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The cubic equation’s relation to the fine structure constant,
the mixing angles, and Weinberg angle
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A special case of the cubic equation is shown to possess three unusually economical solutions. A
minimal case associated with these solutions is then shown to yield a congruous set of numbers that
fit the fine structure constant, the sines squared of the quark and lepton mixing angles, as well as
the Weinberg angle. Had Renaissance mathematicians probed the cubic equation’s solutions more
deeply these numbers might have formed a well-known part of algebra from the 16" century.

I. INTRODUCTION

In [I] the author showed how a slightly asymmetric
equation (that is, an equation whose left- and right-hand
sides are very similar) produced the experimental value
of the fine structure constant (approximately 1/137.036)
[2113], which elsewhere was tied to the sines squared of the
quark and lepton mixing angles [4,[5]. Here, a special case
of the cubic equation is shown to possess three unusually
economical solutions, where a minimal case associated
with the above solutions produces a set of numbers that
fit the fine structure constant, the sines squared of the
quark and lepton mixing angles, and the Weinberg angle.
This article extends the results of [6].

II. SPECIAL CASE OF THE CUBIC EQUATION

Let

Z<m+x>3+(m+x)2 : (2.1)

n

where x is a variable, Z a positive constant, and m and
n are positive integer constants such that

n
= — 2.2
m=" (22
III. FIRST SOLUTION
Then, by defining
3
W= (%) + (m)? (3.1)
Z
=2— -1 3.2
=22 (3.2
v=\u+tVuz-1 (3.3)
1
= ~—1 3.4
w=v+ (3.4)
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while choosing Z and n so that Z > W (and therefore
u? —1>0), we have
r=m(w-1) | (3.5)

which can be shown to be the first of the three solutions

to be given for Eq. (2.1)).

IV. MINIMAL CASE

The smallest positive integers fitting Eq. (2.2))

m=9 and n=3

are notable, simply because they are minimal.

V. FINE STRUCTURE CONSTANT

For the above minimal case the solution z = 1 to Eq.

(2.1) requires that

9+1\°
Z:(—g) +(9+1)2
= 137.037

Here, the constant Z is close enough — within one thou-

sandth of one per cent—to the reciprocal of the fine

structure constant 137.036 [2, [3] to suggest that looking

for a connection might turn up interesting mathematics.
In fact it does [7]. Now, if we let

m=9 n=3 Z=137.036 ,

then

W = (m/n)* + (m)*
= (9/3)° +9?
= 3%+ 3
= 108
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u=2x2Z/W-1
=2 x137.036/108 — 1
~2x1.268851851 —1
~ 1.537703 703

v=\u=+ Vu? -1
~1.393479170916%"
w=v+1/v-1
~ 1.111 107 407 399

Therefore,

z=m(w-1)
~9x (1.111107407399 — 1)
~ 0.999 966 666 591
~1-— 1
29999.932 142743 338

1

Substituting the values for m, etc. into Eq. (2.1)) gives

941 1 3
137. = _
37056 [( 3 ) 3% 29999.932.. }

2
1
941) - ——— 5.2
+ [( +1) 29999.932..} (52)
VI. AN IMPORTANT MINIMUM
Now suppose that Z takes the form
M3 _ M—3
22734—M2—M_3 , (6.1)
n
where
M=m+1

Then, as proven in Theorem 2 in [7], a surprisingly pre-

cise, but simple, approximate solution to Eq. (2.1)) follows
1

3x M4

For M = 10 this equation recovers Eq. (5.1]), so it should
come as no surprise that, for the minimal case assumed
in the previous section, Eq. (6.1) gives

103 — 1073 5 s
Z=—— — +10°-10

= 137.036

r~1

(6.2)

In the previous section for the minimal case we had to
assign 137.036 to Z “by hand”; now in this section we
learn that the value 137.036 would have been assigned
automatically had we combined the minimal case with
Eq. (6.1). In this way we see that 137.036 is itself an
important minimum, and hence of purely mathematical
interest (i.e., apart from its role as a constant of physics).

VII. QUARK AND LEPTON MIXING ANGLES

Moreover, the following four quantities seen in Eq.

52

10 1

3 3x29999.932. ..

10 L
29999.932...

which can be reproduced from the sines squared of the
quark and lepton angles, are also of purely mathematical
interest, independent of their role in physics. Specifically,
values such as 10/3, 10, etc. can be produced from the
quark and lepton mixing angles L12, L13, L23, Q12, 13,
@23, as follows

10/3 ~ 1/sin® L12

1/3 x 29999.932 ~ sin® Q13
10 ~ sin? L23 x 1/sin® Q12

1/29999.932 ~ sin® Q23 x  sin? L13

(7.1)

where a mathematical model conforming to the above
relations, and predicting mixing angles (in degrees)
of 33.210911, 8.034394, and 45 for leptons—and
12.920 966, 0.190986, and 2.367442 for quarks—is de-
tailed in [5]; there, matrix algebra is used to impose three
constraints on mixing, just one of which is independent
of the four constraints imposed by Eq. . It is this
additional constraint, along with the further constraint
that L23 = 45°, that allows the four constraints of Eq.
to produce the siz mixing angles predicted above,
which are all within the limits of experimental error.

VIII. WEINBERG ANGLE

Consider the similarity of Eq. to Eq. : One
cannot help but notice that the constants W and Z
appear on similar footing mathematically. Hence, one
might expect W and Z to appear on similar footing phe-
nomenologically. In this section we show that W/Z can
be used to fit economically the ratio of the W- and Z-
boson masses.

At the outset, the variable names W and Z were cho-
sen in anticipation of their use in a formula reproduc-
ing the ratio of the W- and Z-boson masses—that is,
Mw /Mz. That there appears to be some relationship
between W/Z and My, /My is shown by

W (Mw)’
Z  \ My,

~ cos® Oy, (8.1)

where W = 108 and Z = 137.036, as before, and 0y, is

the simplest of the Weinberg angle’s definitions [, [9].
Using the precisely-measured mass My = 91.1876 +

0.0021 GeV, we can calculate the value of My, with the



aid of Eq. , giving My =~ 80.951 GeV. Experimen-
tally, My = 80.385 &+ 0.015 GeV [I0]. This calculated
My differs from experiment by 1 part in 142 and is out
of range of experiment; but uncertainty over the best def-
inition of fy suggests that a modified, but still valid, Eq.
might give a better fit [8], [].

In summary, the above mathematics fits the fine struc-
ture constant, the Weinberg angle, and (with the aid of
two additional constraints) the six mixing angles L12,
L13, L23, Q12, Q13, @23. This says something for the
congruity and efficiency of the above “cubic” framework
in modeling fundamental constants. Moreover, as will
be shown in the next two sections, the cubic equation
responsible for all this possesses two unusually compact
alternative solutions.

IX. SECOND SOLUTION

The second solution to Eq. (2.1)) requires defining

w
O =1/ — 1
cos O¢ R (9.1
where 0 < ¢ < /2, so that
. w
Sin GC = 1 — 7 (92)

It can then be shown that Eq. (3.3) can be restated

/1 +sin O¢
= 3 —_— 903
— sin 90 ( )
so that Eq. (3.4) gives
1+ sin O¢ 1 —sin 0¢
=4 Y -1 4
v \/1—sin€C+\/1+sin90 (9-4)

Substituting into Eq. (3.5)) gives the second of three so-
lutions to Eq. (2.1])

1+ sin O¢ \/1—sin0(;

3 3

T = + —2m
m(\/l—sin Oc 1+ sin 0¢

Now, given the round numbers

(9.5)

x—11/30000} .
Key solution

n=3
Eq. (21 gives
ax1/7 S
Key approximations
0W ~ 00

or, equivalently,

a =~ 1/137.036 000 002

K imati
%Vz27M7B7%9’} €Y approximations

so that sin?fc ~ 0.211886. These values are again
surprisingly close to those obtained from experiment.
Moreover, the above 6y and 6¢ are similar in multiple
ways: They are not only close numerically, but they are
also similar in how they are defined. Each depends on
~137.036 for its value in the same way — with ~137.036
implicitly appearing as a value (in the form of electron
charge) in the Weinberg angle’s definition [8,[9]. In addi-
tion, when one works out the dimensional details of Oy,

Eq. (8.1) emerges naturally.

X. THIRD SOLUTION

The third solution to Eq. is the most obvious.
One merely rewrites Eq. in the form of the gen-
eral cubic equation, and then solves it using the general
cubic’s classical solution. The classical solution to

ax® + b2’ +cx+d=0

is
_3lq ¢ PP 3lq ?
x¢2+V4+27+¢2 Vot o
(

(10.1)

10.2)
where
_c ¥
p a 3a3
2h° be d
_ e 10.3
9 27a3  3a? a ( )
L
Y

Though complicated, tellingly, these complexities largely
vanish when a, b, ¢, and d derive from Eq. . So, when
Eq. is expanded into the general cubic equation we
get these coefficients

(10.4)

¢ = 9m?

b=6m
d =m(4m?* — 32)

in terms of m and Z. Substituting the coefficients of Eq.

(10.4) into Eq. (10.3) allows simplifying Eq. (10.2)) to get

xzi/t—i— t2—m6—|—€/t— t2—mb —2m , (10.5)

where
d
t=m3— =
T
=m (1.5Z —m?) (10.6)

This is the third of the three solutions given for Eq. (2.1J),
a solution that is notably economical.



XI. SOLUTION ECONOMY

The complexity of the above three solutions can be
objectively assessed by comparing them against the
exceptionally-simple classical solution to the depressed
cubic, a natural off-the-shelf benchmark. This will help
clarify just how “basic” Eq. really is.

The depressed cubic is merely the general cubic equa-
tion without its quadratic term (i.e., b = 0). Assum-
ing the coefficient of the depressed cubic’s leading term
equals one (i.e., a = 1), we have

P ter+d=0 (11.1)
Substituting this equation’s coefficients into Eq.
gives

p=c
qg=—d (11.2)
r=20

so that Eq. (10.2)) gives this compact solution to Eq.
({11)

_3—dJr d2+c3+3—d d2+c3
TV TV Ty 2 1 o7

(11.3)

which dates back to Cardano’s Renaissance masterwork
Ars Magna. This solution is roughly as complicated as
the earlier second and third solutions, showing that Eq.
and two of its solutions are sufficiently fundamental
to be of interest to mathematicians. But perhaps Eq.
should also engage the interest of physicists, given
its apparent connections to physical quantities?

XII. SUMMARY AND CONCLUSION

To help shed light on this, consider that it was the
proximity of a to 1/137.037 that earlier suggested that
Eq. might produce interesting mathematics —as it
does. In the same way, 0y helped the author find the
second solution to Eq. —the one using 0c —with
fw providing the primary clue that such a solution ex-
isted. The precise way that o and (My,/Mz)? mapped
over to the purely mathematical constants 1/137.036 and
108/137.036 appeared to require that y have a mathe-
matical correlate among the cubic equation’s solutions —
as it does. But why should these purely mathematical
results obtained from solutions to a special case of the
cubic relate to empirical constants such as a and 6y ?

Yet another way to consider the above solutions is in
their historical context: In the 16" century the Ital-
ian mathematicians Scipione del Ferro, Niccolo Tartaglia,
and Gerolamo Cardano did pioneering work on the solu-
tion to the cubic equation. Had they probed more deeply,
a congruous set of numbers fitting

e the fine structure constant
e the Weinberg angle

e 1/sin? L12

e sin” Q13

sin? .23 x 1/sin® Q12

e sin? Q23 x sin? L13

might have formed an integral part of their work from
the outset, with these numbers waiting several centuries
till their eventual re-discovery as part of 20" century
physics.
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