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From quantum mechanics to intelligent particle. 

Michail Zaka  

 Jet Propulsion Laboratory California Institute of Technology, Pasadena, CA 91109, USA 

The challenge of this work is to connect quantum mechanics with the concept of 
intelligence. By intelligence we understand a capability to move from disorder to 
order without external resources, i.e. in violation of the second law of 
thermodynamics.  The objective is to find such a mathematical object described by 
ODE that possesses such a capability. The proposed approach is based upon 
modification of the Madelung version of the Schrodinger equation by replacing 
the force following from quantum potential with non-conservative forces that link 
to the concept of information. A mathematical formalism suggests that a 
hypothetical intelligent particle, besides the capability to move against the second 
law of thermodynamics, acquires such properties like self-image, self-awareness, 
self- supervision, etc. that are typical for Livings. However since this particle 
being a quantum-classical hybrid acquires non-Newtonian and non-quantum 
properties, it does not belong to the physics matter as we know it: the modern 
physics should be complemented with the concept of an information force that 
represents a bridge to intelligent particle. It has been suggested that quantum 
mechanics should be complemented by the intelligent particle as an independent 
entity, and that will be the necessary step to physics of Life. At this stage, the 
intelligent particle is introduced as an abstract mathematical concept that is 
satisfied only mathematical rules and assumptions, and its physical representation 
is still an open problem. 

1. Introduction. 

The recent statement about completeness of the physical picture of our Universe 
made in Geneva raised many questions, and one of them is the ability to create 
Life and Mind out of physical matter without any additional entities. The main 
difference between living and non-living matter is in directions of their evolution: 
it has been recently recognized that the evolution of livings is progressive in a 
sense that it is directed to the highest levels of complexity if the complexity is 
measured by an irreducible number of different parts that interact in a well-
regulated fashion. Such a property is not consistent with the behavior of isolated 
Newtonian systems that cannot increase their complexity without external forces. 
That difference created so called Schrödinger paradox: in a world governed by the 
second law of thermodynamics, all isolated systems are expected to approach a 
state of maximum disorder; since life approaches and maintains a highly ordered 
state – one can argue that this violates the Second Law implicating a paradox,[1].  
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But livings are not isolated due to such processes as metabolism and reproduction: 
the increase of order inside an organism is compensated by an increase in disorder 
outside this organism, and that removes the paradox. Nevertheless it is still 
tempting to find a mechanism that drives livings from disorder to order. The 
purpose of this paper is to demonstrate that moving from a disorder to order is not 
a prerogative of open systems: an isolated system can do it without help from 
outside. However such system cannot belong to the world of the modern physics: 
it belongs to the world of living matter, and that lead us to a concept of an 
intelligent particle – the first step to physics of livings. In order to introduce such a 
particle, we start with an idealized mathematical model of livings by addressing 
only one aspect of Life: a biosignature, i.e. mechanical invariants of Life, and in 
particular, the geometry and kinematics of intelligent behavior disregarding other 
aspects of Life such as metabolism and reproduction. By narrowing the problem in 
this way, we are able to extend the mathematical formalism of physics’ First 
Principles to include description of intelligent behavior. At the same time, by 
ignoring metabolism and reproduction, we can make the system isolated, and it 
will be a challenge to show that it still can move from a disorder to the order. 

2. Starting with quantum mechanics. 
 
The starting point of our approach is the Madelung equation that is a hydrodynamical 
version of the Schrödinger equation  
∂ρ
∂t
+∇•( ρ

m
∇S) = 0       (1) 

 
∂S
∂t
+ (∇S)2 + F − 

2∇2 ρ

2m ρ
= 0      (2) 

 

Here ρ and S are the components of the wave functionψ = ρeiS / , and   is the Planck 
constant divided by 2π . The last term in Eq. (2) is known as quantum potential. From the 
viewpoint of Newtonian mechanics, Eq. (1) expresses continuity of the flow of 
probability density, and Eq. (2) is the Hamilton-Jacobi equation for the action S of the 
particle. Actually the quantum potential in Eq. (2), as a feedback from Eq. (1) to Eq. (2), 
represents the difference between the Newtonian and quantum mechanics, and therefore, 
it is solely responsible for fundamental quantum properties.  

The Madelung equations (1), and (2) can be converted to the Schrödinger equation using 
the ansatz 

 ρ =Ψ exp(−iS / h)         (3)  
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where ρ and S being real function. 

In order to associate quantum potential with the concept of information, recall that 
information is an indirectly observed quantity that is defined via entropy as a measure of 
unpredictability: For a random variable X with n outcomes, the Shannon information 
denoted by H(X), is 

 H (X) = − ρ(xi
i=1

n

∑ )logb ρ(xi )                 (4) 

       

In our further applications we will use the continuous version of this formula 

H (X) = − ρ(x)lnρ(x)dx
−∞

∞

∫         (5) 

Actually our approach is based upon a modification of the Madelung equation, and in 
particular, upon replacing the quantum potential with a different Liouville feedback, 
Fig.1 

  
Figure	
  1.	
  Classic	
  Physics,	
  Quantum	
  Physics	
  and	
  Physics	
  of	
  Life.	
  
 	
  

In Newtonian physics, the concept of probability ρ is introduced via the Liouville 
equation 
∂ρ
∂t
+∇•(ρF) = 0         (6) 

generated by the system of ODE 
dv
dt
= F[v1(t),...vn (t),t]        (7) 

where v is velocity vector. 
It describes the continuity of the probability density flow originated by the error 
distribution  
ρ0 =ρ(t = 0)          (8) 
 in the initial condition of ODE (8).  
Let us rewrite Eq.  (2) in the following form 

dv
dt
= F[ρ(v)]        (9) 
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where v is a velocity of a hypothetical particle. 

This is a fundamental step in our approach: in Newtonian dynamics, the probability never 
explicitly enters the equation of motion, [2,3]. In addition to that, the Liouville equation 
generated by Eq. (9) is nonlinear with respect to the probability density ρ   

∂ρ
∂t
+∇•{ρF[ρ(V)]}= 0        (10) 

and therefore, the system (9),(10) departs from Newtonian dynamics. However although 
it has the same topology as quantum mechanics (since now the equation of motion is 
coupled with the equation of continuity of probability density), it does not belong to it 
either. Indeed Eq. (9) is more general than the Hamilton-Jacoby equation (2): it is not 
necessarily conservative, and F is not necessarily the quantum potential although further 
we will impose some restriction upon it that links F to the concept of information, [3]. 
The relation of the system (9), (10) to Newtonian and quantum physics is illustrated in 
Fig.1.  
 
Remark. Here and below we make distinction between the random variable v(t) and its values V in 
probability space. 
 
Prior to considering a specific form of the force F, we will make a comment concerning 
the normalization constrain satisfaction  
ρdV =1

V
∫          (11)  

in which V is the volume where Eqs. (9) and (10) are defined. 
Turning to Eq. (10) and integrating it over the volume V 

  
∂
∂t

ρdV
V
∫ = − dV

V
∫ ∇•{ρF[ρ(V)]}= − dΦ∇•(ρF

Φ
∫ ) = 0  (12) 

if  
ρ = 0, |F |<∞ at Φ       (13) 
where Φ is the surface bounding the volume V. 
Therefore, if the normalization constraint (9) is satisfied at t = 0, it is satisfied for all the 
times. 
 
3. Information force instead of quantum potential. 
 
In this section we propose the structure of the force F that plays the role of a feedback 
from the Liouville equation (10) to the equation of motion (9). Turning to one-
dimensional case, let	
  us	
  specify	
  this	
  feedback	
  as	
  

F = c0 +
1
2
c1ρ−

c2
ρ
∂ρ
∂v

+
c3
ρ
∂2ρ

∂v2
       (14) 

c0 > 0, c1 > 0, c3 > 0        (15)  
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Then Eq.(9) can be reduced to the following: 

v = c0 +
1
2
c1ρ−

c2
ρ
∂ρ
∂v

+
c3
ρ
∂2ρ

∂v2
       (16) 

and the corresponding Liouville equation will turn into the following PDE 

∂ρ
∂t
+ (c0 + c1ρ)

∂ρ
∂V

− c2
∂2ρ

∂v2
+ c3

∂3ρ

∂V 3
= 0 	
   	
   	
   	
   	
   	
   (17)	
  	
  

This	
  equation	
  is	
  known	
  as	
  the	
  KdV-­‐Bergers’	
  PDE.	
  The mathematical theory behind the 
KdV equation became rich and interesting, and, in the broad sense, it is a topic of active 
mathematical research. A homogeneous version of this equation that illustrates its 
distinguished properties is nonlinear PDE of parabolic type. However a fundamental 
difference between the standard KdV-Bergers equation and Eq. (17) is that Eq. (17) 
dwells in the probability space, and therefore, it must satisfy the normalization constraint 

ρdV =1
−∞

∞

∫                     (18)  

 However as shown in [4], this constraint is satisfied: in physical space it expresses 
conservation of mass, and it can be easily scale-down to the constraint (18) in probability 
space. That	
  allows	
  one	
  to	
  apply	
  all	
  the	
  known	
  results	
  directly	
  to	
  Eq.	
  (17).	
  However	
  it	
  
should	
   be	
   noticed	
   that	
   all	
   the	
   conservation	
   invariants	
   have	
   different	
   physical	
  
meaning:	
  they	
  are	
  not	
  related	
  to	
  conservation	
  of	
  momentum	
  and	
  energy,	
  but	
  rather	
  
impose	
  constraints	
  upon	
  the	
  Shannon	
  information.	
  
In	
   physical	
   space,	
   Eq.	
   (17)	
   has	
   many	
   applications	
   from	
   shallow	
   waves	
   to	
   shock	
  
waves	
   and	
   solitons.	
   	
   However,	
   application	
   of	
   solutions	
   of	
   the	
   same	
   equations	
   in	
  
probability	
   space	
   is	
   fundamentally	
   different.	
   In	
   the	
   next	
   sections	
  we	
   present	
   two	
  
phenomena	
  that	
  exist	
  neither	
  in	
  Newtonian	
  nor	
  in	
  quantum	
  physics.	
  
 
 4. Emergence of randomness. 
In this section we discuss a fundamentally new phenomenon: transition from determinism 
to randomness in ODE that coupled with their Liouville PDE. 
 In order to complete the solution of the system (16), (17), one has to substitute the 
solution of Eq. (17):  
ρ =ρ(V ,t) at V = v                            (19) 
into Eq.(16).  Since the transition from determinism to randomness occurs at t→ 0 , let 
us turn to Eq. (17) with sharp initial condition 
ρ0 (V ) = δ(V ) at t = 0,       (20) 
Then applying one of the standard analytical approximations of the delta-function, one 
obtains the asymptotic solution 

ρ =
1
t π

e
−
V 2

t2 at t→ 0        (21)  

Substitution this solution into Eq. (14) shows that  
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O(c0 +
1
2
c1ρ) =

1
t
, O(

c2
ρ
∂ρ
∂v
) = 1
t2
,

and O(
c3
ρ
∂2ρ

∂v2
) = 1
t4

at t→ 0, v ≠ 0
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (22)	
  

	
    
i.e.	
  

c0 +
1
2
c1ρ <<

c2
ρ
∂ρ
∂v

<<
c3
ρ
∂2ρ

∂v2
at t→ 0, v ≠ 0 	
   	
   	
   	
   (23)	
  

	
   	
  
and	
  therefore,	
  the	
  first	
  three	
  terms	
  in	
  Eq.	
  (16)	
  can	
  be	
  ignored	
  

v = c3
ρ
∂2ρ

∂v2
at t→ 0, v ≠ 0 	
   	
   	
   	
   	
   	
   	
   (24)	
  

or	
  after	
  substitution	
  of	
  eq.	
  (21)	
  

v = 4c3v
2

t4
at t→ 0, v ≠ 0 	
   	
   	
   	
   	
   	
   	
   (25)	
  

Eq. (35) has the following solution (see Fig. 2) 

v = t3

4c3 +Ct
3
at t→ 0, v ≠ 0 	
   	
   	
   	
   	
   	
   (26)	
   	
  

where C is an arbitrary constant. 
This solution has the following property: the Lipchitz condition at t→ 0 fails 
∂ v
∂v

=
8c3v
t4

=
8c3t

3

t4 (4c3 +Ct
3)
→∞ at t→ 0, v ≠ 0     (27) 

and as a result of that, the uniqueness of the solution is lost. Indeed, as follows from Eq. 
(36), for any value of the arbitrary constant C, the solutions are different, but they satisfy 
the same initial condition 
v→ 0 at t→ 0         (28) 
Due to violation of the Lipchitz condition (27), the solution becomes unstable. That kind 
of instability when infinitesimal errors lead to finite deviations from basic motion (the 
Lipchitz instability) has been discussed in [2,3,5]. This instability leads to unpredictable 
shift of solution from one value of C to another. It means that appearance of any specified 
solution out of the whole family is random, and that randomness is controlled by the 
feedback (14) from the Liouville equation (17). Indeed if the solution (26) runs 
independently many times with the same initial conditions, and the statistics is collected, 
the probability density will satisfy the Liouville equation (17), Fig.3.   
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Figure 2. Family of random solutions describing transition from determinism to 
stochastisity. 

 
Figure 3. Stochastic process and probability density. 
	
  
	
  
Remark.	
  It	
  should	
  be	
  emphasized	
  that	
  with	
  the	
  probability	
  density	
  defined	
  by	
  Eq.	
  (20),	
  the	
  point	
  v	
  =	
  0	
  
must	
  be	
  excluded	
  from	
  consideration	
  since	
  at	
  this	
  point	
  Eq.	
  (16)	
  in	
  meaningless.	
  	
   	
   	
  
	
  
5. Departure from Newtonian and quantum physics. 
In this section we will derive a distinguished property of the system (16),(17) that is 
associated with violation of the second law of thermodynamics i.e. with the capability of 
moving from disorder to order without help from outside. That property can be predicted 
qualitatively even prior to analytical proof: due to the nonlinear term in Eq. (17), the 
solution form shock waves and solitons in probability space, and that can be interpreted 
as “concentrations” of probability density, i.e. departure from disorder. In order to 
demonstrate it analytically, let us turn to Eq. (17) at 

c1 >>| c2 |,c3           (29) 

 and find the change of entropy H 



	
   8	
  

∂H
∂t

= −
∂
∂t

ρlnρdV = −
1
c1
ρ(lnρ+1)dV =

1
c1

∂
∂V−∞

∞

∫
−∞

∞

∫
−∞

∞

∫ (ρ2 ) ln(ρ+1)dV

=
1
c1
[ |
−∞

∞

ρ2 (lnρ+1)− ρdV
−∞

∞

∫ ]= − 1
c1
< 0

        (30) 

At the same time, the original system (16), (17) is isolated: it has no external interactions. 
Indeed the information force Eq. (14) is generated by the Liouville equation that, in turn, 
is generated by the equation of motion (16). Therefore the solution of Eqs. (16), and (17) 
can violate the second law of thermodynamics, and that means that this class of 
dynamical systems does not belong to physics as we know it. This conclusion triggers the 
following question: are there any phenomena in Nature that can be linked to dynamical    
systems (16), (17)? The answer will be discussed bellow.  
 Thus despite the mathematical similarity between Eq.(17) and the KdV-Bergers 
equation, the physical interpretation of Eq.(17) is fundamentally different: it is a part of 
the dynamical system (16),(17) in which Eq. (17) plays the role of the Liouville equation 
generated by Eq. (16). As follows from Eq. (30), this system being isolated has a 
capability to decrease entropy, i.e. to move from disorder to order without external 
resources. In addition to that, the system displays transition from deterministic state to 
randomness (see Eq. (27)). 
 This property represents departure from classical and quantum physics, and, as shown in 
[2,3], provide a link to behavior of livings. That suggests that this kind of dynamics 
requires extension of modern physics to include physics of life. 

Remark. The system (16), (17) displays transition from deterministic state to randomness (see Eq. (27))., 
and this property can be linked to the similar property of the Madelung equation, although strictly speaking,  
Eq.(1) is a “truncated” version of the Liouvile equation: it does not include the contribution of the quantum 
potential. Nevertheless the origin of randomness in quantum mechanics is the same as in the system (16), 
(17) as demonstrated in [3,8,9].   
  

6. Hypothetical particle with a diffusion feedback. 

In this Section we concentrate on a specific form of the system (16), (17) by choosing 
the Liouville feedback (12) in the form  

F = −σ2 ∂
∂v
lnρ,                          (31)                                               

to obtain the following equation of motion  

v = −σ2 ∂
∂v
lnρ,      (32)                                                 

The feedback (31) is a particular case of the feedback (14) when 
c0 = 0, c1 = 0, c2 > 0, c3 = 0      (33) 
This equation should be complemented by the corresponding Liouville equation (in this 
particular case, the Liouville equation takes the form of the Fokker-Planck equation) 
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∂ρ
∂t
= σ2

∂2ρ

∂V 2
                            (34)                      

Here v stands for a particle velocity, and σ2 is the diffusion coefficient. 
A. Emergence of randomness. 
In this sub-section we describe the random solution not only at t→ 0 , but also in whole 
time interval. 
If  σ2 = const.      (35)   
the solution of Eq. (34) subject to the sharp initial condition  

ρ =
1

2σ πt
exp(− V

2

4σ2t
)     (36)                                           

 describes diffusion of the probability density, and that is why the feedback (31) can be 
called a diffusion feedback. 
Substituting this solution into Eq. (32) at V = v, one arrives at the differential equation 
with respect to v (t) 

v = v
2t

                       (37) 

and therefore, 

v =C t                          (38) 
where C is an arbitrary constant. Since v = 0 at t = 0 for any value of C, the solution (38) 
is consistent with the sharp initial condition for the solution (36) of the corresponding 
Liouvile equation (34). The solution (38) describes the simplest irreversible motion: it is 
characterized by the “beginning of time” where all the trajectories intersect (that results 
from the violation of Lipcsitz condition at t =0, Fig.6), while the backward motion 
obtained by replacement of t with (-t) leads to imaginary values of velocities. One can 
notice that the probability density (36) possesses the same properties.  
It is easily verifiable that the solution (36) has the same structure as the solution (27).  

Further analysis of the solution (38) demonstrates that this solution is unstable since 

 
d v
dv

=
1
2t
> 0                            (39) 

and therefore, an initial error  always grows generating randomness. Initially, at t=0, this 
growth is of infinite rate since the Lipchitz condition at this point is violated  

 
∂ v
∂v

→∞ at t→ 0                                       (40) 

This type of instability has been introduced and analyzed in [5]. The unstable equilibrium 
point (v = 0 ) has been called a terminal repeller, and the instability triggered by the 
violation of the Lipchitz condition – non-Lipchitz, or terminat instability. The basic 
property of the non- Lipchitz instability is the following: if the initial condition is 
infinitely close to the repeller, the transient solution will escape the repeller during a 
bounded time while for a regular repeller the time would be unbounded. Indeed, an 
escape from the simplest regular repeller can be described by the exponentv = v0e

t . 
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Obviously v→ 0  if v0 → 0 , unless the time period is unbounded. On the contrary, the 
period of escape from the terminal repeller (38) is bounded (and even infinitesimal) if the 
initial condition is infinitely small, (see Eq. (40)).  

Considering first Eq. (38) at fixed C as a sample of the underlying stochastic 
process (36), and then varying C, one arrives at the whole ensemble characterizing that 
process, (see Fig. 6). The curves that envelope the cross-sectional blue areas at 
t* = const present the probability density distribution at fixed times.   One can verify 
that, as follows from Eq. (36), [6], the expectation and the variance of this process are, 
respectively 

v = 0, v = 2σ2t                                   (41) 
 The same results follow from the ensemble (38) at−∞≤C ≤∞ . Indeed, the first 

equality in (41) results from symmetry of the ensemble with respect to v = 0; the second 
one follows from the fact that 

v∝ v2 ∝ t                                       (42) 
It is interesting to notice that the stochastic process (35) is an alternative to the 

following Langevin equation, [6]   
v = Γ(t), Γ = 0, Γ = σ                           (43) 

that corresponds to the same Fokker-Planck equation (33). Here Γ(t) is the Langevin 
(random) force with zero mean and constant varianceσ .  
Thus, the emergence of self-generated stochasticity is the first basic non-Newtonian 
property of the dynamics with the Liouville feedback.  
b. Second law of thermodynamics. In order to demonstrate another non-Newtonian 
property of the systems considered above, let us start with the dimensionless form of the 
Langevin equation for a one-dimensional Brownian motion of a particle subjected to a 
random force   
v = Γ(t),     < Γ(t) >= 0, < Γ(t)Γ(t ') >= 2σδ(t − t ') , s/1][ =Γ        (44)                                           

Here v  is the dimensionless velocity of the particle (referred to a representative 
velocityv0 ), and Γ(t) is the Langevin (random) force per unit mass,σ  > 0 is the noise 

strength. The representative velocity v0  can be chosen, for instance, as the initial velocity 
of the motion under consideration. 
The corresponding continuity equation for the probability density ρ  is the following 
Fokker-Planck equation  
∂ρ
∂t
= σ

∂2ρ

∂V 2
, ρdV =1
−∞

∞

∫               (45) 

Obviously without external control, the particle cannot escape the Brownian motion. 
 Let us now introduce a new force (referred to unit mass and divided byv0 ) as a Liouville 
feedback   

f = σexp D ∂
∂v
lnρ, [ f ]=1/ s                (46)                             
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Here D  is the dimensionless variance of the stochastic processD(t) = ρV 2 dV
−∞

∞

∫ ,  

Then the new equation of motion takes the form 

v = Γ(t)+σexp D ∂
∂v
lnρ,               (47)                

and the corresponding Fokker-Planck equation becomes nonlinear 

∂ρ
∂t
= σ(1− exp D ) ∂

2ρ

∂V 2
, ρdV =1

−∞

∞

∫     (48)                         

Obviously the diffusion coefficient in Eq. (48) is negative. Multiplying Eq. (48) by 2V , 
then integrating it with respect to V over the whole space, one arrives at ODE for the 
variance D  

D = 2[σ(1− exp D )]        (49)              
Thus, as a result of negative diffusion, the variance D  monotonously vanishes regardless 
of the initial value D (0). It is interesting to note that the time T of approaching the 
point D =0 is finite  

T = 1
2σ

dD
exp D −10

∞

∫ =
π
6σ

                                      (50)  

This terminal effect is due to violation of the Lipchitz condition, at D  = 0, [5]. 
Let us review the structure of the force (46): it is composed only out of the probability 
density and its variance, i.e. out of the components of the conservation equation (47); at 
the same time, Eq. (47) itself is generated by the equation of motion (46). Consequently, 
the force (45) is not an external force. Nevertheless, it allows the particle to escape from 
the Brownian motion using its own “internal effort”. It would be reasonable to call the 
force (45) an information force since it links to information rather than to energy. 
  Thus, we came across the phenomenon that violates the second law of thermodynamics 
when the dynamical system moves from disorder to order without external interactions 
due to a feedback from the equation of conservation of the probability to the equation of 
conservation of the momentum. One may ask why the negative diffusion was chosen to 
be nonlinear. Let us turn to a linear version of Eq. (49) 
∂ρ
∂t
= −σ2

∂2ρ

∂V 2
, ρdV =1

−∞

∞

∫             (51) 

and discuss the negative diffusion in more details. As follows from the linear equivalent 
of Eq. (49) 
D = −2σ,i.e. D = D0 − 2σt < 0 at t > D0 / (2σ)     (52) 
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Thus, eventually the variance becomes negative, and that disqualifies Eq. (3.30) from 
being meaningful. As shown in [3], the initial value problem for this equation is ill-posed: 
its solution is not differentiable at any point. Therefore, a negative diffusion must be 
nonlinear in order to protect the variance from becoming negative, Fig.4. 

 
Figure 4. Negative diffusion. 

It should be emphasized that negative diffusion represents a major departure from both 
Newtonian mechanics and classical thermodynamics by providing a progressive 
evolution of complexity against the Second Law of thermodynamics. 

 Next we will demonstrate again that formally the dynamics introduced above does not 
belong to the Newtonian world; nevertheless its self-supervising capability may associate 
such a dynamics with a potential model for intelligent behavior. For that purpose we will 
turn to even simpler version of this dynamics by removing the external Langevin force 
and simplifying the information force: 

v = σ D ∂
∂v
lnρ,       (53)              

  

∂ρ
∂t
= −σ D ∂2ρ

∂V 2
, ρdV =1

−∞

∞

∫      ( 54)   

 Removal of the Langevin forces makes the particle isolated. Nevertheless the particle 
has a capability of moving from disorder to order. For demonstration of this property we 
will assume that the Langevin force was suddenly removed at t = 0 so that the initial 
variance D0 > 0.  Then  
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D = −2σ D                                    (55) 

whence           D = ( D0 −σt)
2                    (56)   

As follows from Eq. (56), as a result of internal, self-generated force  

F = σ D ∂
∂v
lnρ,       (57)   

the Brownian motion gradually disappears and then vanishes abruptly:  

D→ 0, D→ 0, d D
dD

→∞ at t→
D0
σ

       (58)                               

Thus the probability density shrinks to a delta-function at t =
D0
σ

. Consequently, 

the entropy H (t) = − ρlnρ
V
∫ dV  decreases down to zero, and that violates the second 

law of thermodynamics, Fig. 5.  
 

 

 
Figure	
  5.	
  Vanishing	
  Brownian	
  motion.	
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C. Violation of the first law of thermodynamics. 
Let us turn to the general case described by Eq. (9). As follows from this equation, the 
particle under consideration possesses only kinetic energy 
W = v2 / 2          (59) 
However this energy is not conserved although the particle is isolated. Indeed,  
dW = v ⋅F[ρ(v)]dt                  (60)  
i.e. change of the kinetic energy is equal to the work done by the self-generated 
information force F[ρ(v)] . But in contradistinction to dissipative systems, this work can 
be positive, i.e. an information force can increase the kinetic energy of the particle. In 
particular, that would happen in case of negative diffusion. 
The significance of Eq. (60) is fundamental: it relates the change of energy to change of  
information. 
7. Hypothetical particle with soliton feedback. 
In this section we introduce the structure of the force F that is a particular case of the 
feedback (14) at  
c2 = 0           (61) 
  i.e. 

F = c0 +
1
2
c1ρ+

c3
ρ
∂2ρ

∂v2
       (62)   

Then Eq.(16) can be reduced to the following: 

v = c0 +
1
2
c1ρ+

c3
ρ
∂2ρ

∂v2
       (63) 

and the corresponding Liouville equation will turn into the following PDE 

∂ρ
∂t
+ (c0 + c1ρ)

∂ρ
∂V

+ c3
∂3ρ

∂V 3
= 0       (64)                 

that is a celebrated Korteweg-de Vries (KdV) equation. 
However a fundamental difference between the standard KdV equation and Eq. (64) is 
that Eq. (64) dwells in the probability space, and therefore, it must satisfy the 
normalization constraint 

ρdV =1
−∞

∞

∫          (65)  

 But since the KdV equation has the conservation invariants, [7] 

ρdV =Const.,
−∞

∞

∫       (66)  

ρ2 dV =Const.,
−∞

∞

∫  etc.       (67)  



	
   15	
  

the constraint (65) becomes a particular case of the invariant (66); consequently, if the 
normalization constraint is satisfied at t = 0, it is satisfied all the time. That allows one to 
apply all the known result directly to Eq. (64). However it should be noticed that the 
conservation invariants (66) and (67) have different physical meaning: they are not 
related to conservation of momentum and energy, but rather impose constraints upon the 
Shannon information. 
We will start the analysis of the equation (64) with consideration of its linear version 
when c1 = 0   
∂ρ
∂t
+ c0

∂ρ
∂V

+b ∂
3ρ

∂V 3
= 0       (68)       

The first applications of linear (parabolic) version of KdV equation appear in models of 
shallow water waves [7].  The equation is also conservative, and its solution is 
represented by a train of traveling waves  
ρ(v,t) = Aeikv−ωt                                   (69)          
where ω  is the frequency, and k is the wave number. For KdV equation, these two 
constants are connected by the following dispersion relation 
 
ω = c0k −bk

3                                (70)                  
If the initial profile ρ = u(v,0)  is represented as a sum of the Fourier harmonics, then 
each of this harmonic will propagate with the phase speed  
 
C =ω / k .        (71)          
 
Comparing equations (70) and (71), one can see that each Fourier harmonics will 
propagate with different phase speed that depends upon its wave number k. Therefore any 
initial profile eventually is dispersed over the whole positive subspace, Fig.6.  
 

 
Figure 6. Linear dispersion of initial profile. 
 
An important property of the linear version of the KdV equation is the dependence of its 
solution on the initial conditions for all times.  
Let us assume now that 
 b = 0, c0 = 0         (72) 
We get the equation 
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∂ρ
∂t
+ c1ρ

∂ρ
∂V

= 0                                                          (73)                   

 
Unlike the previous versions of the KdV equation, this is a nonlinear PDE of hyperbolic 
type. It appears in models of free particles flow, traffic jam, etc. This is the simplest 
equation that describes formation of shock waves. Its closed analytical solution can be 
written only in an implicit form, and here we will analyze it only qualitatively.  We will 
start our analysis with studying a propagation of an initial profile ρ =ρ(v,0) . As 
follows from Equation (73), the higher values of ρ  propagate faster than lower ones. As 
a result, the moving front becomes steeper and steeper, and finally a strong discontinuity 
representing a shock emerges, see Fig.7.  
 

 
Figure 7. Formation of shock waves in probability space. 
  
Since closed form solution of Eq. (73) is not available, we will continue with the solution 
for large time. The rationale for that is the assumption that eventually the solution tends 
to a stationary shape as a result of a balance between dispersion and shock wave 
formation. Therefore we will seek the solution in the form of a stationary motion 
 
ρ(v,t) = f (v −Ut) = u(ζ) at t→∞             (74)                                            
Substituting Eq.(74) into Eq.(73) one obtains 
 

−U ∂ρ
∂ζ

+ (c0 + c1ρ)
∂ρ
∂ζ

+b ∂
3ρ

∂ζ3
= 0                   (75)                       

 
Integrating this equation with respect to ζ and setting the arbitrary constant to zero, one 
arrives at the ODE in its final form 
 

b ∂
2ρ

∂ζ2
+ (c0 −U )ρ+

c1
2
ρ2 = 0                    (76)                     

 The solution of this equation is a soliton moving with the speed U 
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ρ = aSech2[
c1a

12b
(v −Ut)] 	
   	
   	
   	
   	
   (77)	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   

    
where 

U = c0 +
1
3
c1a         (78)             

see Fig. 8. It should be emphasized that the soliton (77) does not depend upon initial 
conditions, and consequently it can be considered as a static attractor in probability 
space.  This means that in physical space, a solution of Eq. (63) eventually approaches a 
stochastic attractor. The analytical form of this solution at t→ 0  was derived in  
Section 4, (see Eq. (26), and Fig. 2). 

 
Figure	
  8.	
  Soliton	
  as	
  an	
  attractor	
  of	
  	
  KdV	
  solution.	
  	
  
	
  
	
  It	
   should	
   be	
   emphasized	
   that	
   the	
   dynamics	
   system	
   (63),	
   (64)	
   is	
   isolated,	
   but	
  
despite	
  of	
  that,	
  its	
  entropy	
  decreases	
  in	
  the	
  course	
  of	
  the	
  soliton	
  wave	
  formation.	
   
 
7. Origin of intelligence. 
A. Relevance to model of intelligent particle. The proposed model illuminates the 
“border line” between living and non-living systems. The model introduces an intelligent 
particle that, in addition to Newtonian properties, possesses the ability to process 
information. The probability density can be associated with the self-image of the 
intelligent particle as a member of the class to which this particle belongs, while its 
ability to convert the density into the information force - with the self-awareness (both 
these concepts are adopted from psychology). Continuing this line of associations, the 
equation of motion (such as Eqs (16) or (32)) can be identified with a motor dynamics, 
while the evolution of density (see Eqs. (17) or (34) –with a mental dynamics. Actually 
the mental dynamics plays the role of the Maxwell sorting demon: it rearranges the 
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probability distribution by creating the information potential and converting it into a force 
that is applied to the particle. One should notice that mental dynamics describes evolution 
of the whole class of state variables (differed from each other only by initial conditions), 
and that can be associated with the ability to generalize that is a privilege of intelligent 
systems. Continuing our biologically inspired interpretation, it should be recalled that the 
second law of thermodynamics states that the entropy of an isolated system can only 
increase. This law has a clear probabilistic interpretation: increase of entropy corresponds 
to the passage of the system from less probable to more probable states, while the highest 
probability of the most disordered state (that is the state with the highest entropy) follows 
from a simple combinatorial analysis. However, this statement is correct only if there is 
no Maxwell’ sorting demon, i.e., nobody inside the system is rearranging the probability 
distributions. But this is precisely what the Liouville feedback is doing: it takes the 
probability density ρ  from Equation (17), creates functionals and functions of this 
density, converts them into the information force and applies this force to the equation of 
motion (16). As already mentioned above, because of that property of the model, the 
evolution of the probability density can become nonlinear, and the entropy may decrease 
“against the second law of thermodynamics”, Fig.10. Actually the proposed model 
represents governing equations for interactions of intelligent agents. In order to 
emphasize the autonomy of the agents’ decision-making process, we will associate the 
proposed models with self-supervised (SS) active systems. By an active system we will 
understand here a set of interacting intelligent agents capable of processing information, 
while an intelligent agent is an autonomous entity, which observes and acts upon an 
environment and directs its activity towards achieving goals. The active system is not 
derivable from the Lagrange or Hamilton principles, but it is rather created for 
information processing. One of specific differences between active and physical systems 
is that the former are supposed to act in uncertainties originated from incompleteness of 
information. Indeed, an intelligent agent almost never has access to the whole truth of its 
environment. Uncertainty can also arise because of incompleteness and incorrectness in 
the agent’s understanding of the properties of the environment. That is why quantum-
inspired SS systems represented by the particles under consideration are well suited for 
representation of active systems, and the hypothetical particle introduced above can be 
associated with the term “intelligent” particle. It is important to emphasize that self-
supervision is implemented by the feedback from mental dynamics, i.e. by internal force, 
since the mental dynamics is generated by intelligent particle itself.  
B. Comparison with control systems. In this sub-section we will establish a link between 
the concepts of intelligent control and phenomenology of behavior of intelligent particle.  
Example. One of the limitations of classical dynamics, and in particular, neural networks, 
is inability to change their structure without an external input. As will be shown below, 
an intelligent particle can change the locations and even the type of the attractors being 
triggered only by information forces i.e. by an internal effort. We will start with a simple 
dynamical system 
v = 0, v = 0 at t = 0       (79)    

and than apply the following control 
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 F = −kv + av −σ ∂
∂v
lnρ ,                 (80)  

where ∫∫
∞

∞−

∞

∞−

=−= VdVVdVVVV ρρ ,)( 2 ,     (81)  

and k,a,σ are constant coefficients.  

Then the controlled version of the motor dynamics (79) is changed to 

v = −kv + av −σ ∂
∂v
lnρ       (82) 

while F represents the information forces that play the role of internal actuator.  
Let us notice that the internal actuator (80) is a particular case of the information force 
(14) at  

c0 = −kv + av , c1 = 0, c2 = σ, c3 = 0    (83) 

For a closure, Eq. (82) is complemented by the corresponding Liouville equation    

∂ρ
∂t
= kV ∂ρ

∂V
− aV ∂ρ

∂V
+σ

∂2ρ

∂V 2
,      (84) 

to be solved subject to sharp initial condition 

ρ0 (V ) = δ(V ) at t = 0,       (85)                

As shown in Section 4, the solution of Eq.(82) is random, (see Eq. (26) and Fig. 2) while 
this randomness is controlled by Eq. (84). Therefore in order to describe it, we have to 
transfer to the mean values v and v . For that purpose, let us multiply Eq.(84) by 
V .Then integrating it with respect to V over the whole space, one arrives at ODE for the 
expectation v (t)  
v = −kv + av        (86)                      

Multiplying Eq.(84) by 2V , then integrating it with respect to V over the whole space, 
one arrives at ODE for the variance v (t)  

v = −2kv + 2av v + 2σ       (87)   

Let us find fixed points of the system (86) and (87) by solving the system of algebraic 
equations:                                  

0 = −kv + av        (88) 

0 = −2kv + 2av v + 2σ       (89) 

By selecting  
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σ =
k 3

2a2
        (90) 

we arrive at the following single fixed point 

v * = k
2a
, v * = k

2

2a2
       (91) 

In order to establish whether this fixed point is an attractor or a repeller, we have to 
analyze stability of the homogeneous version of the system (86), (87) linearized with 
respect to the fixed point (91) 

v = −kv + av        (92)    

v = −kv + k
2

a
v        (93) 

Analysis of its characteristic equation shows that it has non-positive roots: 

λ1 = 0, λ2 = −2k < 0       (94) 

and therefore, the fixed point (91) is a stochastic attractor with stationary mean and 
variance. However the higher moments of the probability density are not necessarily 
stationary: they can be found from the original PDE (84). 
Thus as a result of a mental control, an isolated dynamical system (79) that prior to 
control was at rest, moves to the stochastic attractor (91) having the expectation v * and 
the variance v * .  

The distinguished property of the particle introduced above definitely fits into the concept 
of intelligence. Indeed, the evolution of intelligent living systems is directed toward the 
highest levels of complexity if the complexity is measured by an irreducible number of 
different parts that interact in a well-regulated fashion. At the same time, the solutions to 
the models based upon dissipative Newtonian dynamics eventually approach attractors 
where the evolution stops while these attractors dwell on the subspaces of lower 
dimensionality, and therefore, of the lower complexity (until a “master” reprograms the 
model). Therefore, such models fail to provide an autonomous progressive evolution of 
intelligent systems (i.e. evolution leading to increase of complexity). At the same time, a 
self-controlled particle can create its own complexity based only upon an internal effort. 
Thus the actual source of intelligent behavior of the particle introduced above is a new 
type of force - the information force - that contributes its work into the Law of 
conservation of energy. However this force is internal: it is generated by the particle itself 
with help of the Liouvile equation. The machinery of the intelligence is similar to that of 
control system with the only difference that control systems are driven by external 
actuators while the intelligent particle is driven by a feedback from the Liouvile equation 
without any external resources.   
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8. Comparison with quantum mechanics. 

a. Mathematical Viewpoint. The model of intelligent particle is represented by a 
nonlinear ODE (9) and a nonlinear parabolic PDE (10) coupled in a master-slave fashion: 
Eq. (10) is to be solved independently, prior to solving Eq. ((9). The coupling is 
implemented by a feedback that includes the probability density and its space derivatives, 
and that converts the first order PDE (the Liouville equation) to the second or higher 
order nonlinear PDE. As a result of the nonlinearity, the solutions to PDE can have 
attractors (static, periodic, or chaotic) in probability space. The solution of ODE (9) 
represents another major departure from classical ODE: due to violation of Lipchitz 
conditions at states where the probability density has a sharp value, the solution loses its 
uniqueness and becomes random. However, this randomness is controlled by the PDE 
(10) in such a way that each random sample occurs with the corresponding probability, 
Fig.6.  

b. Physical Viewpoint. The model of intelligent particle represents a fundamental 
departure from both Newtonian and quantum mechanics. The fundamental departure of 
all the modern physics is the violation of the first and the second laws of 
thermodynamics,(see Eqs.(60), (30), (58), Figs. 5 and 7). However the model has some 
similarity to quantum mechanics, and these similarities are outlined below.  

α.Superposition. In quantum mechanics, any observable quantity corresponds to an 
eigenstate of a Hermitian linear operator. The linear combination of two or more 
eigenstates results in quantum superposition of two or more values of the quantity. If the 
quantity is measured, the projection postulate states that the state will be randomly 
collapsed onto one of the values in the superposition (with a probability proportional to 
the square of the amplitude of that eigenstate in the linear combination). Let us compare 
the behavior of the model of intelligent particle from that viewpoint. As follows from Eq. 
(38), all the particular solutions intersect at the same point v = 0 at t = 0, and that leads to 
non-uniqueness of the solution due to violation of the Lipcshitz condition (see Eq. (40). 
Therefore, the same initial condition v = 0 at t = 0 yields infinite number of different 
solutions forming a family (38); each solution of this family appears with a certain 
probability guided by the corresponding Fokker-Planck equation. For instance, in case of 
Eq. (38), the “winner” solution is v ≡ 0 since it passes through the maxima of the 
probability density (36). However, with lower probabilities, other solutions of the family 
(38) can appear as well. Obviously, this is a non-classical effect. Qualitatively, this 
property is similar to those of quantum mechanics: the system keeps all the solutions 
simultaneously and displays each of them “by a chance”, while that chance is controlled 
by the evolution of probability density (36).  

β. Entanglement. Quantum entanglement is a phenomenon in which the quantum states of 
two or more objects have to be described with reference to each other, even though the 
individual objects may be spatially separated. This leads to correlations between 
observable physical properties of the systems. For example, it is possible to prepare two 
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particles in a single quantum state such that when one is observed to be spin-up, the other 
one will always be observed to be spin-down and vice versa, this despite the fact that it is 
impossible to predict, according to quantum mechanics, which set of measurements will 
be observed. As a result, measurements performed on one system seem to be 
instantaneously influencing other systems entangled with it. 

Qualitatively similar effect can be found in the model of intelligent particle. In order to 
demonstrate that, we start with Eqs.(32) and (34) and generalize them to the two-
dimensional case 

v1 = −a11
∂
∂v1
lnρ− a12

∂
∂v2
lnρ,     (95)   

v2 = −a21
∂
∂v1
lnρ− a22

∂
∂v2
lnρ,     (96)  

∂ρ
∂t
= a11

∂2ρ

∂V 2
+ (a12 + a21)

∂2ρ
∂V1∂V2

+ a22
∂2ρ
∂V2

,   (97)   

As in the one- dimensional case, this system describes diffusion without a drift 
The solution of Eq. (97) has a closed form 

ρ =
1

2πdet[âij ]t
exp(− 1

4t
$bijViVj ), i =1,2.   (98)    

Here 
][ ijbʹ′ = 1]ˆ[ −

ija  , â11 = a11, â22 = a 22 , â12 = â21 = a12 + a21 , ,,ˆˆ jiijjiij bbaa ʹ′=ʹ′=   (99)  
Substituting the solution (98) into Eqs. (95) and (96), one obtains 

v1 =
b11v1 +b12v2

2t
           (100)  

v2 =
b21v1 +b22v2

2t
, bij = !bijâij    (101)    

Eliminating t from these equations, one arrives at the ODE in configuration space 
dv2
dv1

=
b21v1 +b22v2
b11v1 +b12v2

, v2 → 0 at v1→ 0,      (102)  

This is a classical singular point treated in textbooks on ODE.  
Its solution depends upon the roots of the characteristic equation 
λ2 − 2b12λ+b

2
12 −b11b22 = 0      (103)        

Since both the roots are real in our case, let us assume for concreteness that they are of 
the same sign, for instance, 1,1 21 == λλ . Then the solution of Eq. (102) is presented by 
the family of straight lines 
v2 = Cv1, C = const.      (104)   
    
Substituting this solution into Eq. (100) yields  
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v1 =Ct
1
2
(b11+ Cb12 )

  v2 = CCt
1
2
(b11+ Cb12 )

   (105)   
Thus, the solutions of Eqs. (95) and (96) are represented by two-parametrical families of 
random samples, as expected, while the randomness enters through the time-independent 
parameters C and C that can take any real numbers. Let us now find such a combination 
of the variables that is deterministic. Obviously, such a combination should not include 
the random parameters C orC~ . It easily verifiable that  

d
dt
(ln v1) =

d
dt
(ln v2 ) =

b11 + Cb12
2t

     (106)   

 
and therefore, 

( d
dt
ln v1) / (

d
dt
ln v2 ) ≡1      (107)   

Thus, the ratio (107) is deterministic although both the numerator and denominator are 
random,(see Eq.(106). This is a fundamental non-classical effect representing a global 
constraint. Indeed, in theory of stochastic processes, two random functions are considered 
statistically equal if they have the same statistical invariants, but their point-to-point 
equalities are not required (although it can happen with a vanishingly small probability). 
As demonstrated above, the diversion of determinism into randomness via instability (due 
to a Liouville feedback), and then conversion of randomness to partial determinism (or 
coordinated randomness) via entanglement is the fundamental non-classical paradigm.  
 γ. Decoherence. In quantum mechanics, decoherence is the process by which quantum 
systems in complex environments exhibit classical behavior. It occurs when a system 
interacts with its environment in such a way that different portions of its wavefunction 
can no longer interfere with each other. 

Qualitatively similar effects are displayed by the intelligent particle. In order to illustrate 
that, let us turn to Eqs. (32), (34), and notice that, as soon as the feedback (31) 
disappears, the system becomes classical, i.e. fully deterministic, while the deterministic 
solution is a continuation of the corresponding “chosen” random solution. 

δ. Uncertainty Principle. In quantum physics, the Heisenberg uncertainty principle states 
that one cannot measure values (with arbitrary precision) of certain conjugate quantities 
that are pairs of observables of a single elementary particle. These pairs include the 
position and momentum. Similar (but not identical) relationship follows from Eq. (38):  

v v =C 2 / 2          (108) 

 i.e. the product of the velocity and the acceleration is constant along a fixed trajectory. In 
particular, at t = 0, v  and v  can not be defined separately. 

ε . Wave–particle	
   duality.	
   In	
   physics,	
   wave–particle	
   duality	
   is	
   a	
   conceptualization	
  
that	
   all	
   objects	
   in	
   our	
   universe	
   exhibit	
   properties	
   of	
   both	
   waves	
   (such	
   as	
   non-­‐
locality)	
   and	
   of	
   particles	
   (such	
   as	
   quantization	
   of	
   some	
   of	
   their	
   properties).	
   As	
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shown	
  by	
  Max	
  Born,	
  the	
  wave	
  associated	
  with	
  the	
  electron	
  is	
  not	
  a	
  tangible	
  'matter	
  
wave',	
   but	
   one	
   that	
   determines	
   the	
   probability	
   of	
   scattering	
   of	
   the	
   electron	
   in	
  
different	
  directions.	
  	
  Similar	
  “duality”	
  follows	
  from	
  the	
  model	
  of	
  intelligent	
  particle.	
  
Indeed,	
  Eq.	
   (32)	
  describes	
   the	
   “trajectories”	
  of	
  particles,	
  while	
  Eq.	
   (34)	
  represents	
  
the	
  wave	
  of	
  probability	
  that	
  captures	
  the	
  particle	
  “scattering”.	
  

η. Interference of probabilities.	
   In Newtonian physics, the probability is introduced via 
the Liouville equation describing the continuity of the probability density flow. This 
equation is linear with respect to the probability density, and therefore, according to the 
superposition principle, the probabilities are combined by summation: when an event can 
occur in several alternative ways, the probability of the event is the sum of the 
probabilities for each way considered separately, i.e.  

ρ =ρ1 +ρ2           (109)  

In quantum physics, the probability is introduced via the Schrödinger equation that is 
linear with respect to probability amplitude, i.e. with respect to the square root of the 
probability density. Therefore, when an event can occur in several alternative ways, the 
probability amplitude of the event is the sum of the probability amplitudes for each way 
considered separately 
The probability interference in quantum mechanics follows from the linearity of the 
Schrödinger equation with respect to the probability amplitudes iψ  as state variables. Due 
to linear superposition of these amplitudes, the following rule can be formulated 

ψ = ψ1 +ψ2 , ρi =|ψi |
2 , ρ =|ψ1 +ψ2 |

2≠ρ1 +ρ2     (110)                               

and this phenomenon is known as interference of probabilities: the probabilities are 
combined as the intensities of waves. 
The situation with interference of probabilities in the model of intelligent particle is more 
complex: it depends upon the type of information forces. Indeed, in the diffusion and the 
integral feedbacks cases, Eqs.(32), and (34) are linear with respect to the probability 
density, and the probabilities are combined according to Eq. (109). i.e. without 
interference. But in the shock/solpton feedback, the Liouville equation is nonlinear with 
respect to the probability density, and consequently, the probabilities interfere, (see 
Eqs.(64) and (73)). However, this interference is different from the quantum one and it 
will be discussed below. 
  Indeed, following  [7] and reinterpreting confluence of shock waves in physical space to 
confluence of densities in probability space obtain the rule of combining the probabilities  

ρ =
ρ1 f1 +ρ2 f2
f1 + f2

, ρ2 >ρ1         (111) 

   where  fi = exp(−
ρiV
2σ

+
ρi
2t
4σ
), i =1,2.      (112)  
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This means that when an event can occur in several alternative ways, the probability of 
the event is the sum of nonlinear combinations of the probabilities for each way 
considered separately.  
	
  
10. Discussion and Conclusion. 
The discovery of the Higgs boson and the following from it completeness of the physical 
picture of our Universe roused many questions, and one of them is the ability to create 
Life and Mind out of physical matter without any additional entities. The primary 
objective of this paper is to presents a mathematical answer to the ancient philosophical 
question, “How mind is related to matter” in connection with this outstanding 
accomplishment in physics. The paper is inspired by analysis of the Madelung equation 
and discovery of the origin of randomness in quantum mechanics, [3,8,9]. It turns out that 
replacement of the quantum potential by the information force, while preserving some 
quantum properties, introduces fundamental changes in the first and the second laws of 
thermodynamics, and that leads to a mathematical model that captures behavior of 
livings. The idea of an intelligent particle has been introduced as a first step of physics of 
life since it does not include such properties as metabolism and reproduction. Instead it 
concentrates attention to intelligent behavior. At the same time, by ignoring metabolism 
and reproduction, we can make the system isolated, and it will be a challenge to show 
that it still can move from a disorder to the order.   
Thus the paper introduces and discusses a possible extension of modern physics to 
include a concept of intelligent particle as the first step to physics of Life since all 
attempts to create livings from non-living matter failed. It has been proven that there 
exists a fundamentally new type of dynamical systems (represented by intelligent 
particles) that can evolve from disorder to order without external forces thereby violating 
the second law of thermodynamics. It has been demonstrated that these systems belong 
neither to Newtonian, nor to quantum mechanics. Their departure from Newtonian 
mechanics is due to a feedback from the underlying Liouville equation to the equations of 
motion that represents an additional (internal) information force. Topologically this 
feedback shifts intelligent particles towards quantum mechanics. However since the 
information force is different from forces produced by quantum potential, the intelligent 
particles are not quantum, and they can be identified as quantum-classical hybrids. 
Therefore intelligent particles dwell in an abstract mathematical world rather than in the 
physical world, as we know it. This means that intelligent particles, in principle, cannot 
be composed out of physical particles. It also means that their behavior can be computed, 
but not simulated using Newtonian or quantum resources. 

Since the model of intelligent particle fits well into the mathematical formalism of 
modern physics, it can be consider as a new branch of quantum mechanics, and that 
rouses a belief that intelligent particle is not only a mathematical abstraction, but a reality 
as well. 
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