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Abstract: Geometrical optics has high similarity with classical particle mechanics . After first
quantization program classical particle mechanics can obtain non-relativistic quantum mechanics
that suitable for micro , but quantum mechanics does not describe the photon that its static mass is
zero . So whether there is a kind of "quantization" approach for geometrical optics , by which
non-relativistic quantum mechanics that can be used to describe the photon can be obtained . It’s
quantum mechanics of photon similar to the Schrodinger wave mechanics under the neglection of
the formation and annihilation of photon . In this paper , several methods that can be used to find
the first quantization theory of photon are given .
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1. Introduction

Throughout the quantum world, the theory of micro particle with mass has
experienced a development process from classical mechanics to quantum mechanics,
and then experienced a development process from classical field theory to quantum
field theory, but for massless photon, lack of the first quantization process from
"classical optics" to "quantum optics", just second quantization process from
electromagnetic field to quantum field directly. The concept of light quantum was first
proposed by Einstein in 1905. By a comparative analysis of the similarity between
geometrical optics and classical particle mechanics, de Broglie generalize the concept
of light quantum into material particles, and puts forward the concept of "matter
waves'. After that, Schrodinger found out a wave equation for matter waves, thus
established the wave mechanics, and promote the development of quantum mechanics,
but quantum mechanics only applicable to the particle that its static mass is not zero,
and does not describe the photon that its static mass is zero. The establishment of
quantum mechanics can be said to be building on the classical particle mechanics, on
the other hand, classical particle mechanics and geometrical optics are similar in
many ways. Comprehensive above description, it is indeed possible to established a
quantum mechanics or first quantization theory of photon that similar to the
Schrédinger wave mechanics under the neglection of the formation and annihilation

of photon.

2. Modified Geometrical Optics

In geometrical optics, the optical path length along a curve C’ from A to B is defined to

be the line integral

B
S, =Ln(xl,x2,x3)ds (1)



Here n(x1 s Xy x3) is the index of refraction of the media, dS is a line element. One
sees from the optical path length that the integrand, i.e. the index of refraction of the
media n(xl, Xy, x3) is a function of position X . But we all know that for different

wavelengths of light, the index of refraction of the media have different values. In

electromagnetism 7 is directly related to the electric and magnetic parameterrs

& and U relates optics to electricity and magnetism('l:

iy

Soly

Here &, and £, are the permittivity and the permeability of the vacuum, respectively.

& and U are the permittivity and the permeability of the material, respectively. Due

to & and H are may depend on frequency of light, namely & =¢& (@)

and { = ,U((O) , and the frequency @ is associated with the wavelength A, so the

index of refraction of the material are also depend on wavelength. In conclusion, the
index of refraction of the material are depend on not only the material itself but also
the light itself.

This forces us to correct for difinition of optical path length of formula (1). In

consideration of the analytical mechanics, the Lagrangian function L of action

S[X?(l‘)]:_[2 L(x,x,)dt is a function of X and X . In analogy to action, we can
1

redefine the optical path length as follows
B .
S[x(s)] = Lm(x,x)ds

Here 71(X, X) is a new definition of Lagrangian function of geometrical optics,

dx

ds

called the general index of refraction of material. X defined as X =

Now therefore, Fermat’s principle rewritten as follows



5S[x(s)] = & jjm(x,x)ds -0

then reduces to the Euler-Lagrange equation

on d oOm
- — = @
ox, ds 0Ox,
Define the generaized momentum of modified geometrical optics as follows
on
Pi= .
© 00X,
written in vector form as
p=Vvn 3)

From Einstein’s hypothesis of photon, the momentum of the photon follows as

p=hk

2
Here K (‘k ‘ = 7) is the wave vector and A is the wavelength. Substituting this into
Eq.(3), we obtain
Vin=hk

Assuming that K is not an explicit function of X , we obtain

n(x,x) =Y hkx,—n(x)=hk-x-n(x) @
Let 5 (x ) be a function of X defined by the equation
E(x)=rhk-x (5)
then given as
n(x,x)=¢(x)—n(x) (6)

In analytical mechanics the Lagrangian L under the conservative field V' (x)

has the form L(x,x)=T(x)—V(x) ,where T(x) is kinetic energy of system. This

3



shows that the Lagrangian L depend on the system itself 7(x) and the environment

V(x) . In analogy to Lagrangian L |, n(Xx) is a function that depend on the
environment, i.e.material itself, it’s similar to the index of refraction of material in
unmodified geometrical optics, and E(x)isa physical quantity that used to describe
the characteristics of photon itself, it’s similar to the kinetic energy of particle. If

take into account the photons with different wavelength, then & is a function
of K and X , namely 5 = f ()l?,k ) , therefore the general index of refraction of

material 77 is a function of K, X and X, namely 77 = W(X, X, k) , this is also a
good illustration for why the index of refraction of material depend on the wavelength
of light. We're only considering the situation that the light wave or photon has certain
wavelength here. i.e.only considering the situation 77 = n(x,x).
Substituting Eq.(6) into Eq.(2), we obtain
d 9&(x)  on(x)
ds 0x,  ox,

1

written in vector form as

d

S

VE(x) =-Vn(x)

It is similar to eikonal SO(X) , define the modified eikonal S[X(S),S] as

follows

S[x(s),s]= j " n(x, X)ds

Xo

As shown in Figure 1, it’s analogy to unmodified

geometrical optics/?, as x moves a distance dx

pX

away from Pto P, the change in S[x(s)]is 0 %, Figure 1

dS = n|P'B|=n(dx - t) @



dx

where T="""is a unit vector at P tangent to the original ray F,P . Since the modified

ds
eikonal S[X(5),S] is a function of X and § , a total differential of S[X(s),s] is

then given as

oS oS oS
dsS ,S]= ) —dx. +—ds=VS-dx+—d
[x(s),5] Z o i P ®)
Comparison of Egs.(7) and (8) finally given as
m(dx-‘r)ZVS-dx+§dS (8.1)
Os
dx
since T =E:>dx=ds‘r:>dx-‘r =dst-T=ds Eq.(8.1) can be rewritten as
m-dx:VS-dx+§‘r-dx
0s

thus

m=VS+ §17

os
i.e.
oS
VS=(n—-—)t
Bs 9

The absolute value gives a result called as the modified eikonal equation

vS|=n-2

Os

Eq.(9) also can be reduced from the modified eikonal S[x(s),s] by derivation

oS dx, oS d _d px N :
Zi: o ds + % gS[x(s),s] = gLO n(x,x)ds = n(x, x)

:>VS'T+§=W
Os

:VS-dx:(m—E)ds
Os



:>VS~dx=(m—88—S)‘c'dx
N

=VS= (m—ﬁ)‘r
os

Here, consider first a total differential of general function of Xand X, namely g(x,x),

we have
dg(x,x) = z a—ga’x. + Z a—ga?x
’ ~ox, ' Fox,
=Vg-dx+Vg-dx
used
o _dv_ddc_dx
ds’ ds dsds ds
we have
dg S
—=Vg-1+Vg-t
s g g 9.1)
Substituting Eq.(9) into Eq.(9.1), we have
dg 1 S
(n—-—-)
0s
oS
We now make a special choice of g ,namely, that & = 717; = g —ET ; , then Eq.(9.2)
gives
1 .
ey L gsy@S S\ @S _aS |
ds oS ox; Os ox, Os
(n——-)
os
_ 1 VS-(aVS—aVSTi—QVTI.)#'P(@VS—@VSTI.—§Vq)
(n— as ) [ s os Ox, os os
Oos

from



VS[x(s),s]= Z%S[x(s),s] =0,%-Vz,=7,Vr,=Vi, =0

we have
i(mrl.) :—1 (VS- ovVS -7,VS- 6VS)_§T.i
ds oS Ox. Os Os
(- 87) ’
S
1 o(VS)>  o(VS)’. aS.
= 2S ( P — T P )— P 7 (9.3)
S

Substituting Eq.(9) into Eq.(9.3), we have

1 0

(
2n-25)
0os

E(mz—i) =

oS ., 0 oS.,. OS .

(o 8S) Ti@s(m GS)) GSTi

=@ Lw-2)- s
Ox, Os Os Os Os

Written in vector form as

d oS 0 oS oS
“ V(=2 (=2 = 22 4
ds (orr) (& Os ) [8s (& Os i Os '

This is the partial differential equation satisfied by tangential unit vector of light ray T,

called the general light ray equation.

oS.dtr _dm O oS oS
+—)—+[—+—(@m—)T-V(n—)=0
(7 8S)ds [a’s Os ( Os Jr=vin és) (19)

When W(x, x) =1I1is a constant, we have

szaﬁﬂzo
ds

S=[" m(x,%)ds =n[ ds=mn(s—s,)

oS 0O
g :a[”’(s_so)] =n

Substituting those equations into Eq.(10), lead to



22 -0
" (10.1)

Equation (10.1) then give for a straight ray equation
T=as+b
where @, b are constant vectors. This shows that the light travels through material in

a straight line when the general index of refraction of material is constant.

3. Quantization of Modified Geometrical Optics

The definition of Hamiltonian in modified geometrical optics can’t imitate the
definition of Hamiltonian in analytical mechanics because of this is unreasonable, as

shown below, if we defining the Hamiltonian in modified geometrical optics as

follows
H(x, p)= Zpixi —1(x, x) (11)
i
where X; = % NS S% , after substituting Eqgs.(4) and (6) into Eq.(11) we
have

H(x, p)=p-x—hk-x+n(x)=n(x)

It is shown that Hamiltonian F{ only depend on the function of position that reflect
the environment, but the Hamiltonian depend on both the system itself and the
environment, in addition, it represents the energy of system in analytical mechanics.
But H can’t represents the energy of system. Therefore, the Hamiltonian in modified

geometrical optics can’t be defined by Eq.(11).

Compute the variation of the modified eikonal S[X(S),S] , we obtain

5SS =6 m(x,x)ds = | " Sn(x, x)ds

Xo



=], (ZZ Z—a}c )ds

i

—ZL (—§x +—5x )ds

on
—ZL (—iéxder@—d@c)

1

8m on d Om
_Z ZL G a5 o)

by Eq.(2) and X, = 0 , we have

on
WL S ape
58 = Z —5x

we have

oS

pi_a—)c,.

By the modified eikonal equation (9), we have

g—zﬂ Z—x =n— ) pX; =-n(x)

i

If we substitute this back into the square modulus of the modified eikonal equation (9),

we obtain

2 oS ., 2,
(VS) Z(W—g) =& (x) (12)

It is Similar to the first quantization for quantum mechanics from analytical

9



mechanicsPl, let ¥, be a wave function of photon, and assuming that the

relationship between ¥/, and Sis

— ,h
/4 y = e
Then, we have

oS _E@lnl/ly __ﬂ 8%
oy, @ oy, o .

1 1

substitute this back into Eq.(12), we obtain
oy, Oy N
2 * 2
" Z‘( o oy, ) oV =0 (13.1)

The triple integral over entire space of Eq.(13.1) is

J.” Z( %)( %) _fz%%*d":o (13.2)

Compute the variation of Eq.(13.2) ,we have
0 oy, oy, . )
o[ ety l//< s ke=of [ SO Sy de=003

Therefor, the corresponding Euler-Lagrange equation system are

I
oy, i@xl & ‘//y)

- 14

8% f f@(ﬂ)* .
ax,

1

By Eq.(14) we obtain the time independent Schrodinger type equation of photon:

0’y
h? L+
Z O 2 g’ v, = (15)

i

It’s similar to the wave equation in quantized unmodified geometrical optics!*!

10



82 82 82 2
ﬁx 5x ax W =— Kg (15.1)

(

(here x =2— is constant similar to 71 , /7»0 is wavelength of light in free space, and we
V4

obtain the geometrical optics when K —> 0 ). Moreover, the corresponding quantities

S_px n  np,

= and P = 7 ( Py is momentum of photon in free space) both depend on

h h

the momentum of photon. As we can see, Eq.(15.1) become Eq.(15) by defining

nh
K=—

If we consider the hypothesis about the microstructure of light ray that described
in section 5, i.e. the motion of photon is restricted to the imaginary cylinder region,

called the light-cylinder ray, as shown in Figure 4, then all of the geometric quantities

that concerning light in this section, such as § and T are quantities that used to
describe the light-cylinder ray, and for those quantities such as p. Kk are used to
describe the photon in the light-cylinder ray. Therefor, the tangential unit vector of

light ray T in Eq.(5) does not necessarily have to be parallel to K , it should have an

angle 0 that changed by changing the photon position, from ‘T‘ = 1 we can rewritten

the Eq.(5) as follows
&=p-t=9p|
Where ¢ = cos 0 isa parameter.
From the relation between the energy and the momentum of the photon
E* = Czp2 we obtain
2

2 2
4 :c_ZE

substitute this back into Eq.(15), we obtain

11



2

G
hzvzl//y-i-c—zEzl//], =0 (16)

If similar to the quantum mechanics that substituting Ey , into the following

equationl!

., O
EWyZZhEl//yZEl//}/

where E is energy operator, then Eq.(16) can be rewritten as follows
2 2

g
Vi (x,t)———w (x,t)=0
y N c? 0%t >
It’s called the quantized wave equation of photon. This equation reduces to the classic

wave equation of light in vacuum for d=1 Ji.e. T parallel to k

2

i 1o
\4 Wy(xﬁt)_c_zﬁl//y(xat): 0

4. Path Integrals of Photon

Feynman’s path integrals®! provided another form of quantization theory for particle,
which the Schrodinger wave equation can be deduced, moreover , the derivation of
Schrédinger wave equation does have many similarities to the theory of light; for

instance, in form, the action similar to the optical path; the formula

v(x,,t,)= J._Oo K(x,,t,;x, ,t Ww(x,,t, )dx,

Similar to the integral formula of Huygens principle. Those similarity may provide a
way to quantizing photon, i.e. the first quantization theory of photon can be obtained
by the similarity method of path integrals. Light-Curve

As shown in Figure 2, assuming that the

probability Py(b,a) to go from a point X, at the arc
Figure 2

12



length of light-curve §,, to the point X, at the arc length of light-curve S, is
2
P,(b,a)=|K (b,a)

where K y (b, Cl) is the sum of contribution ¢7 [x (S )] from each path of photon

K, (b,a)= 2.8, [x(5)]

over all paths from atob
we also assuming that the contribution of a path has a phase proportional to the

modified eikonal S[Xx(s)]

L S[x(s)]
@,[x(s)] = conste”

where S[X(S)] defined by the following
S[x()]= [ " n(x, X)ds = | “hk - % —n(x)]ds

We also can define the K y (b, Cl) by divide the interval which from @ to b into

the N subintervals
K (ha)= j j K (b.N=1)-K (i +10) K, (La)d ~~dD

In this definition the kernel for the photon to go between two points separated by an

infinitesimal arc length of light-curve 7, is

i X1 —X; X q+X;
Zr F]( i+l t+12 i

)
. . 1 h7 7,
K (i+1,i)=C"e

>

which is correct to first order in 7, ,and C is a constant.

Here, we assuming that the wave function of photon ¥ 7(x, S ) is a function of
position X and arc length of light-curve § , the wave function ¥, (xb,Sb) and
l//y(xa,sa) represents the total amplitude in the point (xb,Sb) and (xa,Sa) ,

respectively; and the amplitude to go from a point @ to a point b is represented by

13



K;, (xb 58Xy S8, ) ; therefore, similarly we have

V(5,55 = | K (3,,5,X,5, W, (x5, )dbx,
We shall now consider the case of a photon moving in a material which the
general index of refraction is W(X,X) in one dimension, and the arc length of

light-curve is §, =S, + 7, similarly we have

xX—=y X+y

v,(xs+7,)=C"[ " 7 7y (ns)dy

In this case

— +
n= k=L (=2
T 2
4
we obtain
a1 i.}*zk(x—y) —iz'yn(x-'——y)
v, (xs+7,)=C [ e e T2y (y,5)dy
27
byk = 7we have
27 i x+y
w i—(x-y) -—r,n(=—>)
v, (xs+7)=C" [ e " e 7Ty (v,s)dy

due to the photon considered as the light ray in this case, 4 should be an infinitesimal

quantity, in the same way, Y —X is an infinitesimal quantity; therefore, defining

Y =X+1], where7], is a very small value, we obtain

— n(x+77—7)

2r i
_ A T
v, (x,s+7,)=C Loe e v, (x+n,,s)dn,
o, - 7,
Assuming 7, ~ 7], ,where 7 is an integer, then 7. yn(x +7) can be replaced by

Tyn(X) . Expanding the ¥/, on the left-hand side to first order in 7, and the right-hand

side to M th order in77, , we obtain

14



an "o
=C'[e [1——rn(x)Is//7(xs)+Z % ldn, a7

m=1 m'

Yy

If we are taking the limitZ,~ 77, —> 0 ,we obtain

27
IR el e/
v, (68)=C"[ e * 7y, (x,8)dn, (18)

but

Ioo eﬂznﬂ/ dn,=0

. 7

and ¥, (xa S) need not be all vanish, therefore, the lower limit and the upper limit of

the integration (18) should not be negative and positive infinite, respectively, but it

should have a certain boundary; assuming that the lower limit and the upper limit of

the integration (18) is —d and +d , respectively, then the Eq.(18) can be rewritten as

following
-1 d _i27ﬁ77,v
v, (,)=C"[ e * "y, (xs)dn,
thus
[ gy o 2T
C—Lje d777 ﬂsm P d

And Eq.(17) become
Gorer, = L Ty, 19+ 3

g Os h’ 4 “m ox"

. 2 m m
N i s B o _t AN/
=C J-_d{[l hryn(x)]e l//y(x s)+[1 rn(x)] ; —— ydn,
aml/ly d 777m _i27”'7y

=y, (x,5)— T (), (x,5)+C [1——2’ n(x)]Z—I ——e dmn,

X"

since

d L, i —i==1, p mn
[nre " dn,=e 2" 3 (1) T

15



we have

oy, i
Wy ¥ " - W;/ ('x7 S) _%Tyn(x)vly (xﬁ S) (19)
U C— [1 4 T n@ﬂi_@’"y@ e_%r% i(—l)r T, ‘d
Ve m —d
ﬂsinzjd htooA =0 (m—r)!(—iz/;[)’“

considering the special case of 7 =2, we have

>k

m=l1

m m-r

7 _lk77 N r Uy d

7> (-1
Zo ) (m—r)(=ik)" -

i_ 1 ) ‘d +62(//7 e—ikﬂy( 777 _ 77;/ 1 ) ‘d
—d 2 .77\3 _
ox —2ik (-ik)’ (zk)
2r

since A is an infinitesimal quantity, so k=—

A

0 ‘
= ﬁ e_lkny ( 5
o —ik (k)

is an infinitely large quantity, we

assuming that d and K are infinity of the same order, if we omit the higher order term

ofk , we obtain

m—r

. aml/ly ik, ¢ 1Y 1, d
Z axm e Z( 1) (m_r)!(_l-k)rH ‘—d

m=l1 r=0

61//7 e—ikryyﬂ ‘d e a l//;/ —zkny 777 ‘d

ox k™o 2k '
.2 oy, d* . o yly
Therefore, Eq.(19) rewritten as follows
oy, i
Wy ¥ S7 =l//7(x,s)—%2'yn(X)g//y(x,s)
k oy, d’ Oy

S § LR l—coskd L +— sinkd—F

2 kd[ h’ N ox k ox’ )
1.e.
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i
oy, ; [1-—7,n(x)] P '//7 pe 82%

h
=——n(x)y, (x,8)+——(idcotkd
% -7 (O, (x,5) - ( P )
or
oy in oy, d*dy
ih—L =n(x)y (x,8)+[—+n(x)]|@dcothkd—L +———
2 (O, (x,5) [ry ()] o o )
Assuming that the value of 7, is greater than i, we obtain
h O 0 20
R Yy =y (x,s)+idcotkd N @ Wzy
n(x) Os 5‘x ox
as we know, cotkd is an infinitely for kd =mzm, m=0,1,2-----. , in order that the

equation can be used to describe all wave lengths of photon, we assuming

that cotkd=0 j.e.

therefore, we obtain
_ih_%y, (1+2m)° 7 Oy,
n(x) Os 8k’ o’

This is the wave equation of photon in one dimension by using the similarity method

=y, (x,9)+

of path integrals. Corresponding equation in three dimension can be worked out in the

same way

ih 0O (1+2m)27z'2
(%) 35 — ¥, (x,5)=y,(x,5)+ —8k

In quantum mechanics, we have the quantum continuity equation and the concept

v, (x,s) (20)

of the local conservation of probability, similarity, the quantum continuity equation of

photon can be deduced by the following: from Eq.(20) we have

Vy o =——n(x)[l//y v, T%V v,]
o, _ 14+2m :
0 Loty 2y

17



add the two expressions, we obtain

8%* <Oy, i(1+2m)’ °n(x)
Vi TV T T s

2, 72
v, Vv, v, Vy,]
ie.

0 . i(1+2m)’ 7°n(x) x N
&(W/fy )=-— e Vily, Vy, -y Vy, | @1)

Defining the probability density of photon by O, =¥ y (x , S )l// y (x S ) and the
probability current density of photon by J y

_ i+ 2m)’ 7’
! 8tk

Then Eq.(21) is the quantum continuity equation of photon

v, Vv, -y V] (22)

0
apy =n(x)V-J,

5. Light-ization of Photon

Now we are discussing the microstructure of light ray. First, we are discussing the

microstructure of straight-light ray; then generalize to the curly-light ray. Suppose that
a light ray traveling space from a point 4 to a point B in straight lines, we model light
as beams of light, and assuming that the beam as cylinder with diameter of D, and the

cylinder is composed of a large number of photons. Now we consider the motion of

one of photons in the cylinder: assuming that the photon has certain momentum p ,

according to the Heisenberg uncertainty relation, the uncertainty in position

h

is Ax 22— , due to the motion of photon from a cross section of cylinder A to a

2p

cross section of cylinder B is restricted to the inside of the beam, we can assuming

18



h
that the motion of photon is restricted to the cylinder with diameter of [~k ;

which included in the beam, where K is unknown quantity; due to D>1>Ax , the

1

P
range of values of k should be %D k> 5 . Similarly, the motion of another photon

_ is restricted to another similarly
/- ' The trajectory Light-

,\ p  ofphoton  photon oy jinger tfeam cylinder. The cylinder also called the

A fe=ac=—a—ws— ==l
(X ..zﬂvll'-*\\l“ oo~ ~—x¥) iB

'=._;"=._;F‘g“re is composed of a large number of

light-cylinder, hence the beam of light

light-cylinders, as shown in Figure 3.
Now we generalize the hypothesis of microstructure of beam to the situation that
the light traveling in inhomogeneous medium, in this case the beam is a curve.
Suppose that a light ray traveling inhomogeneous medium from a point 4 to a point B,
in a similar way the light beam composed of a large number of curved light-cylinders ,

and the curved light-cylinders parallel to the curved beam. Here we define the curved

light-cylinder as the imaginary curved cylinder region O that include all possible

paths of photon from A to B ; and define the Curved

Curved  jightcylinder
. . . Light beam
curved light beam as the imaginary space

region that composed of all the curved Photon

The trajectory of

light-cylinders of photons in the beam, i.e. the photon Figure 4

macroscopic light ray, as shown in Figure 4
Now we consider the situation that the photon moving in one of curved

light-cylinders, at this point, because the motion regions of photon are the regions of

curved light-cylinder D , by defining the wave function of photon as v, (x,5), we

have the probability density of finding the photon in the infinitesimal volume X,

2
‘l//y(x()) ’ ‘xOE'D

p,(x,) =
7 0, x, 2D

19



This condition can be considered to be the characteristics which the wave function of
photon¥/, (x 58 ) should be have.

Since we have supposed the curved light-cylinders parallel to the curved beam,

the tangential unit vector of curved light-cylinder is same as the tangential unit vector

dx
of light ray T=
1ght ray s

, moreover, T parallel to the probability current density of photon

J » » as demonstrated by the following:
In section 3, we assumed that the wave function of photon had the form

LS
— h
l//y =€ now we substitute this into the probability current density of photon

J »» 1.e. Eq(22), we obtain

_ i+ 2m)’ 7’

J, = T [e_%SVe%'S —e%SVe_%‘S]
_(1+2my’ 7
an’k’

then substituting the modified eikonal equation (9) into the above equation, we obtain

(+2m)* 7* oS
L= e T

As can be seen from the above equation, the tangential unit vector of curved

light-cylinder T parallel to the probability current density of photon J »»and J » and

T point in the same direction. Since ‘T‘ =1, we have

J
T=r=
7
Since the tangential unit vector of curved light-cylinder T belong to geometrical

optics,and the probability current density of photon J » belong to quantization theory,

the above equation which is to reflect the relationship between the tangential unit

20



vector T and the probability current density J » provide the possibility of

transforming the quantization theory of photon into the geometrical theory of light.
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