel direction. Suppose that at time    the body leaves 

point    (  
  in   ) and moves with constant velocity v in the +x direction, until it reaches point    

(  
  in   ) in time    (  

  in   ). The body’s density in the internal frame    is given by:    = 
  

     
 , 

where A is the area of the body’s cross section, perpendicular to the direction of movement. In F the 

density is given by: ρ = 
  

   
 , where l is the object’s length in F. Using the distance transformation (Eq. 

6a) l could be written as: 

l  =  
    

    
            … (a11)

 

Fig. a4. Two observers in two reference frames, moving with constant velocity v with respect to each other 

 

Thus, we can write: 

ρ = 
  

   
 = 

  

       
    

    
  
 =     

    

    
         ….. (a12) 

Or, 

 

  
 = 

    

    
          ….. (a13)  

   

The kinetic energy of a unit of volume is given by: 

 

E = ½ ρ   = ½ ρ0 
       

      
   ,            ….(a14)  

or: 

E = 
 

 
 ρ 0    

       

      
                                                                                         ….. (a15) 

 

And the kinetic energy for a body of mass    is given by: 
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E = 
 

 
     

  
       

      
    = 

 

 
      

       

      
                   ….. (a16) 

 

where β = 
 

 
 and     =      

 . For β →0 (or v << c) Equation x3 reduces   =    , and the kinetic 

energy expression (Eq. a16) reduces to Newton's expression E =
  

 
    

 . Figures a5 and a6, 

respectively, depict the relativistic mass density and energy as a function of β. 

 

Figure a5. Mass density as a function of velocity 

  

 

Figure a6. Kinetic energy as a function of velocity 

 

As shown by the Fig.2, the density of departing bodies relative to an observer in F is predicted to 

decrease with β, approaching zero as β → 1, while the density in F for approaching bodies is 

predicted to increase with  β, up to infinitely higher values as β → -1.  

            φ = 
 √    

  ≈ 0.618  
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Strikingly, for departing bodies the kinetic energy displays a non-monotonic behavior. It increases 

with β up to a maximum at velocity β =       and then decreases to zero at β = 1.  Calculating     is 

obtained by deriving Eq. a16 and equating the result to zero: 

 

 

  
 (β

2        

      
   = 2 β 

       

      
 + β

2                      

       
 = 2 β

(        )

       
 = 0                .... (a17) 

 

for β ≠ 0 and we get: 

 

β
2
 + β – 1 = 0                                                                    ...(a18) 

 

Which solve for positive β at: 

 

    = 
√   

 
 = Φ ≈ 0.618                    ….(a19)                                                                                   

   

Where Φ is the Golden Ratio [A1-A2]. This is a striking result given the properties of this 

phenomenal number, due to its importance, together with the Fibonacci numbers, in 

mathematics, aesthetics, art, music, and more [e.g., A3-A5] and its key role in nature, 

including in biology and life sciences[A6-A8], physics [e.g., A9-A10], chemistry [e.g., 

A11], neuroscience [e.g., A12-A13], and  more.  

Substituting     in the energy expression (Eq. a16) yields: 

 

Emax = ½ E0         

    
                  …. (a20) 

 

From Eq. a18 we can write:    +   – 1 = 0, which implies       =     and 1+   = 
 

 
.  

Substitution in Eq. a20 gives: 

 

Emax = ½    E0   ≈ 
          

 
  E0 ≈ 0.04508497 E0            …. (a21) 

 

Interestingly, the ratio  
    

  
 = 

    

     
 ≈ 0.04508497, which is precisely half of L. Hardy’s 

probability of entanglement (0.09016994) [A14-A15]. This result confirms with a recent 

experimental finding [16], which demonstrated that applying a magnetic field at right 
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angles to an aligned chain of cobalt niobate atoms, makes the cobalt enter a quantum 

critical state, in which the ratio between the frequencies of the first two notes of the 

resonance equals the Golden Ratio; the highest-order E8 symmetry group discovered in 

mathematics [A17]. 

 

B. Derivation of a relativistic Newton's Second Law 

For relativistic velocities, Newton's second law is given by: 

 = 
  

  
 = 

     

  
 = m 

    

  
 + v 

    

  
  

= m  +   
    

  
 
    

  
 = m   + v a 

    

  
                                                                     …(b1) 

Or: 

F = (m + v 
    

  
) a                                       ….(b2) 

Substitution the term for m from Table 1, and deriving m with respect to v yields: 

F = 
       

      
       a                                                                   ….(b3) 
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