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Abstract

In this paper, we reproduce the interference pattern using only space-time geodesics.
We prove that fringes and bands can be reproduced by using fluctuating geodesics, which
suggests that the interference pattern shown to occur with electrons, atoms, molecules and
other elementary particles might be a natural manifestation of the space-time geodesics
for the small scale world.
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1 Introduction

It is known that the quantum theory does not determine the geometry of the space-time upon
which it dictates the evolution of the wave function ([3]), and that the classical space-time
is irrelevant for the small scale world. The double-slit diffraction plays a crucial role in our
comprehension of the duality of matter. The Young’s double-slit experiment ([23],[24]) was
and remains the corner stone of a fundamental mystery in physics for more than 200 years:
how can light be emitted and absorbed as corpuscular, and undergo interference pattern
between source and detector as a wave?

In this paper, we will provide a new approach to answer the following question: is it
possible to reproduce an interference pattern similar to the interference pattern observed in
Young’s double-slit experiment using only space-time geodesics? If a physical system in a
given space-time is in free movement from one location to another following the path that
requires the shortest time, then the geometry of the space-time dictates the behavior of the
physical system in following the curve that minimizes the total time needed to travel between
the two locations (the motion is constrained by the shape of the space time). Indeed, if the
space is defined by a circular cylinder for example, then there are three possible geodesics:
straight line segments parallel to the centerline of the cylinder, arcs of circle orthogonal to
the centerline, and spiral helices obtained by combination of the two previous geodesics. Any
free motion on the cylinder is controlled by the form of all possible geodesics that shape its
geometry. Unfortunately the geodesics for the small scale world are still unknown. However,
one can provide an example of geodesic that allows to produce Young’s double-slit interference
pattern, which induces a new understanding that might help to unlock a part of the mystery
conveyed by this experiment.
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2 Prototype of Space-Time Geodesics

In a metric space-time, geodesics are defined to be the shortest path between two given
positions, and a real understanding of the free motion of a physical system passes through
our understanding of the space-time geodesics. In the case of a well defined space-time,
geodesics can be found by minimizing locally the distance between two different positions
using techniques of differential calculus. If the space-time is unknown, as for the small scale
world (atomic world), our best understanding of the motion of a physical system is led by
observations of experiments. However, some interpretations can be misled by the ignorance
of the geodesics shape, and our understanding of the behavior of the physical system at small
scale remains incomplete specially when our observation might alter the final state of the
physical system, which is a paradox for the small scale world.

In this paper, a specific definition of geodesics that flare out from a given narrow slit
and cover an angle 6 will be postulated to reproduce some observed phenomena. Instead of
observing the behavior of matter at small scale, we will observe paths that physical systems
may take when they are free of movement in an homogenous space, and derive conclusions.
More precisely using a specific geodesic (found in the simulation of an expanding space-time
[4]), we will be able to reproduce the double-slit interference pattern as the one observed in
Young’s interference experiment.

2.1 Prototype Geodesics

Let us consider the following geodesic illustrated in two dimensions (Fig.0) defined by the
graph of the function :
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that verifies:

a) for i = 0,...,N — 1, the graph of ¢; represents the geodesic between two antipodal
points on the circle of center C; = ((21 + 1)r, 0) and radius 7;

b) for i =0,..., N — 1, ¢; is continuous on the closed interval  [2ir,2(i + 1)r];
c) fori=0,...,N —1, @, is differentiable on the open interval  |2ir,2(i + 1)r[;

d) fori=0,...,N—1, ¢; is not differentiable at the points x; = 2ir and ;11 = 2(i+1)r.
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Figure 0: Geodesic in 2D for N = 13 and radius » = 5 mm between two points A and B.

The zy-plane in Fig.0 represents the plane of fluctuation of the geodesic and the z-axis
is the geodesic axis that represents the geodesic overall direction. Since the geodesic given
by (1) verifies the property a), then in two dimensions there exist two possible geodesics

between two antipodal points of one circle of center C; = ((22 + 1)r, 0) and radius 7 for all
i, and then between A = (0,0) and B = (267, ;(267)) for example there exist 2!3 geodesics
that represent the path of least time between the two locations A and B, which means that
any physical system that follows the path of least time in the plane will have 2'3 possibilities
and it is impossible to predict from which path the physical system will pass through. To
reproduce the interference pattern in a given plane, we don’t need a mathematical modeling
of the geodesics in three dimensions, only the geodesics defined by (1) will be used within
this paper.

2.2 Modeling Geodesics that cover an angle 6 from a slit

Let us consider the function ¢ defined by (1). We denote the graph of ¢ by

Gyo={(z,y) eR" xR /y=o(z) } (4)

Grot) = { (@) €R? ( y ) = Ry ( y ) , with ( Y ) €G, | (5)

and where Ry is the rotation of center (0,0) and angle 6 given by

Ry — < cos) —sinf ) (6)

and

sinf cosf

To graph all geodesics starting from a slit 57 and covering an angle 6 between the slit’s screen
and a distant detector screen, we use the superimposition of graphs of geodesics given by the
graph of the function (1). We take the center of the slit S; as the origin with coordinates
(0,0), and using a subdivision of # into unit angle, we superimpose all the graphs G Re(p) for
0 in {—go, ., —2°,—1°,0,1°,2°.., +go}. If we add another slit Sy of coordinates (0, —d), then
to represent all possible geodesics emerging from two distant slits to any distance in the right
side of the slit’s screen, we superimpose on the same graph the geodesics emerging from the
slit S7 with their translation from the slit Sy using the translation 7 - of vector 7 = S1.595.
To simulate the movement of the slit Sy on the y-axis, we vary d in the coordinates of the
vector .



3 Interference of Geodesics in Phase
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Figure 1: The first path is a geodesic defined by Figure 2: Tllustration of 65 geodesics, using
(1), between two arbitrary locations, with radius equation (1) for ro = 0.25 mm, that cover an
ro = 0.25 mm. The second path is a perturbed angle of 64° from a narrow slit, to represent all
geodesic defined by (1), between the same arbi- possible geodesics that diffract from the slit to
trary locations, with radius r = 0.625 mm. any detector screen on the right side.

To simulate all possible geodesics that can be followed by a physical system through the
region between two slits and any detector screen located on the right side of the slits screen,
we superimpose two copies of all possible geodesics in phase that cover an angle 6 = 64° to
simulate Young’s double-slit experiment. Let us consider the geodesics defined by (1) (see
Fig.1), that cover the distance between two given positions A = (0,0) and B = (z, ¢;(z))
for rg = 0.25 mm. For the small scale world, r can be any infinitesimal number, thus any
simulation with these tiny numbers requires adequate tools for a clear observation. The
process of simulation of geodesics emerging from the slits S; and Ss is as follow:

(i) Using the graphs (5), and by considering the slit .S; as the origin, we superimpose all
the graphs G, (., for ro = 0.25 mm, and for ¢ in {-32°,..,0,..,+32°}, and we obtain the
illustration given by Fig.2.

(ii) To represent geodesics emerging from a second slit So, at a distance d from Sy, that
are in phase with those emerging from the slit S1, we translate all the geodesics that emerge

from the slit S7 using the translation T‘w with 5159 = ( 0 d )
192 -

The representation, on the same graph, of all possible geodesics that emerge from the slit
S1 and all possible geodesics that emerge from the slit Ss allows to simulate Young’s double-
slit experiment. Indeed, the superimposition of the two families of geodesics in phase exhibits
interference pattern of fringes visible in the whole intersection region between geodesics (see
the simulation in Fig.3 obtained for d = 2 mm and the simulation in Fig.4 obtained for
d = 4 mm). The bigger the distance between the two slits is, the larger the number of fringes
is, and the closer the fringes are. Using the superimposition of all possible geodesics that can



be followed by a physical system, we are able to reproduce the observed interference fringes
in Young’s interference experiment with the same properties. Moreover these fringes are
observable not only on the detector screen, but in the whole region of geodesics intersection
between the slits screen and the detector screen. When parts of geodesics exactly coincide
they form a clear spot (the presence of the physical system is double), if not they form a dark
spot of single paths.
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Figure 3: The superposition of family of Figure 4: For the same families, the number of
geodesics of radius r¢ = 0.25mm from the S; fringes increases when the distance between the
with the family of geodesics with the same radius slits S1 and S2 increases, d(S1,S2) = 4 mm.

from the slits S> generate fringes or bands in the
geodesics intersection region, d(S1,S2) = 2 mm.

The more the geodesics tend to straight line geodesics, the less we can observe the fringes.
The geodesic defined in (1) becomes a straight line as 7 tends to zero, and then the interference
pattern disappears (see Fig.7).

4 Interference with Perturbation

A perturbation that modifies the path of a given physical system in free motion by modifica-
tion of the amplitude of its geodesic fluctuation can be simulated by the use of a perturbed
geodesic defined by (1) with a radius r; = 79 + ¢ (see Fig.1) for a perturbation ¢ that can be
positive or negative. Experimental observations use light, and a photon or an electron cannot
be detected without interaction with photons. Perturbation is used here in the sense that the
physical system, by interaction with light, will follow another perturbed path that represents
the new path of least time for the new physical system state after interaction. This new path
of least time is obtained by modification of the amplitude of the geodesic fluctuation.

What happens to the observed interference pattern produced by the superimposition of
geodesics from two slits (Fig.3 for example) if we add a perturbation to one of the two



families of geodesics? Using the process (i), we can graph all geodesics with radius r = rg
that emerge from the slit Sj, and using the process (ii) for » = r;, we can represent the
superimposition on the same graph of all possible geodesics that emerge from the slit S
with all perturbed geodesics that emerge from the slit So, respectively for € = 0.05 mm and
€ = 0.375 mm. The result of the superimposition of the two families is given by the simulation
obtained respectively in Fig.5 and Fig.6 (the simulation produced with ¢ = —0.05 mm and
e = —0.375 mm led to the same conclusion as for Fig.5 and Fig.6). In Fig.5 for 7 = 0.3 mm,
degraded interference can be discerned with important disorder, meanwhile the interference
pattern totally disappears in Fig.6 for r; = 0.625 mm.

N

Figure 5: TImportant disorder in the interfer- Figure 6: The interference pattern disappears
ence pattern generated by the superposition of when we superimpose the family of geodesics of
the family of geodesics of radius ro = 0.25 mm radius ro = 0.25mm from the slit S; with a family
from the slit S; with the family of perturbed of perturbed geodesics of radius r1 = 0.625 mm)
geodesics of radius 1 = 0.3 mm from the slit Ss, from the slit Sa, d(S1,S2) =2 mm

d(51,52) =2 mm

Perturbation of geodesics might explain the absence of interference pattern in the Young’s
double-slit experiment when detection is performed to locate from which slit the physical
system passes through. The simulation given in Fig.5 provides a degraded interference pattern
for perturbed geodesics with a perturbation € < 7y (some experiments were performed to
demonstrate that degraded interference pattern could be obtained using particle detectors
([10],[15],]22])), meanwhile for a perturbation £ > rg, the interference pattern completely
disappears (see Fig.6), which suggests that observation must be conducted with minimal
perturbation to minimize the effect of observation on altering the final state of the physical
system. A more precise simulation of superimposition of geodesics shows that total disorder

occurs for a perturbation starting from € = % as indicated in the following table:



Slit S Slit S d(S1,S2) Interference

ro=1mm | r1 =11mm | 10mm appearance of disorder

ro=1mm | ry = 1.2mm 10mm important disorder

ro=1mm | ry = 1.3mm 10mm more important disorder

ro = 1lmm | r1 = 1.bmm 10mm total disorder

A more precise simulation can be elaborated to determine the minimal perturbation of
paths that induces the total destruction of interferences.

Figure 7: Straight line Geodesic in 2D. No appearance of fringes or bands in the geodesics
intersection region for a line geodesics at distant slits. The angle
of rotation of each geodesic is 1°, the distance of slits is d(S1,.52) = 4 mm.

5 Interpretation of the Geodesic’s Interference

All the simulations presented within this paper and represented by the 7 figures are highly
reproducible. We did not involve any particular physical system (photon, proton, neutron,
electron, and atoms) known to produce the interference pattern in Young’s double-slit experi-
ment ([1],[2],[5].[6].[7].[8].[9],[10],[11],[12],[13],[14], [15], 16], [17]. 18][19].[20], [21],[25] [26]). We
just use a fundamental characteristic of the space-time to reproduce observation of interfer-
ence pattern of fringes and bands similar to those observed in Young’s double-slit experiment.

Producing the same phenomenon (interference of fringes) using graphs puts into question
all the previous interpretations of the interference pattern, observed in Young’s double-slit
experiment, that relate this observed phenomenon to the wave nature of the observed phys-
ical system. Observing interference pattern that emerges with different kinds of physical
systems as photon, proton, neutron, electron, and atoms that are well known as elementary
particles, calls into consideration our understanding and interpretation of this phenomenon.
The common factor for all these physical systems is the local characteristics of the space-time
for the small scale world, and these characteristics (actually the geodesics) generate interfer-
ence pattern of fringes and bands when they are superimposed. Meanwhile a perturbation
of geodesics by observation in one of the two slits induces a degradation of fringes or their
disappearance.



5.1 Physical Limit and Theoretical Limit

The geodesics defined by (1) used to produce Young’s interference pattern for the double-slit
experiment allow to distinguish the theoretical limit and the physical limit. Indeed:

1. for r = 0, the graph of the geodesic (1) is a straight line, meanwhile for » > 0 the graph
of the geodesic (1) is the graph of a function with points of non differentiability; the
smaller r is, the bigger the number of points of non differentiability is, which means that
the smaller r is, the more the geodesics are unreachable (since the number of points with
undefined tangent increases as the radius 7 decreases). For example, if 4r = 5.5x10""m
which is the distance between two successive maxima (that corresponds approximatively
to the average of light wave length), then within 1.1 mm there are 4000 points of non
differentiability (antipodal points).

2. at the scale for which two successive antipodal points of non differentiability of
the geodesic (1) are indistinguishable under any possible physical observation, these
geodesics are experimentally unreachable (example for r = %’, where [, is the Plank
length) and theoretically they are piecewise reachable. However, they produce the
interference pattern of Young’s double-slit experiment for r > 0.

3. To obtain an infinity of geodesics between two arbitrary locations in three dimensions
(see Fig.8), it is sufficient to rotate the graph of the geodesic (1) with respect to the
z-axis and to use the existence of an infinity of geodesics between two antipodal points
of one sphere to assert the existence of an infinity of geodesics in three dimensions
between two arbitrary locations in space, where the fluctuation of the geodesic up and
down in the xy-plane for example corresponds to a polarization in the y-direction. Any
physical system assumed to follow paths of least time (between two given locations)
defined by the geodesics illustrated in Fig.8, in an homogenous space-time will have
an infinity of paths of least time defined by (1) in the space and it will be impossible
to determine from which path the physical system passes through to travel from the
two distant locations, which remains consistent with the quantum indeterminacy. The
superimposition of this family of infinity of geodesics that covers an angle 6 from two
distant slits also produces the interference pattern observed in Young’s double-slits
experiment.
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Figure 8: Geodesics in 3D for N = 13 and radius r = 5 mm between two points A and B.



5.2 Conclusion

For more than 200 years, the scientific community has thought that it was impossible to
explain the interference pattern using defined paths, and that the interference pattern was
a pure manifestation of the wave nature of the physical system. The example of geodesics
used within this paper to reproduce the interference pattern conveys interesting ideas: (i) the
interference pattern of Young’s double-slit experiment might be a manifestation of the space-
time geodesics since these geodesics clearly reproduce the interference pattern observed in
Young’s double-slit experiment, and explain why and how certain regions can be privileged for
a physical system that follows these geodesics meanwhile other regions are almost forbidden
for them, (ii) the perturbation of these geodesics provides an explanation of how observation
affects the final stage of the physical system that follows these possible geodesics, (iii) the
interpretation that relates the interference pattern observed in Young’s double-slit experiment
to the wave behavior of the physical system is not sustainable as the only interpretation, it
could also be explained with paths and trajectories, and a rigorous interpretation cannot
be considered as a reality if the space-time characteristics and properties are ignored (the
interpretation of the interference pattern as water wave, or sound wave or any type of wave
is an approximation of the observed phenomenon but it is not the only one, then it cannot
be used as a determinant factor for the nature of the physical system), and (iv) reproducing
the interference pattern by the geodesics of the space-time for the small scale word is a
fundamental criteria for its consistency. Indeed, the straight line geodesic has to be excluded
for the small scale world since it does not produce any interference pattern, meanwhile a
geodesic with a tiny periodic fluctuation may lead to the geometry of the space-time for the
small scale world.

Nevertheless, the diffraction of the geodesics from the slits to covers an angle 6 was postu-
lated in this work. To complete the interpretation of the interference pattern using geodesics,
it is primordial to explain why the geodesics flare out (diffract) into the region beyond the slit
that covers the angle 6. In the wave approach there is no clear difference between diffraction
and interference, meanwhile, using geodesics the diffraction can be explained without inter-
ference and this will be the subject of the next paper. The main objective of this work is to
prove that one can reproduce (and then model) the interference pattern observed in Young’s
double-slit experiment and explain it only with space-time geodesics (using path and tra-
jectory), which suggests that this phenomenon might be a manifestation of the space-time
characteristics for the small scale world.

The used geodesics (1) clearly reproduce interference pattern of fringes and bands, and
systematic methods based on calculus of variation involving differential equation for the
solutions of Fermat’s principle are not suitable for these geodesics because of the existence
of a big number of points of non differentiability for the small scale. Moreover this method
does not distinguish the different small scales in its formalism, which means that the classical
differential calculus is irrelevant to find the geodesics for the small scale world since the partial
derivative is defined as a limit entity and we know that under the Planck length, all our tools
have no physical sense. A new approach is needed to find the solutions of Fermat’s principle
of least time for the small scale world.
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