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Figure: Four unit cubes glued together with the three cycles as sharp creases define a Catmull-Clark subdivi-
sion surface that encloses a volume of 2.9615786. The exact value is a fraction with 1558 digits. The tetrahe-
dron with all edges of length 1 and one triangle boundary as crease defines a Loop subdivision surface that 

encloses a volume of 9835279661079132863588159

228340616075693288629862400 2
. Our formula also applies to more complex meshes with 

creases. The volume of the torus control mesh contracts to that of the Loop surface by a factor of 0.836059. †

Abstract

Subdivision surfaces with sharp creases are used in surface modeling and animation. The framework that 
derives the volume formula for classic surface subdivision also applies to the crease rules. After a general 
overview, we turn to the popular Catmull-Clark, and Loop algorithms with sharp creases. We enumerate com-
mon topology types of facets adjacent to a crease. We derive the trilinear forms that determine their contribution 
to the global volume. The mappings grow in complexity as the vertex valence increases. In practice, the explicit 
formulas are restricted to meshes with a certain maximum valence of a vertex.

The first author dedicates this work to the memory of Andrew Ladd, Nik Sperling, and Leif Dickmann. The article and additional 
resources are available at www.hakenberg.de. The first author was partially supported by personal savings accumulated during his 
visit to the Nanyang Technological University as a visiting research scientist in 2012-2013. He’d like to thank everyone who worked 
to make this opportunity available to him.

Introduction
Surface subdivision schemes are tuned to produce surfaces that appear smooth everywhere. Creases are a 
simple extension that provide the option to model sharp features in the surface. Across the crease, the surface 
normal is generally not continuous, as can be seen in the illustration above.

[Hoppe et al. 1994] extend the Loop subdivision scheme to handle sharp creases. [DeRose et al. 1998] present 
refinement of creases in Catmull-Clark meshes. The concept is the same in both algorithms: Along an edge 
cycle of the mesh that is designated as crease, cubic B-spline subdivision rules for curves apply. In particular, 
control points that are not part of the crease cycle do not affect the refinement of the crease. In the limit, the 



crease is identical to a cubic B-spline curve.



Figure: Four iterations of the Catmull-Clark subdivision scheme applied to an initial mesh of four unit cubes 
glued together. The bolded edge cycle is defined as a sharp crease. We prove that the limit surface encloses a 
volume of 3.274816588. The exact value is a fraction with 1369 digits, see [Hakenberg 2014]. †

An early use of sharp creases in subdivision surfaces was to model the fingernails of the character Geri in 
Pixar’s 1997 short film Geri’s game. From then on, subdivision with creases has been a tool in surface model-
ing, and frequently used in animations, [Autodesk 2013].

The volume enclosed by a Catmull-Clark, and Loop surface is derived in [Hakenberg et al. 2014]. We simply 
work out the implications of crease subdivision rules in this article. The framework requires us to derive a collec-
tion of trilinear forms for the control points of a quad, or a triangular facet that is adjacent to a crease. A trilinear 
form computes the volume contribution of a single facet, which is added up over all facets to the global volume. 
The computation is efficient, since at most one round of subdivision of the mesh is required to yield the volume 
enclosed by the limit surface.

Possible applications of our formula are 1) the design of surfaces with sharp creases to enclose a specific 
volume, and 2) the deformation of surfaces subject to volume preservation.

The article is structured as follows: We recap the volume formula for subdivision surfaces as derived in 
[Hakenberg et al. 2014]. We elaborate on the implications for facets that are affected by crease subdivision 
rules. Then, we derive the volume contribution for the most relevant local mesh topologies of facets adjacent to 
creases in a Catmull-Clark, and Loop mesh.

Background
For stationary subdivision schemes with certain additional properties, the enclosed volume of the subdivision 
surface defined by a closed, orientable mesh M is determined by a collection of trilinear forms, see [Hakenberg 

et al. 2014]. The subdivision surface is partitioned by facets f œM, where the surface corresponding to a facet f  

is completely determined by a set of control points pxi, pyi, pzi for i = 1, 2, ..., mf  in the neighborhood of facet 

f . The volume contribution of a facet f  is a trilinear form applied to the coordinates of the mf  control points. The 

total volume is the sum of the contributions of all facets. In particular,

volM =fœM volf  =fœM i, j,k
mf  Ai, j,k

tf  - Ai,k, j
tf   pxi py j pzk =fœM i, j,k

mf  Yi, j,k
tf  pxi py j pzk  

where Ai, j,k
tf  , and Yi, j,k

tf  := Ai, j,k
tf  - Ai,k, j

tf   are trilinear forms of dimension mf ämf ämf . We abbreviate 

i, j,k
m X i, j, k :=i=1

m  j=1
m k=1

m X i, j, k. The coefficients Ai, j,k
tf   depend only on the subdivision rules that deter-

mine the surface corresponding to the topology tf  of facet f , and are obtained by solving a system of linear 

equations. Once the collection of trilinear forms Y tf  is established for a subdivision scheme, the formula applies 
to any closed, orientable mesh M.

An example for the characterization of the topology type tf  of a facet is the valence of the non-regular vertex.
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...

Figure: For Catmull-Clark, a facet f  is a quad of the one-time subdivided initial mesh. For Loop, a facet f  is a 

triangle of the one-time subdivided initial mesh. mf  is the number of vertices in the one-ring of f . The one-ring 

completely defines the surface across the facet f . †

When the surface associated to a facet f  is affected by the subdivision rules along creases, a trilinear form 

different from the surface case contributes in the volume formula.

...

Figure: Facets adjacent to a sharp crease in a Catmull-Clark, and Loop mesh together with the control points 
that determine the surface across the facet. The crease edges are indicated by a thick line. Vertices on the 
“other side” of the sharp crease do not affect the surface associated to the facet. †

The guiding principle to obtain the coefficients is that the volume formula has to be invariant under one round of 
subdivision of the mesh, i.e. volM = volSM, since that operation does not change the limit surface. The 
careful choice of the partition with the facets allows to reduce the equation to volf  =h volfh, where the facets 
fh constitute the decomposition of f  by subdivision. The conservation of volume under subdivision is also a 

useful criteria for detecting possible mistakes in an implementation of the formula. A surface subdivision scheme 
S typically partitions a facet f  into 4 smaller facets Sf Ø f1, f2, f3, f4 in the refined mesh, which is what we 

assume henceforth to keep the notation reasonable.

   

Figure: Refinement of a triangular facet f  into 4 smaller facets fh for h œ 1, 2, 3, 4 in a Loop mesh. The facet is 

adjacent to a crease. The topology types of the refined facets tfh are pairwise different, but tf  = tf4. †
Subdivision of the control points of facet f  to the control points of fh is a coordinatewise, linear mapping that we 

express as the matrix Sh with dimension mfhämf  for hœ 1, 2, 3, 4. Considering all products pxi py j pzk as a 

basis, we obtain a total of mf 3 equations 

Ai, j,k
tf  =a,b,c

mf1 Aa,b,c
tf1 Sa,i

1 Sb, j
1 Sc,k

1 +a,b,c
mf2 Aa,b,c

tf2 Sa,i
2 Sb, j

2 Sc,k
2 +a,b,c

mf3 Aa,b,c
tf3 Sa,i

3 Sb, j
3 Sc,k

3 +a,b,c
mf4 Aa,b,c

tf4 Sa,i
4 Sb, j

4 Sc,k
4  

for all i, j, k = 1, 2, ..., mf . We denote the system of linear equations by Ltf ; tf1, tf2, tf3, tf4.
The approach to solve for unknown coefficients Ai, j,k

tf   in L depends on the rhs:

• regular: When tf  = tfh for all hœ 1, 2, 3, 4, the linear system L is homogeneous. Then, the coefficients 

Ai, j,k
tf   have to be identified in the nullspace of a matrix. The derivation of the volume form Y tf  generally involves 

calibration. The regular case is not required subsequently in the article. Examples can instead be found in 
[Hakenberg et al. 2014]. We color regular facets in green.

• semi-regular: When tf  = tf3 = tf4, and Atf1 and Atf2 are known, the equations L constitute a non-homoge-

nous linear system. We color semi-regular facets in yellow.
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• non-regular: When tf  = tf4, and Atfh are known for hœ 1, 2, 3. We use the colors red, and orange to 
indicate facets of non-regular topology. Additional examples can be found in [Hakenberg et al. 2014].

• explicit: When tf  ∫ tfh and Atfh are known for all hœ 1, 2, 3, 4, then Atf  follows by explicit computation. A 
facet of this topology type is assigned yet a different color.

In all except the explicit case, the nullspace of the matrix of L has to be investigated to characterize the solution 

space of Y tf . For the non-regular case, we shall make use of a result from [Hakenberg et al. 2014], which is 
reworded here for convenience:

Lemma 1: Let matrix S4 have eigenvalue 1 with multiplicity 1, and all other eigenvalues be of absolute value 

< 1. Then, the nullspace of L is 1-dimensional and projects to 0, when computing Yi, j,k
tf  := Ai, j,k

tf  - Ai,k, j
tf  . †

[Hakenberg et al. 2014] show that the collection of trilinear forms Y tf  are not uniquely determined for the 

Catmull-Clark, and the Loop scheme. However, any solution Atf  of the linear system L projects to a unique 

alternating form Y
`

i, j,k

tf 
 when averaging all signed permutations of Y tf 

Y
`

i, j,k

tf 
= 1

6
Yi, j,k

tf  -Yi,k, j
tf  +Yj,k,i

tf  - Yj,i,k
tf  +Yk,i, j

tf  -Yk, j,i
tf   for i, j, k = 1, 2, ..., mf .

Applications
The Catmull-Clark subdivision scheme is published as [Catmull/Clark 1978]. The Loop scheme is introduced in 
[Loop 1987]. The subdivision rules along crease edge cycles in a mesh are illustrated in the following.

18 34 18 12 12
Figure: One round of cubic B-spline subdivision for curves consists of vertex repositioning, and mid-edge vertex 
insertion. †

We derive the volume formula for Catmull-Clark, and Loop subdivision surfaces with sharp creases. Due to the 

uniqueness of the coefficients Y
`

i, j,k

tf 
, we shall derive the trilinear form of the volume contribution of a facet in the 

alternating form. We require that crease cycles are pairwise disjoint, i.e. non-intersecting. The adaptation to 
handle meshes with dart, and corner vertices is discussed as future work. A quad, or triangle facet f  is adjacent 

to a crease if one, or more vertices of the quad, or triangle also belong to a crease edge cycle. The volume 

contribution of a facet f  that is not adjacent to a crease is determined by a trilinear form Y
` tf 

 already derived in 

[Hakenberg et al. 2014].

When f  is adjacent to a crease, we denote the topology type by a tuple n.m. The first number n is the valence of 

the non-regular vertex (that also belongs to the crease). The second number m enumerates different configura-

tions of the crease. All topology types are illustrated graphically. The subdivision weights are integer fractions. 

That means we can establish the trilinear forms Y
` tf 

 in exact, symbolical notation. However, as the valence of 
the non-regular crease vertex increases, the volume forms become more difficult to establish because of com-
puter memory constraints. The coefficients are available for download from www.hakenberg.de.

For all subsequent non-regular topology types, the matrix S4 has the eigenvalue structure required for the 
application of Lemma 1. That means the uniqueness of the alternating form is asserted without the need to 
inspect the nullspace of the matrix in L.

We illustrate numerous examples of subdivision surfaces with sharp creases in a separate publication, 
[Hakenberg 2014]. The mesh specifications, and results therein can help to validate other implementations of 
the volume formula.
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Catmull-Clark with sharp creases

A facet f  that is not adjacent to a crease is assigned a topology type tf  œ 3, 4, 5, 6, ... according to the 

valence of the non-regular vertex, or tf  = 4 if facet f  is regular.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure: A quad facet f  of regular topology tf  = 4 in a Catmull-Clark mesh with the mf  = 16 control points from 

the one-ring. †

One round of subdivision of a facet f  adjacent to a crease results in one or more regular facets, for instance 

tf1 = 4. That means in the linear system L, the form A4 from [Hakenberg et al. 2014] is required for the deriva-

tion of the volume form. Furthermore, we begin the derivation for tf  = 2.1, since the topology type is a by-

product of subdividing facets adjacent to creases of types tf  œ 1.1, 3.2, 4.2, ..., where A2.1 is required.

Topology type 2.1 (semi-regular)

1 2 3 4

5 6 7 8

9 10 11 12

   

Figure: One round of subdivision of a facet f  of topology type tf  = 2.1 results in 4 smaller facets fh with 

tf1 = tf2 = 4, and tf3 = tf4 = 2.1. The surface associated to f  is determined by mf  = 12 control points. †

In addition to the equations L2.1; 4, 4, 2.1, 2.1, we impose the obvious symmetries Ai, j,k
2.1 + Asi,s j,sk2.1 = 0 for all 

i, j, k = 1, 2, ..., 12 where s1 = 4, s2 = 3, s3 = 2, ..., s11 = 10, and s12 = 9 is a mirror operation. The 3-
dimensional nullspace of the combined linear system can be calculated symbolically. We verify that no vector 

from the nullspace contributes to the alternating trilinear form Y
` 2.1

.

Example: Y
`

1,6,10

2.1
= 6985

18289152
, Y
`

2,8,11

2.1
= 20269

38102400
, Y
`

3,9,12

2.1
= - 1027

76204800
, Y
`

4,5,9

2.1
= - 11

18289152
, Y
`

6,9,12

2.1
= - 90613

457228800
. †

Topology type 1.1

1 2 3

4 5 6

7 8 9

   

Figure: Subdivision of a facet f  with tf  = 1.1 results in tf1 = 4, tf2 = tf3 = 2.1, and tf4 = 1.1. The surface 

associated to f  is determined by mf  = 9 control points. †

We state the subdivision matrices Sh that map the control points of facet f  coordinatewise to those of fh for 

h œ 1, 2, 3, 4. S1 is a 16ä9 matrix, S2 and S3 have dimension 12ä9, and S4 is square 9ä9.
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S1 = 1

64

16 16 0 16 16 0 0 0 0

4 24 4 4 24 4 0 0 0

0 16 16 0 16 16 0 0 0

0 0 32 0 0 32 0 0 0

4 4 0 24 24 0 4 4 0

1 6 1 6 36 6 1 6 1

0 4 4 0 24 24 0 4 4

0 0 8 0 0 48 0 0 8

0 0 0 16 16 0 16 16 0

0 0 0 4 24 4 4 24 4

0 0 0 0 16 16 0 16 16

0 0 0 0 0 32 0 0 32

0 0 0 0 0 0 32 32 0

0 0 0 0 0 0 8 48 8

0 0 0 0 0 0 0 32 32

0 0 0 0 0 8 0 8 48

, S2 = 1

64

0 0 0 0 0 0 8 48 8

0 0 0 4 24 4 4 24 4

1 6 1 6 36 6 1 6 1

4 24 4 4 24 4 0 0 0

0 0 0 0 0 0 0 32 32

0 0 0 0 16 16 0 16 16

0 4 4 0 24 24 0 4 4

0 16 16 0 16 16 0 0 0

0 0 0 0 0 8 0 8 48

0 0 0 0 0 32 0 0 32

0 0 8 0 0 48 0 0 8

0 0 32 0 0 32 0 0 0

, S3 = 1

64

4 4 0 24 24 0 4 4 0

1 6 1 6 36 6 1 6 1

0 4 4 0 24 24 0 4 4

0 0 8 0 0 48 0 0 8

0 0 0 16 16 0 16 16 0

0 0 0 4 24 4 4 24 4

0 0 0 0 16 16 0 16 16

0 0 0 0 0 32 0 0 32

0 0 0 0 0 0 32 32 0

0 0 0 0 0 0 8 48 8

0 0 0 0 0 0 0 32 32

0 0 0 0 0 8 0 8 48

,

S4 = 1

64

1 6 1 6 36 6 1 6 1

0 4 4 0 24 24 0 4 4

0 0 8 0 0 48 0 0 8

0 0 0 4 24 4 4 24 4

0 0 0 0 16 16 0 16 16

0 0 0 0 0 32 0 0 32

0 0 0 0 0 0 8 48 8

0 0 0 0 0 0 0 32 32

0 0 0 0 0 8 0 8 48

.

The indexing means S7,8
4 = 48

64
. The eigenvalues of S4 are 1, 1

2
, 1

4
, ..., 1

64
 in descending order. Lemma 1 asserts 

that the linear system L1.1; 4, 2.1, 2.1, 1.1 defines Y
` 1.1

 uniquely.

Example: Y
`

1,4,8

1.1
= - 12913

198132480
, Y
`

2,3,7

1.1
= 11

254016
, Y
`

4,5,6

1.1
= 28664707

1435717483200
, Y
`

5,6,9

1.1
= 302808242662819

8009014933119200
. †

Topology type 3.1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

   

Figure: Decomposition of a facet f  with tf  = 3.1 results in tf1 = tf2 = tf3 = 4, and tf4 = 3.1; mf  = 15. †

The linear system L3.1; 4, 4, 4, 3.1 defines Y
` 3.1

 uniquely.

Example: Y
`

1,2,10

3.1
= 91324698848626238240330396076991308024065498141

902494031699009693429525497232067947003635206727680
. †

Topology type 3.2

1 2 3 4

5 6 7 8

9 10 11 12

13 14

   

Figure: Subdivision of a facet f  with tf  = 3.2; mf  = 14. †

The linear system L3.2; 4, 4, 2.1, 3.2 defines Y
` 3.2

 uniquely.
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Example: Y
`

1,3,11

3.2
= 3754899360452115120948509

71808793287635553429051313920
, Y
`

2,4,5

3.2
= 5

2286144
, Y
`

3,5,9

3.2
= - 55

1306368
. †

Topology type 4.1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15
16 17

   

Figure: Decomposition of a facet f  with tf  = 4.1; mf  = 17. †

The linear system L4.1; 4, 4, 4, 4.1 determines Y
` 4.1

 uniquely.

Example: Y
`

1,3,15

4.1
= 332859298055844612698638290644680067

433813079667636289625706022029625498982400
, Y
`

2,4,13

4.1
= 5

219469824
. †

Topology type 4.2

1 2 3 4

5 6 7 8

9 10 11 12

13
14

15 16

   

Figure: Decomposition of a facet f  with tf  = 4.2; mf  = 16. †

The linear system L4.2; 4, 4, 2.1, 4.2 defines Y
` 4.2

 uniquely.

Example: Y
`

1,3,14

4.2
= 8512340234545396400

44785435264516019862423664921143
, Y
`

2,4,9

4.2
= 5

3048192
. †

Topology type 5.1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15
16
17

18 19

   

Figure: Decomposition of a facet f  with tf  = 5.1; mf  = 19. †

The linear system L5.1; 4, 4, 4, 5.1 defines Y
` 5.1

 uniquely.

Example: Y
`

1,2,6

5.1
= 25321142767366766979276702659645686531891465171

180460214658619244851639459245884670391729343170560
, Y
`

2,3,13

5.1
= 397

731566080
. †
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Topology type 5.2

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16 17
18 19

   

Figure: Decomposition of a facet f  with tf  = 5.2; mf  = 19. †

The linear system L5.2; 4, 4, 4, 5.2 defines Y
` 5.2

 uniquely.

Example: Y
`

1,2,8

5.2
= 32208349702482915328214993889747969814150871

50754435372736662614523597912905063547673877766720
. †

Topology type 5.3

1 2 3 4

5 6 7 8

9 10 11 12

13
14
15 16

17 18

   

Figure: Decomposition of a facet f  with tf  = 5.3; mf  = 18. †

The linear system L5.3; 4, 4, 2.1, 5.3 defines Y
` 5.3

 uniquely.

Example: Y
`

1,4,18

5.3
= 131450484823813732545338913915392725339

537083972198271562058450771565132947594432568960
, Y
`

1,5,18

5.3
= - 16766977

212522446547841780
. †

Summary

The previous sections enumerate all possible topology types of facets adjacent to a sharp crease with valence 
§ 5 in a Catmull-Clark mesh.

1 2 3 4
Level

0.01

0.02

0.05

0.10

0.20

0.50

1.00

Rel. error

Figure: Typical approximation rate of the volume enclosed by the mesh at different levels of subdivision to the 
volume of the limit surface obtained by our new formula. 2 rounds of subdivision seem to achieve slightly more 
than 1 digit of decimal precision. Right: Facets are colored based on their volume contribution. †

To establish the volume enclosed by a quad mesh, the surface spanned by a possibly non-planar quad q œM is 
parameterized using the bilinear basis functions B1s, t = 1 - s, 1 - t, B2s, t = s, 1 - t, B3s, t = s, t, and 
B4s, t = 1 - s, t over the domain 0, 1ä 0, 1. The volume contribution of q is determined by the alternating 

trilinear form Y
` q

 with dimension 4ä4ä4, and entries defined by Y
`

1,2,3

q
= Y
`

1,2,4

q
=Y
`

1,3,4

q
=Y
`

2,3,4

q
= 1

12
.
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Loop with sharp creases

A facet f  that is not adjacent to a crease is of topology type tf  œ 3, 4, 5, 6, 7, .... The number tf  denotes the 

valence of the non-regular vertex, or tf  = 6 if facet f  is regular.

1 2 3

4 5 6 7

8 9 10

11 12

Figure: A triangular facet f  of regular topology tf  = 6 in a Loop mesh with the mf  = 12 control points from the 

one-ring. †

One round of subdivision of a facet f  adjacent to a crease results in one or more regular facets, for instance 

tf1 = 6. That means in the linear system L, the form A6 from [Hakenberg et al. 2014] is required for the deriva-

tion of the volume form. The case tf  = 1.2 is an exception. Furthermore, we begin the derivation with tf  = 3.1, 
and tf  = 3.2, since these types are a by-product of subdividing facets of many other topology types adjacent to 

a crease, where A3.1, and A3.2 are required.

Topology type 3.1

1 2 3

4 5 6 7

8 9 10

   

Figure: One round of subdivision of a facet f  of topology type tf  = 3.1 results in four smaller facets fh with 

tf1 = tf2 = tf3 = 6, and tf4 = 3.1. The surface associated to f  is determined by mf  = 10 control points. †

The eigenvalues of S4 are 1, 1

2
, 1

2
, 1

4
, ..., 1

16
 in descending order. Lemma 1 asserts that the linear system 

L3.1; 6, 6, 6, 3.1 determines Y
` 3.1

 uniquely.

Example: Y
`

1,2,6

3.1
= 67

217728
, Y
`

1,7,9

3.1
= 149

4435200
, Y
`

2,6,7

3.1
= - 14207

23950080
, Y
`

4,7,9

3.1
= 1021

59875200
, Y
`

5,8,10

3.1
= - 191437

59875200
. †

Topology type 3.2 (semi-regular)

1 2 3

4 5 6

7 8

9

   

Figure: Subdivision of a facet f  with tf  = 3.2 results in tf1 = 6, tf2 = 3.1, and tf3 = tf4 = 3.2. The surface 

associated to f  is determined by mf  = 9 control points. †

In addition to L3.2; 6, 3.1, 3.2, 3.2, we impose the obvious symmetries  Ai, j,k
3.2 + Asi,s j,sk3.2 = 0 for all 

i, j, k = 1, 2, ..., 9 where s1 = 4, s2 = 7, s3 = 9, ...,  s8 = 6, and s9 = 3 is a mirror operation. The 3-
dimensional nullspace of the combined linear system can be calculated symbolically. We verify that no vector 

from the nullspace contributes to the alternating trilinear form Y
` 3.2

.
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Example: Y
`

1,2,4

3.2
= 227

120960
, Y
`

1,5,7

3.2
= 199

362880
, Y
`

2,4,8

3.2
= - 727

1088640
, Y
`

3,6,9

3.2
= - 97

725760
, Y
`

4,5,8

3.2
= 3041

2177280
, Y
`

5,7,9

3.2
= - 149

311040
. †

Topology type 1.1 (explicit)

1 2

3 4 5

6 7 8

   

Figure: Decomposition of a facet f  with tf  = 1.1 results in tf1 = tf2 = 6, and tf3 = tf4 = 3.1; mf  = 8. †

Evaluation of the rhs of L1.1; 6, 6, 3.1, 3.1 gives A1.1. The form Y
` 1.1

 follows uniquely.

Example: Y
`

1,2,3

1.1
= 1

22680
, Y
`

1,4,6

1.1
= 673

1088640
, Y
`

1,5,7

1.1
= 799

544320
, Y
`

2,3,8

1.1
= - 143

2177280
, Y
`

3,4,6

1.1
= 101

136080
. †

Topology type 1.2

1 2 3

4 5

6

   

Figure: Subdivision of a facet f  with tf  = 1.2; mf  = 6. †

We state the subdivision matrices Sh that map the control points of facet f  coordinatewise to those of fh for 

h œ 1, 2, 3, 4. S1 and S2 have dimension 9ä6, S3 is a 8ä6 matrix, and S4 is square 6ä6.

         S1 = 1

8

0 0 1 0 6 1

0 0 0 0 4 4

0 0 0 1 1 6

0 3 1 1 3 0

0 1 0 3 3 1

0 0 0 4 0 4

1 3 0 3 1 0

1 0 0 6 0 1

4 0 0 4 0 0

, S2 = 1

8

1 3 0 3 1 0

0 3 1 1 3 0

0 0 4 0 4 0

1 0 0 6 0 1

0 1 0 3 3 1

0 0 1 0 6 1

0 0 0 4 0 4

0 0 0 0 4 4

0 0 0 1 1 6

, S3 = 1

8

0 3 1 1 3 0

0 0 1 0 6 1

1 3 0 3 1 0

0 1 0 3 3 1

0 0 0 0 4 4

1 0 0 6 0 1

0 0 0 4 0 4

0 0 0 1 1 6

, S4 = 1

8

1 0 0 6 0 1

0 1 0 3 3 1

0 0 1 0 6 1

0 0 0 4 0 4

0 0 0 0 4 4

0 0 0 1 1 6

.

The eigenvalues of S4 are 1, 1

2
, 1

4
, ..., 1

8
 in descending order. Lemma 1 asserts that the linear system 

L1.2; 3.2, 3.2, 1.1, 1.2 determines Y
` 1.2

 uniquely.

Example: Y
`

1,2,6

1.2
= 1

576
, Y
`

1,3,5

1.2
= 7

51840
, Y
`

1,5,6

1.2
= 151

30240
, Y
`

2,3,4

1.2
= 67

120960
, Y
`

2,4,6

1.2
= - 67

6048
, Y
`

3,4,5

1.2
= - 731

181440
. †

Topology type 1.3 (explicit)

1

2 3

4 5 6

   

Figure: Decomposition of a facet f  with tf  = 1.3 results in tf1 = 6, and tf2 = tf3 = tf4 = 3.1; mf  = 6. †

The topology type tf  = 1.3 exists in a mesh at most until depth 1 of the subdivision iteration. In other words, the 
derivation is not required if the mesh is subdivided twice before applying the volume formula.

Evaluation of the rhs of L1.3; 6, 3.1, 3.1, 3.1 gives A1.3. The form Y
` 1.3

 follows uniquely.
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Example: Y
`

1,3,5

1.3
= 757

90720
, Y
`

1,3,6

1.3
= - 181

181440
, Y
`

2,3,5

1.3
= 1439

45360
, Y
`

2,4,6

1.3
= - 127

36288
, Y
`

3,5,6

1.3
= - 5

378
, Y
`

4,5,6

1.3
= 181

181440
. †

Topology type 2.1

1 2 3

4 5 6

7 8

   

Figure: Decomposition of a facet f  with tf  = 2.1; mf  = 8. †

The linear system L2.1; 6, 3.2, 3.1, 2.1 determines Y
` 2.1

 uniquely.

Example: Y
`

1,2,7

2.1
= 137

725760
, Y
`

2,4,5

2.1
= - 40971011

75433897728
, Y
`

3,5,8

2.1
= - 7220411

1587859200
, Y
`

3,6,8

2.1
= - 5604080861

2828771164800
. †

Topology type 4.1

1 2 3

4 5 6 7

8 9 10

11

   

Figure: Decomposition of a facet f  with tf  = 4.1; mf  = 11. †

The linear system L4.1; 6, 6, 6, 4.1 determines Y
` 4.1

 uniquely.

Example: Y
`

1,3,9

4.1
= 522868883

8346648784320
, Y
`

2,7,11

4.1
= 504092267076477455722079009363

47913934497945582619195419645792000
. †

Topology type 4.2

1 2 3

4 5 6

7 8

9 10

   

Figure: Decomposition of a facet f  with tf  = 4.2; mf  = 10. †

The linear system L4.2; 6, 3.1, 3.2, 4.2 determines Y
` 4.2

 uniquely.

Example: Y
`

1,6,9

4.2
= 8853569889285284305621256471025331

421581229745912359601811050175011977500
, Y
`

2,3,10

4.2
= 370343273447318357

14551956103113525669120
. †
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Topology type 5.1

1 2 3

4 5 6 7

8 9 10

11 12

   

Figure: Decomposition of a facet f  with tf  = 5.1; mf  = 12. †

The linear system L5.1; 6, 6, 6, 5.1 determines Y
` 5.1

 uniquely.

Example: Y
`

1,11,12

5.1
= - 1706662770105731828005269146671663339

1460887459608929115708832369326065169312672
. †

Topology type 5.2

1 2 3

4 5 6 7

8 9 10

11 12

   

Figure: Decomposition of a facet f  with tf  = 5.2; mf  = 12. †

The linear system L5.2; 6, 6, 6, 5.2 determines Y
` 5.2

 uniquely.

Example: Y
`

3,10,12

5.2
= 982766755119695968574706305980646912107779497

174641540921099212463849672648392576197168634924800
. †

Topology type 5.3

1 2 3

4 5 6

7 8 9

10 11

   

Figure: Decomposition of a facet f  with tf  = 5.3; mf  = 11. †

The linear system L5.3; 6, 3.1, 3.2, 5.3 determines Y
` 5.3

 uniquely.

Example: Y
`

1,6,9

5.3
= 2707579102925448432697949601438619512151

72794430656157428099632868836478913533318400
. †
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Topology type 6.1

1 2 3

4
5 6

7

8
9

10

11
12

13

   

Figure: Decomposition of a facet f  with tf  = 6.1; mf  = 13. †

The linear system L6.1; 6, 6, 6, 6.1 determines Y
` 6.1

 uniquely.

Example: Y
`

3,8,12

6.1
= - 2770410521268316209419372341445587617299

520212230956067771371169696610297718215561600
. †

Topology type 6.2

1 2 3

4
5 6

7

8
9

10

11
12

13

   

Figure: Decomposition of a facet f  with tf  = 6.2; mf  = 13. †

The linear system L6.2; 6, 6, 6, 6.2 determines Y
` 6.2

 uniquely.

Example: Y
`

1,9,12

6.2
= 369936151051443519138798531725497047884083

1364401445531083172883086570633504515260657888000
. †

Topology type 6.3

1 2 3

4 5 6

7
8

9

10
11

12

   

Figure: Decomposition of a facet f  with tf  = 6.3; mf  = 12. †

The linear system L6.3; 6, 6, 6, 6.3 determines Y
` 6.3

 uniquely.

Example: Y
`

2,8,10

6.3
= 3788836092953000361574059231745228390306399

40632051474754871606203561158147350726434111875
. †

Summary

The previous sections enumerate all possible topology types of a triangular facet adjacent to a crease with 
valence § 6 in a Loop mesh.
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1 2 3 4
Level

0.01
0.02

0.05
0.10
0.20

0.50
1.00

Rel. error

Figure: Typical approximation rate of the volume enclosed by the piecewise linear mesh at different levels of 
subdivision to the volume of the limit surface obtained by our new formula. 2 rounds of subdivision seem to 
achieve slightly more than 1 digit of decimal precision. Right: Facets are colored based on their contribution to 
the global volume. †

Future work
We have derived the alternating trilinear forms for facets adjacent to sharp creases that are required to compute 
the volume enclosed by the subdivision surface. The forms are available up to a certain valence of the non-
regular vertex. In the future, trilinear forms for greater valences may be computed.

The discussion in our article is restricted to meshes with pairwise disjoint crease cycles. [Hoppe et al. 1994] 
incorporates two other possibilities: 1) A dart vertex is at the start (and end) of a sharp crease that is non-cyclic. 
Ordinary surface subdivision rules apply at dart vertices. 2) A corner vertex is where two, or more creases 
intersect. A corner vertex is interpolated. The contribution to the volume by a facet adjacent to a dart, or corner 
vertex is determined by yet other trilinear forms. The forms depend on the valence of the vertex and require an 
enumeration alike the one carried out in the previous chapter.
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Appendix: The volume enclosed by the first subdivision surface exhibited in the figure on page 1 is the fraction
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