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Earthquake precursors based upon snap-of-a-whip effect. 
 

Michail Zak   
                       Jet Propulsion Laboratory California Institute of technology 
 
Abstract. 
          The objective of this paper is to analyze thermal anomalies associated with pre-
seismic activities, to develop a model that explains effects of relatively fast appearance 
and disappearance of the ground temperature increases, and to apply that model to 
several hours prediction of the parameters of a potential earthquake. The approach is 
based upon the so-called snap-of –a-whip effect when an S-wave penetrates the upper 
soil/sand layer and releases its potential energy into heat at the very surface. This effect 
(that mathematically is equivalent to a snap of a whip) has been described by M.Zak, in 
[1], [2], and [3]. Special discussion is devoted to the inverse problem of prediction of 
expected earthquake parameters based upon observed time-series as well as to proposed 
experiment.   
1.Introduction. 
          There are several physical phenomena altered by pre-seismic activity such as soil 
moisture, gas contain and composition, etc. But the most spectacular and mysterious 
phenomenon of those mentioned above, is a fast appearance and disappearance of the 
ground temperature increases several hours prior and up to a day after the earthquake. 
The confidence in correct values of the surface temperature time series has been recently 
increased due to techniques of precise co-registration of all satellite scenes developed by 
N. Bryant, A. Zobrist and T.Logan,  [4], and [5]. 
        One of possible explanation of the thermal anomaly was proposed (and supported by 
experiments) by F.Freund [6] who suggests that satellites may be recording cold 
luminescence in the thermal infrared, not hot thermal emissivity signatures. However, 
this theory can hardly be extended to the areas that are covered by a thick layer of soil or 
sand. But, coincidentally, these particular areas are the most vulnerable to destruction 
caused by earthquakes. The main purpose of our approach is to propose an explanation of 
thermal anomalies observed in the areas covered by a thick layer of soil/sand. Although 
these two theories are based upon different physical phenomena, they actually can 
complement each other since they are applicable to non-overlapping areas. 
2. Seismic S-waves. 
      The main destructive ”weapon” of an earthquake is the wave of shear stress, or S- 
wave. This wave originated at the fault as a result of a slip phenomenon when the shear 
stress exceeds the friction stress. Although the accumulation of the potential energy of 
elastic forces between the earthquakes is relatively slow, the growth of the second 
gradients of shear stress is significantly accelerated prior to the next earthquake. During 
this period, S-waves of high second gradients as well as of high accelerations (but still of 
low amplitudes) start propagating from the fault upward to the ground according to the 
following equation 
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where ρ is rock density, u is shear displacement, and G is shear modulus of rock.  
Since G = const., the wave propagates with the constant characteristic speed 

if G=3x1010 Pa and ρ=2.5x 103kg m-3. 

If x is a vertical axis, the wave u = u(x,t) approaches a free surface and reflected back 
thereby spreading any local increase of shear stress over the whole depth .However, if the 
free surface of the rock is covered by a layer of soil or sand, the wave is only partly 
reflected, but partly penetrates the soil/sand layer. In order to evaluate the ratio of these 
two components, one should recall that shear stress in a soil/sand layer is generated by 
friction. Therefore, the propagating shear stress cannot exceed the friction stress , i.e. 

Here τ is propagating stress, τs max is maximum friction stress, fs is coefficient of static 
friction between rock and soil/sand, and γs is the weight of the soil/sand per unit area. If 
the shear wave u(x,t) is of  relatively small amplitude (as was assumed from the very 
beginning), and therefore, the propagating  shear stress does not exceed the maximum 
friction stress, then there is no slip at the boundary between the rock and soil/sand. 
Hence, the shear deformation of the rock and of the soil/sand are the same at the 
boundary, i.e.the corresponding shear stresses as well as the specific energies are 
proportional to the shear moduli 
 

since,    
 

 

 where H is the depth of the soil/sand layer, us is the shear displacement of soil/sand, G 
Gs ,E and Es are shear moduli and specific energies of rock and soil/sand, respectively. 
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 As noticed above, a typical value for the rock shear modulus is G = 3 x 1010 Pa. For the 
soil/sand layer of 1 km height, the shear modulus at the bottom of the layer Gs =0 .74 x107 
Pa. Hence, only about .025% of the total energy of the shear wave penetrates the 
soil/sand layer, while the most part of the energy returns to the rock via reflection. 
      Let us turn now to the alternative case when the propagating shear stress exceeds the 
maximum friction stress, i.e. when 

  
The excessive stress that is defined via the kinematic coefficient of friction fk   
 

 
cannot be transmitted by the soil/sand medium, and the energy ΔE associated with this 
stress dissipates into heat via the friction. It should be noticed that this is not the 
phenomenon we are looking for. Indeed, here the heat is generated at the bottom of the 
soil/sand layer, and it spreads over the whole layer by the slow mechanism of thermal 
conductivity. Therefore, the effect of this wave on the surface temperature will be 
vanishingly small. Instead we are looking for such an elastic wave that penetrate the 
soil/sand layer and dissipates its energy at the very surface. As will be shown below, such 
a wave exists, and it is similar to a wave propagating along a whip and producing a snap 
at the free end due to sharp concentration of energy there, (see Fig.1) 
 
 
3. Snap-of-a-whip effect. 
Let us return to the case (3) when a small portion of the shear wave enters the soil/sand 
layer without dissipation. Its propagation upwards is still governed by Eq. (1) with the 
only difference that now the shear modulus depends upon the depth. We will use here the 
following expression after R. Weigel,[7]: 
 

 
A modified version of Eq.(1)  

was studied by M.Zak [1,2,3] who showed that  this equation has a unique stable solution 
in the open interval 

that does not include the surface point x = 0; however, this solution becomes unstable and 
non-unique in the closed interval 

that includes the surface point x = 0. 
        A physical interpretation of this mathematical result is very simple. It follows from 
the fact that in a soil/sand medium, the leading front of the shear wave propagates 
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towards a free surface slower than the trailing front does. As a result of that, the length of 
the wave tends to zero, while the energy per unit length tends to infinity at the surface. 
Indeed, let us turn to Eq. (9) and assume that the shear wave approaching the soil/sand is 
of a rectangular form. (Such an approximation allows one to avoid unnecessary 
mathematical complications without loosing qualitative as well as global quantitative 
effects). The total energy transmitted by such a wave of length l is  
 
 

where u is the shear displacement over the total wavelength l. The simplification here is 
due to the rectangular shape of the wave, and in particular, due to the relationship 
between the jumps of strains and velocities [3]  

After passing through the boundary, the energy of the wave penetrating the soil/sand 
layer is 

 
As noticed above, the rest of the energy will return with the reflected wave. The initial 
length of the penetrating wave ls is found from Eq.(14) with the reference to Eq.(4) 

The penetrating wave continues to propagate upward. First, its speed drops from the 
value in the rock (see Eq.(2) to the initial value at the boundary 

 Then the speed starts gradually decreasing and approaches zero at the surface 

preserving constant deceleration 
 
 

However, as follows from Eq.(17), the negative velocity gradient becomes unbounded at 
the surface; in mathematical language it means violation of the so-called Lipschitz 
condition, and that causes non-uniqueness of the solutions to Eq.(17) in the interval that 
includes the free surface. Nevertheless, this mathematical “formality”has a clear physical 
interpretation that will be given below. Indeed, let us introduce a trajectories of the  
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leading point x1, trailing point x2 and the middle point x* of the propagating wave. As 
follows from Eq.(17): 
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All these trajectories (known as the characteristics of the original equation (1)) approach 
the surface x = 0 with zero speed (i.e. without reflection) at different times 

 
Therefore, the wave is not reflected from the surface, but rather stays there, while its 
length Δl = x1 – x2  gradually decreases from l to 0:   

The energy per unit length of the wave becomes unbounded at the surface 

i.e when 

At this time, different solutions of the same differential equation (17) (known as the 
characteristic equation to the original equation (1)) intersect, and that represents the non-
uniqueness of the solution to Eq.(1). The instability of these solutions results from the 
unboundedness of the specific energy E* at x = 0, t = t* even if the initial value of this 
energy at t = 0 is arbitrarily small (but finite) 

The behavior of the solution to Eq.(1) is illustrated in Figure2. 
 
 

4. Energy dissipation. 
The evolution of the shear wave described above is not complete: it does not include yet 
the dissipation of mechanical energy into heat. Actually, there are two different 
mechanisms of the dissipation. One of them mentioned earlier occurs when shear stress 
exceeds the friction stress (see Eq. (3)). As a result of that, the elastic energy first 
transfers into kinetic energy of a slip, and then it dissipates into heat via friction. It should 
be emphasized that this type of dissipation starts in depth of the soil/sand layer, and 
therefore, its contribution into the surface temperature is delayed by a slow process of 
thermal conductivity. Following the same line of argumentation, it is clear that the waves 
of higher intensity contribute less into the surface temperature since their dissipation 
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starts earlier, and therefore, given the same total energy, long shallow waves are more 
effective in raising the surface temperature.  In order to evaluate the second mechanism 
of dissipation, recall that prior to dissipation, the wave energy is equally divided between 
the kinetic and potential (stress-based) components (see Eqs. (12) and (13)). Since the 
shear wave is not reflected from the surface, its kinetic energy eventually transfers to heat 
as well, but, unlike the previous case, that occurs only at the very surface. That is why the 
second mechanism is more important for the explanation of the thermal anomaly. The 
manifestations of this end-effect can be found in observations of a sudden jump of free-
surface particles during underground explosions. Similar effect takes place at the free end 
of a whip when the total energy transfers into heat via a supersonic snap.  
       Let us analyze the first mechanism of energy dissipation. It starts when the friction 
stress is equal to the elastic stress 

 
Here xf is the x-coordinate of the middle of the wave when dissipation starts. With 
reference to Eqs. (8) and (24), one can rewrite Eq. (27) as  

while the time tf (when the dissipation starts) as a function of xf , is found   from Eq. (21) 

  Substituting tf from Eq. (29) into Eq.(28), one arrives at a cubic equation with respect to 
xf. Although the exact solution to this equation is available, we will need only a 
qualitative result following from that solution, namely, that xf decreases with increase of 
the initial length of the shear wave (at a fixed total energy Es), Fig.3. As shown in this 
figure, a wave of high intensity, i.e. of high energy per unit length starts dissipating its 
potential energy earlier than a shallow wave (having the same total energy, but lower 
energy per unit length). The distribution of the dissipated energy over the soil/sand layer 
can be written in the following form 

  

 Here 

where x1 and x2 as functions of t are given by Eqs. (19) and (20), respectively, and Q1 is 
the dissipated energy per unit length. 
   
The energy dissipated into heat via the second mechanism is equal to the energy of the 
wave at the surface, and it can be expressed as a δ-function 
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 The total dissipated energy per unit length is  

One can verify that the total energy dissipated into the whole soil/sand layer is equal to Es 
i.e. to the initial energy of the wave. 
    The temperature T of the soil/sand layer heated by the dissipated energy is described 
by the non-homogeneous equation of thermal conductivity complemented by the 
corresponding initial and boundary conditions 

 

 Here κ is the coefficient of thermal diffusivity, θ is the air temperature, λ is the 
coefficient of the surface-air heat transfer and c is specific heat. Although this equation 
has a formal closed form solution, for better physical interpretation we will start with the 
following simplification: since we are interested only in shallow waves, it is reasonable to 
ignore the energy dissipated in the depth of the soil/sand layer assuming that Q1<<Q2. 
Then the solution that satisfies Eq.(34) and the conditions (35) can be obtained as an 
instantaneous source  

 representing the temperature at the point x at the time t if the heat Q = cρ is applied at 
initial time t = t0. However, the problem with this solution is that the temperature at the 
point and time of the heat application is unbounded. In our case the heat is applied 
exactly to the surface, i.e. at x = 0, t = t0 where t0 is the time when the wave approaches 
the surface (see Eq.(22). Therefore, according to our model, the surface temperature 
becomes unbounded at the time when the wave approaches it. Obviously, this formal 
mathematical result gives only qualitative description of the phenomenon. For 
quantitative physical interpretation of this result, one should depart from idealization of 
the soil/sand layer as a continuum by introducing a granular structure with the smallest 
length scale D equal to the diameter of a grain. Then instead of a single source (32) 
represented by a δ-function, one should apply a “thick” source uniformly distributed over 
the length D 

As a result, the temperature averaged over the thin layer of the thickness D is  
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After surpassing the singularity in the solution (36) by departing from the concept of the 
continuum, we can return to a slightly modified (homogeneous) version of Eq. (34) using 
the temperature (38) as the initial condition to the following problem 

    For simplicity, the heat transfer from the surface to air has been ignored, i.e. λ = 0. The 
solution to Eq. (39) describing the evolution of the temperature profile over the soil/sand 
layer is 

Hence, the evolution of the surface temperature is 

  

5.Energy balance. 
        As follows from Eq. (38), in order to find the surface temperature prior to a 
potential earthquake, one has to evaluate the energy Es of the traveling shear waves. 
Occurrence of these waves depends upon several factors such as the stress build up (as a 
result of water transport, gas emissions, electric and magnetic fields, etc.), formation of 
material defects (dislocations, disclinations, vacancies), changes of local material 
properties under loading. Some of these factors are random; but even those of them that 
are deterministic, require precise knowledge of dynamical history of the specific area 
under consideration, and that history usually is not available. That is why we will turn to 
a global description of the dynamical evolution (based upon energy balance) with the 
purpose to evaluate the order of the surface temperature. 
       Prior to the earthquake, energy is accumulated in the form of the stress-based elastic 
potential. Due to different kind of perturbations, the potential energy is partly transferred 
into kinetic energy of elastic waves. These waves may include both compression and 
shear waves. After reflection from boundaries, compression waves can partly convert into 
shear waves, and wise versa. But the total mechanical energy is conserved unless there is 
dissipation “leak”. A soil/sand layer may represent such a leak: when shear wave 
approaches this layer, a small part of this wave (see Eq.(4)) penetrates it, and the energy 
transfers into heat. We will use the following typical value of potential energy per unit 
area (to be released during the earthquake)[8]: 

 Prior to the earthquake, a small portion of this energy dissipates into heat in the upper 
surface of the soil/sand layer. This portion has been evaluated in Eq. (4): for H = 1km, 
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 Taking D = 0.5mm, and c = 1000 J/kgK, one obtains from (39) and (40) the increase of 
the surface temperature prior the earthquake: 

 
 One should notice that this value is not to be taken in a precise way: there are several 
assumptions have been made that can change the result in both directions. For instance, 
firstly, it has been assumed that each shear wave approaches the soil/sand layer only 
once; actually after several reflections this wave can return and dissipate again, and that 
would double the dissipated energy in Eq. (43); obviously, it would double the increase 
of the temperature too. Secondly, the energy per unit area in Eq.(38) was averaged over 
the whole area subjected to the earthquake; however, at the epicenter of the expected 
earthquake, the values of this energy can be significantly higher, and that again would 
lead to higher surface temperature. At this stage we cannot offer more accurate 
evaluation, and therefore, it would be safe to interpret the result (44) as that the raise of 
the surface temperature is of order of one degree K. 
6. Discussion. 
        There have been several attempts to explain the thermal anomaly on the free 
surface (such as fast appearance and disappearance of ground temperature increases) 
associated with pre-seismic activities [6]. In this study we concentrate on a special case 
when the area under consideration is covered by a layer of soil/sand of order of 1 km. The 
main specificity of this case is in the property of the free surface of such a layer: to 
absorb a traveling shear wave without reflection and with the energy dissipation at the 
very surface. In the following sub-sections we will discuss what kind of information 
about expected earthquake can be obtained from the observed thermal anomaly, and how 
this information can be extracted from the corresponding time series. We will also 
propose and discuss an experiment to verify the increase of surface temperature due to 
shear wave dissipation.   
a)Inverse problem. In this sub-section we will discuss the following (inverse) problem: 
given the raise of the surface temperature (44), obtain maximum information about the 
expected earthquake. Assuming that all the physical and geometrical parameters in 
Eq.(44) are known, one can evaluate the energy per unit area Es to be released during the 
expected earthquake. Obviously, the point on the surface where the raise of the 
temperature is the highest corresponds to the position of the epicenter, while the line on 
the surface along which the temperatures are observed approximates the position of the 
potential fault causing the expected earthquake. Further information is associated with the 
time-scales of the surface temperature evolution. The first time-scale follows directly 
from Eq.(41): in τ1 = 16 seconds the surface temperature (T-T0) drops at 90% of its initial 
value (given κ = 4x10-4 m2/sec). Such a small time-scale (that is unusual for slow 
processes of thermal conductivity) is due to a small length scale D=0.5 mm. The second 
time-scale is generated by elastic oscillations of shear waves reflecting from the potential 
fault and the border between the soil/sand layer. The period of these oscillations is of the 
order of τ2 = 3 sec (given the depth of the potential fault b = 5 km, and the shear wave 
speed vr  = 3400 m/sec). Since the thermal anomaly stays during hours, it is reasonable to 
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assume that the increase of the surface temperature is caused not by a single wave, but 
rather by a train of waves following each other with the time delays of order of τ2. For 
that case, the temperature evolution (41) should be modified as following 
 

By fitting Eq. (45) into the observed time series, one can find Es and τj. It should be 
noticed that the time delay τ defines the order of the depth b of the fault (namely, 
b=0.5τvr). However, actually the problem is complicated by the fact that there are other 
sources of the surface temperature increase that are not associated with the earthquake 
(such as seasonal changes, as well as changes caused by man-made features). Therefore, 
the earthquake-related component of the surface temperature increase should be filter out 
of the mixture of other component. Let us assume that we know the Fourier transforms 
for each of these q components. 

Then the temperature evolution (45) can be sought in the form of its Fourier transform 

Introducing the weight coefficients ak representing the portions of the partial Fourier 
power spectra of k-th components, one can write the following system of linear algebraic 
equations with respect to ak 

 Here Pks is the power of the spectrum of the k-th temperature component at the s-th 
frequency, Ps is the power of the spectrum of the observed temperature, and m is the 
number of frequencies at which the powers are assigned, Eig.4. 
Thus we arrived at a system of q equations with respect to m unknowns. Usually q i.e. the 
number of different sources of the surface temperature increase, is of order of 10, while 
m, i.e. the number of frequencies at which the powers of the spectra are available, is of 
order of 100. Therefore, the system (48) is highly overdetermined, and its exact solution 
does not exist. However, one can find an approximate solution that is the” best fit” in a 
sense that the square root of the sum of squares of errors, i.e. the norm of the residual 
column-matrix, is minimal. This solution can be found, for instance, by applying a 
pseudoinverse A(-1) to the rectangular matrix A=||Pks || of the system (48) 

It should be noticed that unlike the power spectra Pks (s=1,2…m), that were assumed to 
be known, the sought power spectrum P0s corresponding to the contribution of the shear-
wave-generated temperature, is known only to accuracy of the knowledge of the 
temperature (44), and time delays τj. Hence, for the first approximation one has to assume 
that in Eq.(45) 
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that follows from the theoretical prediction of the order of these values. Then one has to 
turn to the residual column- matrix 

Its norm R that represents the error of the first approximation depends upon  
T(0,0=T*and τj 

  Obviously, the true values of T* and τj, or to be more precise, their best-fit values, are 
supposed to minimize the norm (52). The minimization can be carried out by the 
gradient-decent algorithm coupled with the pseudoinverse solution (49). 
       Let us assume that the component a0 representing the contribution of the shear-wave-
generated temperature is small, i.e. a0 <<1. That means that there is no indication of a 
pre-earthquake activity. On the contrary, if a0 is of the same order as other components,  
the pre-earthquake activity as well as the configuration of the potential fault are detected. 
But in addition to that, based upon the optimal values of T* and τj in Eq.(52), one can 
predict the order of the released power as well as the order of the depth of the fault of the 
expected earthquake. It should be emphasized that all the information extracted from the 
observed time series by solving the inverse problem is based upon the analytical model of 
the snap-of-a-whip phenomenon introduced in the previous sections 

b) Proposed experiment. Experimental evidences of the snap-of-a-whip effect (spanned 
from a destructive power of a cable with a free end to a break-up of the sonic barrier at 
the end of a whip) have been known for centuries. The same effect has been recently 
observed during underground explosions when soil particles suffer a sudden jump over 
the free surface. However, an increase of the temperature associated with this effect has 
never been directly targeted. The objective of the proposed experiment is to verify and 
evaluate a significance of the temperature increase as a result of the shear wave 
dissipation at the free surface of sand rather than closely simulation of a specific natural 
condition .  
      The proposed experiment can be conducted using a tube (say, of height 2m, and 
radius 0.1m) made of a transparent non-magnetizable material. The tube is filled up by 
dry sand forming the upper free surface. A thin metallic disc with rough upper surface is 
submerged into sand (close to the bottom of the tube and concentric to its axis, but 
without any attachment to the tube). An electro-magnetic field applied to the submerged 
plate creates a variable axis-symmetrical torque that, in turn, generates rotational 
oscillations of the plate. Due to friction between sand and the plate, the oscillations lead 
to formation of the train of shallow shear waves that dissipate at the free surface. The 
temperature distribution over sand can be measured using infrared imaging camera 
providing accurate non-contact temperature measurements, Fig.5. It should be 
emphasized that the conditions of this experiment are different from the corresponding 
natural conditions. The difference is caused by unavoidable lateral boundaries 
(represented by the tube walls) that allow one to carry out the experiment within a 
reasonably limited space However, in order to eliminate reflections from these 
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boundaries, one has to replace shear waves that, in natural conditions, are uniform in the 
lateral direction by the torsional shear waves similar to those in shafts. Nevertheless 
undesirable effects of walls are not totally eliminated: there are two types of additional    
 

 
Figure A. Proposed experiment.     

constraints imposed by these walls at the boundaries; no-slip condition and slip condition. 
The no-slip condition is similar to those at rigid boundary in viscose fluid  

 Here r is current radial coordinate, R is radius of the tube, and fw is the coefficient of 
friction between sand and the walls. This condition takes place when the sand pressure is 
sufficiently high, and therefore, the generated friction prevents sand from sliding with 
respect to the walls. Clearly it happens at the lower part of the tube. The slip condition 
takes place closer to the free surface when the pressure is small, and therefore the friction 
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cannot prevent sliding of sand with respect to the wall. This condition is formulated in 
term of shear stress 

  Thus, this model is slightly different from those described above: it is two-dimensional, 
and it includes additional energy dissipation via friction between sand and walls. 
Nevertheless, the qualitative effect of increase of the temperature at the free surface is 
supposed to be the same. 
7. Conclusion. 
      A theory explaining thermal anomaly associated with pre-seismic activities for the 
areas where the ground is covered by a layer of soil or sand is proposed. It also explains 
why the temperature increase is observed only before and after, but not during the 
earthquake. The theory is based upon the snap-of-a-whip effect when a shear wave 
penetrates the upper soil/sand layer and releases its potential energy into heat at the very 
surface. A mathematical model that not only describes the phenomenon but also allows 
one to predict its parameters and dynamical characteristics has been derived. An 
experiment that would allow one to verify the effect of temperature increase due to the 
snap-of-a-whip effect has been proposed. 
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