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Abstract：Geometrical optics has high similarity with classical particle mechanics . After first
quantization program classical particle mechanics can obtain non-relativistic quantum mechanics
that suitable for micro , but quantum mechanics does not describe the photon that its static mass is
zero . So whether there is a kind of "quantization" approach for geometrical optics , by which
non-relativistic quantum mechanics that can be used to describe the photon can be obtained . It’s
quantum mechanics of photon similar to the Schrödinger wave mechanics under the neglection of
the formation and annihilation of photon . In this paper , several methods that can be used to find
the first quantization theory of photon are given .
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1. Introduction

Throughout the quantum world, the theory of micro particle with mass has

experienced a development process from classical mechanics to quantum mechanics,

and then experienced a development process from classical field theory to quantum

field theory, but for massless photon, lack of the first quantization process from

"classical optics" to "quantum optics", just second quantization process from

electromagnetic field to quantum field directly. The concept of light quantum was first

proposed by Einstein in 1905. By a comparative analysis of the similarity between

geometrical optics and classical particle mechanics, de Broglie generalize the concept

of light quantum into material particles, and puts forward the concept of "matter

waves". After that, Schrödinger found out a wave equation for matter waves, thus

established the wave mechanics, and promote the development of quantum mechanics,

but quantum mechanics only applicable to the particle that its static mass is not zero,

and does not describe the photon that its static mass is zero. The establishment of

quantum mechanics can be said to be building on the classical particle mechanics, on

the other hand, classical particle mechanics and geometrical optics are similar in

many ways. Comprehensive above description, it is indeed possible to established a

quantum mechanics or first quantization theory of photon that similar to the

Schrödinger wave mechanics under the neglection of the formation and annihilation

of photon.

2. Modified Geometrical Optics

In geometrical optics, the optical path length along a curveC from A to B is defined to

be the line integral


B

A
dsxxxn ),,( 321OS (1)
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Here ),,( 321 xxxn is the index of refraction of the media, ds is a line element. One

sees from the optical path length that the integrand, i.e. the index of refraction of the

media ),,( 321 xxxn is a function of position x . But we all know that for different

wavelengths of light, the index of refraction of the media have different values. In

electromagnetism n is directly related to the electric and magnetic parameterrs

 and relates optics to electricity and magnetism[1]:

00


n

Here 0 and 0 are the permittivity and the permeability of the vacuum, respectively.

 and  are the permittivity and the permeability of the material, respectively. Due

to  and  are may depend on frequency of light, namely )( 

and )(  , and the frequency  is associated with the wavelength  , so the

index of refraction of the material are also depend on wavelength. In conclusion, the

index of refraction of the material are depend on not only the material itself but also

the light itself.

This forces us to correct for difinition of optical path length of formula (1). In

consideration of the analytical mechanics, the Lagrangian function L of action


2

1

),,()]([
t

t
dtLtS xxx  is a function of x and x . In analogy to action, we can

redefine the optical path length as follows


B

A
dss ),()]([ xxx nS

Here ),( xx n is a new definition of Lagrangian function of geometrical optics,

called the general index of refraction of material. x defined as ds
dxx  .

Now therefore, Fermat’s principle rewritten as follows
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0),()]([  
B

A
dss xxx nS

then reduces to the Euler-Lagrange equation

0







ii xds
d

x 
nn

(2)

Define the generaized momentum of modified geometrical optics as follows

i
i x
p





n

written in vector form as

n p (3)

where i 



i ix

 .

From Einstein’s hypothesis of photon, the momentum of the photon follows as

kp 

Here )2(



kk is the wave vector and is the wavelength. Substituting this into

Eq.(3), we obtain

k n

Assuming that k is not an explicit function of x , we obtain

)()(),( xxkxxx nnxk
i

ii  n (4)

Let )(x be a function of x defined by the equation

xkx  )( (5)

then given as

)()(),( xxxx n  n (6)

In analytical mechanics the Lagrangian L under the conservative field )( xV

has the form )()(),( xxxx VTL   ,where )(xT is kinetic energy of system. This
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shows that the Lagrangian L depend on the system itself )(xT and the environment

)( xV . In analogy to Lagrangian L , )(xn is a function that depend on the

environment, i.e.material itself, it’s similar to the index of refraction of material in

unmodified geometrical optics, and )(x is a physical quantity that used to describe

the characteristics of photon itself, it’s similar to the kinetic energy of particle. If

take into account the photons with different wavelength, then  is a function

of k and x , namely ),( kx  , therefore the general index of refraction of

materialn is a function of k , x� and x� , namely ),( k,xx nn  , this is also a

good illustration for why the index of refraction of material depend on the wavelength

of light. We're only considering the situation that the light wave or photon has certain

wavelength here. i.e.only considering the situation ),( xx nn  .

Substituting Eq.(6) into Eq.(2), we obtain

ii x
n

xds
d







 )()( xx



written in vector form as

)()( xx n
ds
d

  

It is similar to eikonal )(xOS , define the modified eikonal ]),([ ssxS as

follows


x

x
xxx

0

),(]),([ dsss nS
As shown in Figure 1, it’s analogy to unmodified

geometrical optics[2], as xmoves a distance xd

away fromP to 1P , the change in )]([ sxS is

)(' 1 τ xdPPd nnS (7)
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where ds
dx

τ is a unit vector at P tangent to the original ray PP0 . Since the modified

eikonal ]),([ ssxS is a function of x and s , a total differential of ]),([ ssxS is

then given as

ds
s

dds
s

dx
x

ssd
i

i
i 











 SSSSS xx ]),([ (8)

Comparison of Eqs.(7) and (8) finally given as

ds
s

dd




SS xx )( τn (8.1)

since dsdsddsd
ds
d

 τττττ xxx
, Eq. (8.1) can be rewritten as

xxx d
s

dd 



 ττ SSn

thus

ττ
s




SSn

i.e.

τ)(
s




SS n (9)

The absolute value gives a result called as the modified eikonal equation

s



SS n

Eq.(9) also can be reduced from the modified eikonal ]),([ ssxS by derivation

),(),(]),([
0

xxxxx
x

x
 nn 








 ds
ds
dss

ds
d

sds
dx

x
i

i i

SSS

n




s
SS τ

ds
s

d )(




SS nx
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xx d
s

d 



 τ)( SS n

τ)(
s




SS n

Here, consider first a total differential of general function of xand x , namely ),( xx g ,

we have

i
i i

i
i i

xd
x
gdx

x
gdg 


  







),( xx

xx  dgdg 
used

ds
d

ds
d

ds
d

ds
d

ds
d xxx  

τττ ,

we have

ττ   gg
ds
dg

(9.1)

Substituting Eq.(9) into Eq.(9.1), we have

τ 





 gg

s
ds
dg SS )(

1

n
(9.2)

We now make a special choice of g ,namely, that i
i

i sx
g 









SS

n , then Eq.(9.2)

gives

)()(
)(

1)( i
i

i
i

i sxsx
s

ds
d 
























SSSSSS τ
n

n

)()(
)(

1
ii

i
ii

i ssxssx
s

 





























 

 SSSSSSSS τ
n

from
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0,,0]),([]),([ 



  iiii
i i

xss
x

ss 


 τxx SS
we have

ii
i

i ssx
s

ds
d  




















SSSSSS )(
)(

1)(
n

n

ii
i ssx

s

 

















SSS
S ))()((

)(2

1 22

n
(9.3)

Substituting Eq.(9) into Eq.(9.3), we have

ii
i

i ssssx
s

ds
d  


























SSS
S ))()((

)(2

1)( 22 nn
n

n

ii
i ssssx

 




















SSS )()( nn

Written in vector form as

τττ 
ssssds

d
















SSS )]([)()( nnn

This is the partial differential equation satisfied by tangential unit vector of light rayτ ,

called the general light ray equation.

0)()]([)( 
















sssds

d
ds
d

s
SSS

nn
n

n ττ
(10)

When nn ),( xx  is a constant, we have

00 
ds
dn

n ，

)(),( 0
00

ssdsds   nnn
x

x

x

x
xx S

nn 





 )]([ 0ss

ss
S

Substituting those equations into Eq.(10), lead to
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0
ds
dτ

(10.1)

Equation (10.1) then give for a straight ray equation

baτ  s

where ba、 are constant vectors. This shows that the light travels through material in

a straight line when the general index of refraction of material is constant.

3. Quantization of Modified Geometrical Optics

The definition of Hamiltonian in modified geometrical optics can’t imitate the

definition of Hamiltonian in analytical mechanics because of this is unreasonable, as

shown below, if we defining the Hamiltonian in modified geometrical optics as

follows

),(),( xxpx  n
i

iixpH (11)

where
ds
dxx i

i  、
i

i x
p





n

, after substituting Eqs.(4) and (6) into Eq.(11) we

have

)()(),( xxxkxppx nn  H
It is shown that Hamiltonian H only depend on the function of position that reflect

the environment, but the Hamiltonian depend on both the system itself and the

environment, in addition, it represents the energy of system in analytical mechanics.

But H can’t represents the energy of system. Therefore, the Hamiltonian in modified

geometrical optics can’t be defined by Eq.(11).

Compute the variation of the modified eikonal ]),([ ssxS , we obtain

 
x

x

x

x
xxxx

00

),(),( dsds  nn S
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  







x

x0

)( dsx
x

x
x i

i i
i

i i



 nn

 







i

i
i

i
i

dsx
x

x
x

x

x0

)( 

 nn

dsx
xds

d
x

x
x

xd
x

dsx
x

i
i

iii
i

i

i
i

i
i

i



























x

x

x

x

x

x

0
0

0

)(

)(









nnn

nn

by Eq.(2) and 00 x , we have

 




i

ii
i

i
i

xpx
x



nS

since

 



i

i
i

x
x

 SS
we have

i
i x
p





S

By the modified eikonal equation (9), we have

)(xnxpx
xs i

i
ii

i i







   nn

SS

If we substitute this back into the square modulus of the modified eikonal equation (9),

we obtain

)()()( 222 x




s
SS n (12)

It is Similar to the first quantization for quantum mechanics from analytical
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mechanics[3], let  be a wave function of photon, and assuming that the

relationship between  and S is

Sie

Then, we have

iii x
i

xix 









 



 


  lnS
(13)

substitute this back into Eq.(12), we obtain

0))(( *2*2 






 
 



i ii xx
 (13.1)

The triple integral over entire space of Eq.(13.1) is

0))(( *2*2 






  xd
xxi ii


 


 (13.2)

Compute the variation of Eq.(13.2) ,we have

0))((],)(,,,[ *2*2** 













   xx d
xx

dx
xx i ii

i
ii




 


  (13.3)

Therefor, the corresponding Euler-Lagrange equation system are

0
)(
















i

i

i

x
x 









0
)( *

* 















i

i

i

x
x 







 (14)

By Eq.(14) we obtain the time independent Schrödinger type equation of photon:

02
2

2
2 




 

 


i ix
 (15)

It’s similar to the wave equation in quantized unmodified geometrical optics[4]
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


 2

2

2
3

2

2
2

2

2
1

2

)( n
xxx













(15.1)

(here


2

0 is constant similar to  , 0 is wavelength of light in free space, and we

obtain the geometrical optics when 0 ). Moreover, the corresponding quantities





xp 




and 
0pnn


 ( 0p is momentum of photon in free space) both depend on

the momentum of photon. As we can see, Eq.(15.1) become Eq.(15) by defining


 n
 .

If we consider the hypothesis about the microstructure of light ray that described

in section 5, i.e. the motion of photon is restricted to the imaginary cylinder region,

called the light-cylinder ray, as shown in Figure 4, then all of the geometric quantities

that concerning light in this section, such as s and τ are quantities that used to

describe the light-cylinder ray, and for those quantities such as kp、 are used to

describe the photon in the light-cylinder ray. Therefor, the tangential unit vector of

light ray τ in Eq.(5) does not necessarily have to be parallel to k , it should have an

angle  that changed by changing the photon position, from 1τ we can rewritten

the Eq.(5) as follows

pp   τ

Where  cos is a parameter.

From the relation between the energy and the momentum of the photon

222 pcE  we obtain

2
2

2
2 E

c
 

substitute this back into Eq.(15), we obtain
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02
2

2
22    E

c
 (16)

If similar to the quantum mechanics that substituting E into the following

equation[3]

  E
t

iE 



 ˆ

where Ê is energy operator, then Eq.(16) can be rewritten as follows

0),(),( 2

2

2

2
2 




 t
tc

t xx  

It’s called the quantized wave equation of photon. This equation reduces to the classic

wave equation of light in vacuum for 1 ,i.e. τ parallel tok

0),(1),( 2

2

2
2 




 t
tc

t xx  

4. Path Integrals of Photon

Feynman’s path integrals[5] provided another form of quantization theory for particle,

which the Schrödinger wave equation can be deduced, moreover , the derivation of

Schrödinger wave equation does have many similarities to the theory of light; for

instance, in form, the action similar to the optical path; the formula

aaaaabbbb dtttKt xxxxx ),(),;,(),(  





Similar to the integral formula of Huygens principle. Those similarity may provide a

way to quantizing photon, i.e. the first quantization theory of photon can be obtained

by the similarity method of path integrals.

As shown in Figure 2, assuming that the

probability ),( abP to go from a point ax at the arc
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length of light-curve as to the point bx at the arc length of light-curve bs is

2
),(),( abKabP  

where ),( abK is the sum of contribution )]([ sx from each path of photon


btoafrompathsall
sabK

     over 
)]([),( x 

we also assuming that the contribution of a path has a phase proportional to the

modified eikonal )]([ sxS
)]([

const)]([
si

es
x

x
S


where )]([ sxS defined by the following

  b

a

b

a

dsndss
x

x

x

x
xxkxxx )]([),()]([ nS

We also can define the ),( abK by divide the interval which from a to b into

the N subintervals

11),1(),1()1,(),(
1 1

 


Nx x
dxdxaKiiKNbKabK

N


In this definition the kernel for the photon to go between two points separated by an

infinitesimal arc length of light-curve  is

)
2

,(
1

11

),1(
iiii xxxxi

eCiiK





 
 




n


which is correct to first order in  ,andC is a constant.

Here, we assuming that the wave function of photon ),( sx is a function of

position x and arc length of light-curve s , the wave function ),( bb sx and

),( aa sx represents the total amplitude in the point ),( bb sx and ),( aa sx ,

respectively; and the amplitude to go from a point a to a point b is represented by
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),;,( aabb ssK xx ; therefore, similarly we have

aaaaabbbb dsssKs xxxxx ),(),;,(),(   





We shall now consider the case of a photon moving in a material which the

general index of refraction is ),( xx n in one dimension, and the arc length of

light-curve is  ab ss , similarly we have

dysyeCsx
yxyxi

),(),(
)

2
,(

1





  










n



In this case

)
2

( yxnyxk 






n

we obtain

dysyeeCsx
yxniyxki

),(),(
)

2
()(1





  






  



by 
2

k we have

dysyeeCsx
yxniyxi

),(),(
)

2
()(2

1






  






  

due to the photon considered as the light ray in this case,  should be an infinitesimal

quantity, in the same way, xy  is an infinitesimal quantity; therefore, defining

 xy ,where  is a very small value, we obtain









 


 dsxeeCsx
xnii

),(),(
)

2
(2

1 




  

Assuming
n

  ~ ,where n is an integer, then )
2

( 



 xn can be replaced by

)(xn . Expanding the  on the left-hand side to first order in  and the right-hand

side tom th order in  , we obtain
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









 





  d

xm
sxxnieC

s
sx

n

m
m

mm
i

]
!

),([)](1[),(
1

2
1 

















 (17)

If we are taking the limit 0  、 ,we obtain







   dsxeCsx
i

),(),(
2

1




 (18)

but

0
2














 de
i

and ),( sx need not be all vanish, therefore, the lower limit and the upper limit of

the integration (18) should not be negative and positive infinite, respectively, but it

should have a certain boundary; assuming that the lower limit and the upper limit of

the integration (18) is d and d , respectively, then the Eq.(18) can be rewritten as

following







   dsxeCsx
d

d

i
),(),(

2
1



thus

dsindeC
d

d

i











 22

 


And Eq.(17) become











 





  d

xm
sxxnieC

s
sx

n

m
m
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d

d

i
]

!
),([)](1[),(
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2
1 
















 

 





















n

m

d

d

i
m

m

m

d
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n

m
m
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ii
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xniCsxxnisx

d
xm

exnisxexniC

1

2
1

1
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1

!
)](1[),()(),(

}
!

)](1[),()](1[{









































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d

d

m

r r

rm
rid

d
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m
ede


 












0 1

22

)2()!(
)1(





 











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we have

),()(),(),( sxxnisx
s

sx 


 









 (19)

 



 
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

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dsin 1 0 1

2

)2()!(
)1()](1[2










 










considering the special case of 2n , we have
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e
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e

x
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
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
























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


 

)
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1
)(2
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1(

)()!(
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2

2

2

2

2

1 0
1













since  is an infinitesimal quantity， so 
2

k is an infinitely large quantity, we

assuming that d and k are infinity of the same order, if we omit the higher order term

of k , we obtain

 














2

1 0
1)()!(

)1(
m
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m

r
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m
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ikrm
e
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 


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d
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d
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k
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x
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k
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x
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















2

2

2

2
 



2

222
x

sinkd
k
d

x
coskd

k
di








  

Therefore, Eq.(19) rewritten as follows

),()(),(),( sxxnisx
s

sx 


 











)2)]((1[
2 2

22

x
sinkd

k
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x
coskd

k
dixni

sinkd
k








 






i.e.
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)
2
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)](1[

),()( 2
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x
d

x
idcotkd

xni

sxxni
s 









 






 






 


or

)
2

)](([),()( 2

22

x
d

x
idcotkdxnisxxn

s
i










 




 



 

Assuming that the value of  is greater than  , we obtain

2

22

2
),(

)( x
d

x
idcotkdsx

sxn
i










 


 




as we know, cotkd is an infinitely for  2,1,0mmkd ， , in order that the

equation can be used to describe all wave lengths of photon, we assuming

that 0cotkd ,i.e.




 2,1,0
2
21 mmkd ，

therefore, we obtain

2

2

2

22

8
)21(),(

)( xk
msx

sxn
i






 


 



This is the wave equation of photon in one dimension by using the similarity method

of path integrals. Corresponding equation in three dimension can be worked out in the

same way

),(
8

)21(),(),(
)(

2
2

22

s
k
mss

sn
i xxx
x   





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(20)

In quantum mechanics, we have the quantum continuity equation and the concept

of the local conservation of probability, similarity, the quantum continuity equation of

photon can be deduced by the following: from Eq.(20) we have

]
8

)21()[( 2*
2

22
**




 

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
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
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8
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*

*
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

 


 






k
mni

s
x


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add the two expressions, we obtain

][
8

)()21( 2**2
2

22
*

*







 



 











k
nmi

ss 
x

i.e.

][
8

)()21()( **
2

22
*

  






k
nmi

s 
x

(21)

Defining the probability density of photon by ),(),( * ss xx    and the

probability current density of photon by J

][
8

)21( **
2

22

 





k
mi


J (22)

Then Eq.(21) is the quantum continuity equation of photon

 Jx 

 )(n
s

5. Light-ization of Photon

Now we are discussing the microstructure of light ray. First, we are discussing the

microstructure of straight-light ray; then generalize to the curly-light ray. Suppose that

a light ray traveling space from a point A to a point B in straight lines, we model light

as beams of light, and assuming that the beam as cylinder with diameter ofD , and the

cylinder is composed of a large number of photons. Now we consider the motion of

one of photons in the cylinder: assuming that the photon has certain momentum p ,

according to the Heisenberg uncertainty relation, the uncertainty in position

is p
x

2


 , due to the motion of photon from a cross section of cylinder A to a

cross section of cylinder B is restricted to the inside of the beam, we can assuming
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that the motion of photon is restricted to the cylinder with diameter of p
kl ~ ,

which included in the beam, where k is unknown quantity; due to xlD  , the

range of values of k should be 2
1

 kDp
 . Similarly, the motion of another photon

is restricted to another similarly

cylinder. The cylinder also called the

light-cylinder, hence the beam of light

is composed of a large number of

light-cylinders, as shown in Figure 3.

Now we generalize the hypothesis of microstructure of beam to the situation that

the light traveling in inhomogeneous medium, in this case the beam is a curve.

Suppose that a light ray traveling inhomogeneous medium from a point A to a pointB ,

in a similar way the light beam composed of a large number of curved light-cylinders ,

and the curved light-cylinders parallel to the curved beam. Here we define the curved

light-cylinder as the imaginary curved cylinder region D that include all possible

paths of photon from A to B ; and define the

curved light beam as the imaginary space

region that composed of all the curved

light-cylinders of photons in the beam, i.e. the

macroscopic light ray, as shown in Figure 4

Now we consider the situation that the photon moving in one of curved

light-cylinders, at this point, because the motion regions of photon are the regions of

curved light-cylinder D , by defining the wave function of photon as ),( sx , we

have the probability density of finding the photon in the infinitesimal volume 0x








 D

D
0

0
2

0
0

0
)()(
x
xxx

，

，



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This condition can be considered to be the characteristics which the wave function of

photon ),( sx should be have.

Since we have supposed the curved light-cylinders parallel to the curved beam,

the tangential unit vector of curved light-cylinder is same as the tangential unit vector

of light ray ds
dx

τ , moreover, τ parallel to the probability current density of photon

J , as demonstrated by the following:

In section 3, we assumed that the wave function of photon had the form

Sie , now we substitute this into the probability current density of photon

J , i.e. Eq(22), we obtain
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)21(
2

22 SSSS 


iiii

eeee
k
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
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S
 22

22

4
)21(
k
m




then substituting the modified eikonal equation (9) into the above equation, we obtain

τ)(
4

)21(
22

22

sk
m








S

n



J

As can be seen from the above equation, the tangential unit vector of curved

light-cylinder τ parallel to the probability current density of photon J , and J and

τ point in the same direction. Since 1τ , we have





J
J

τ

Since the tangential unit vector of curved light-cylinder τ belong to geometrical

optics,and the probability current density of photon J belong to quantization theory,

the above equation which is to reflect the relationship between the tangential unit
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vector τ and the probability current density J provide the possibility of

transforming the quantization theory of photon into the geometrical theory of light.
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