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The current model is far from complete. 

It will never reach completion. 

The human brain is not capable to catch the full extent of the complexity 

of physical reality. 
  



Preface 

I started the Hilbert Book Model project during my 

studies in physics in the sixties on the Technical Univer-

sity of Eindhoven (TUE). 

In the first two years the lectures concerned only classi-

cal physics. In the third year quantum physics was intro-

duced. I had great difficulty in understanding why the 

methodology of doing physics changed drastically. So I 

went to the teacher, which was an old nearly retired and 

very wise professor and asked him: 

"Why is quantum mechanics done so differently from 

classical mechanics?".  

His answer was short. He stated": 

"The reason is that quantum mechanics is based on the 

superposition principle".  

 

I quickly realized that this was part of the methodology 

and could not be the reason of the difference in method-

ology1. So I went back and told him my concern. He 

told me that he could not give me a better answer and if 

I wanted a useful answer I should research that myself. 

So, I first went to the library, but the university was 

quite new and its library only contained rather old sec-

                                                 
1 Superposition of particles is an indispensable ingredi-

ent in the comprehension of the formation of compo-

sites. 



ond hand books, which they got as a gift from other in-

stitutions. Next I went to the city’s book shops. I finally 

found a booklet from P. Mittelstaedt: (Philosophische 

Probleme der modernen Physik,  

BI Hochschultaschenbücher, Band 50, 1963) that con-

tained a chapter on quantum logic.  

It learned me that small particles appear to obey a kind 

of logic that differs from classical logic. As a result their 

dynamic behavior differs from the behavior of larger 

objects, which obey classical logic. I concluded that this 

produced the answer that I was looking for. 

I searched further and encountered papers from Garret 

Birkhoff and John von Neumann that explained the cor-

respondence between quantum logic and separable Hil-

bert spaces. That produced a more conclusive answer to 

my question.  

Retrospectively my old professor was partly right. On 

its own, quantum logic does not provide the answer. The 

superposition principle also plays a crucial role. 

 

The lectures also told me that observables were related 

to eigenvalues of Hermitian operators. These eigenval-

ues are real numbers. However, it was clearly visible 

that nature has a 3+1D structure. So I tried to solve that 

discrepancy as well. After a few days of puzzling I dis-

covered a number system that had this 3+1D structure 

and I called them compound numbers. I went back to 



my professor and asked him why such compound num-

bers were not used in physics. Again he could not give a 

reasonable answer.  

When I asked the same question to a much younger as-

sistant professor he told me that these numbers were dis-

covered more than a century earlier by William Rowan 

Hamilton when he was walking with his wife over a 

bridge in Dublin. He was so glad about his discovery 

that he carved the formula that treats the multiplication 

of these numbers into the sidewall of the bridge. The in-

scription has faded away, but it is now molded in bronze 

and fixed to the same wall by Hamilton’s students.  

 
 



The numbers are known as quaternions. So, I went to 

the library and searched for papers on quaternions.  

In those years Constantin Piron wrote his papers on the 

number systems that can be used by Hilbert spaces. Pi-

ron discovered that only members of suitable division 

rings can be used as coefficients in linear combinations 

of Hilbert vectors in separable Hilbert spaces. Later this 

was affirmed more thoroughly by Maria Pia Solèr.  

Division rings comprise real numbers, complex numbers 

and quaternions. That information completed my insight 

in this subject.  

I finalized my physics study with an internal paper on 

quaternionic Hilbert spaces.  

 

The university was specialized in applied physics and 

not in theoretical physics. This did not stimulate me to 

proceed with the subject. Next, I went into a career in 

industry where I used my knowledge of physics in help-

ing to analyze intensified imaging and in assisting with 

the design of night vision equipment and X-ray image 

intensifiers. That put me with my nose on the notion of 

quanta.  

The output window of image intensifiers did not show 

impinging radiation waves. Instead they showed clouds 

of impinging quanta. In those times I had not much op-

portunity to deliberate on that fact. However, after my 

retirement I started to rethink the matter. That was the 

instant that the Hilbert Book Model was revived. 



 

In 2009 at the age of 68 I restarted the Hilbert Book 

Model project. The HBM is a very simple model of 

physics that is completely deduced and only covers the 

lowest levels of fundamental physics. For that reason it 

is strictly based on a solid foundation. For that founda-

tion I choose the lattice structure of traditional quantum 

logic. The lattice structure of this logic system is iso-

morphic to the lattice structure of the set of closed sub-

spaces of a separable Hilbert space. 

Since neither the logic system nor the Hilbert space can 

represent dynamics, a full dynamic model is based on an 

ordered sequence of such static sub-models. This se-

quence shows great similarity with the set of pages of a 

book. This has led to the name “Hilbert Book Model” 

 

Thus, in a few words: The Hilbert Book Model tries to 

explain the existence of quanta. It does that by starting 

from traditional quantum logic. 

 

During deliberations in discussion groups on the internet 

I encountered great resistance against largely or com-

pletely deduced theories and models of physics. The 

Hilbert Book Model is completely deduced.  

For that reason I reformatted the project in the form of a 

game. The game starts at well selected first principles. 

From this foundation a model is generated. That model 



is not presented as a model of physics. However, the tar-

get of the game is a model that shows many features and 

phenomena that resemble features and phenomena that 

we know from our knowledge that we gathered by ob-

serving physical reality. When that target is reached, 

then it can be discussed whether the produced model 

represents a useful theory of physics. 

 

You will find the achieved model to be in many aspects 

controversial and non-conventional. That is why the au-

thor took great efforts in order to keep the model self-

consistent. 

 

Due to a series of new concepts that are introduced by 

the HBM and the fact that they lend themselves for a ra-

ther pictorial description, will physicists that support 

conventional physics experience the HBM as a kind of 

Alice’s wonderland. In this manuscript, all of these new 

concepts will be introduced in a cautious and trustwor-

thy manner. The methodology will directly or indirectly 

base on the selected foundation. 

 

Some readers have criticized me for lack of formulas, 

because one formula can say more than a thousand 

words. Restating formulas that you can find in any 

physical textbook is not the purpose of this book. On the 

other hand this manuscript contains formulas that you 

will not find elsewhere. An important example is the 



coupling equation. Another example is the definition of 

the blurred allocation function. For those who are inter-

ested in related formulas the e-paper Q-FORMULÆ 

contains formulas that are difficult to find in literature. 

 

The main purpose of the Hilbert Book Model is to get 

insight into the possibilities of the physical toolkit.  

 

Each time that I read this book I encounter small and 

sometimes big inconsistencies. When I see them I repair 

them. Due to my sloppy nature there must still be a lot 

of them left. I apologize to the reader for this inconven-

ience. I do not consider myself a good and precise math-

ematician and I consider myself as a horrible physicist. 

The Great Creator must be a lot better. For a better man-

uscript you better invite Him. He constructed this struc-

ture. 

 



 
  



 

 

 

If a mathematical theory is self-consistent, then there is 

a realistic chance that nature somewhere somehow uses 

it. 

 

If that theory is compatible with traditional quantum 

logic, then there is a much larger chance that nature 

will use it. 

 

This drives my intuition. 

 

 

 
This manuscript does not offer another physical reality. 

The Hilbert Book Model offers an alternative view on physi-

cal reality. 

 
That view differs from the view that is offered by  

contemporary physics. 
 

In this way the manuscript can offer new insights. 

 



 
 

HvL  

No model of physics can change physical reality. 
Any view on physical reality involves a model. 

Drastically different models can still be consistent in themselves. 
 

The Hilbert Book Model is a simple self-consistent model. 
This model steps with universe-wide progression steps from one sub-

model to the next one. Each of these sub-models represents a static status 
quo of its universe. The sub-models are strictly based on traditional quan-

tum logic  
 

The HBM is a pure quaternion based model.  
Conventional physics is spacetime based and uses complex numbers.  

When both models are compared, then the progression quantity  
(which represents the page number in the Hilbert Book model)  

corresponds to proper time in conventional physics. 
 

In the HBM all proper time clocks are synchronized. 
The length of a smallest quaternionic space-progression step in the HBM 
corresponds to an "infinitesimal" observer’s time step in conventional 
physics. 
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The nice thing about laws of physics is that they repeat 

themselves. Otherwise they would not be noticed. The 

task of physicists is to notice the repetition. 
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  The game 

The Hilbert Book Model project is shaped as an instance 

of a category of modelling games. This category is char-

acterized by the fact that the game starts with well se-

lected first principles. This foundation is expanded by a 

trustworthy deduction process such that finally a model 

is obtained that shows many features and phenomena 

that we know from physical reality. 

 

The model is shaped in the form of a game because 

most physicists mistrust completely or largely deduced 

models.  

A completely deduced model endangers to become the 

victim of the extreme fantasy of the model designer. 

That is why many physicist are suspicious about com-

pletely or largely deduced models and require experi-

mental verification of every relevant physical statement. 

Often they do not even consider deduced models as a 

valid scientific approach. 

 

This hampers the serious designers of completely de-

duced models, because these models withdraw from ex-

perimental verification. 

One of the counter measures is to base the deduced 

model on a well-accepted foundation or on smartly se-

lected first principles. 

 



By pretending that we play a game, we cheat the criti-

cizers. We do not call the project a model of physics. 

Instead we configure the project as a modeling game.  

At the advance of the game the model is not considered 

as a model of physics. If the game succeeds, then the fi-

nal model will resemble physical reality and that model 

can be considered as a model of physics.  

 

However, one of the main problems will be the prove of 

the isomorphism between the aspects of the model and 

corresponding aspects of physical reality.  

In fact contemporary physics encounters the same prob-

lem. In contemporary physics this inconsistency is ig-

nored. Only philosophers bother about this mapping 

problem. 

 

Thus, we postpone the discussion whether we pro-

duced a model of physics to the end of the game. If the 

newly generated model uncovers new science, then it 

has reached its purpose. 

  



 First principles 

2.1 Model creation 
The creator of the model must first resolve his most 

acute problem. He is confronted with a very compli-

cated task and he must take measures that this complex-

ity stays within manageable bounds. He wants to create 

a universe that resembles physical reality. If he cannot 

keep complexity within reasonable bounds, then dy-

namic chaos will result. 

 What determines complexity? 

Complexity depends on the number and the diversity of 

the relations that exist between objects that play a role 

in the considered system 

Potential complexity of a set of objects is a measure that 

is defined by the number of potential relations that exist 

between the members of that set.  

If there are n elements in the set, then there exist n (n-1) 

potential relations. 

Actual complexity of a set of objects is a measure that is 

defined by the number of relevant relations that exist be-

tween the members of the set. 

Relational complexity is the ratio of the number of rele-

vant relations divided by the number of potential rela-

tions. 



2.2 Rules restrict complexity 
Physical reality appears to apply restricting rules for re-

lational structures that it accepts. These rules intent to 

reduce the complexity of these relational structures. The 

gamer must solve the same basic problems that physical 

reality encounters. As a consequence he must install 

similar rules. 

 Modularization 

Modularization is a very powerful influencer. 

Together with the corresponding encapsulation it re-

duces the relational complexity of the ensemble of ob-

jects on which modularization works. The encapsulation 

keeps most relations internal to the module. 

2.2.1.1 The basic modu-
larization law 

The model is completely deduced. For that reason the 

model is founded on well selected first principles. In the 

Hilbert Book Model Game, these first principles are 

taken from the definition of traditional quantum logic. 

Quantum logic can be considered as a logic system, but 

it appears that for application in model generation it can 

better be considered as part of a recipe for modular con-

struction.  

 



Quantum logic represents a skeleton relational structure 

that acts as a skeleton for modular construction. In this 

usage the elements of the skeleton relational structure 

are not propositions. Instead these elements are building 

blocks and composites of building blocks. 

The HBM keeps the name quantum logic in order to 

honor its discoverers Garret Birkhoff and John von Neu-

mann that gave the skeleton relational structure its 

name. We can phrase a first version of the basic modu-

larization law as follows: 

For this reason, the axioms that define the selected skel-

eton relational structure of quantum logic are used as the 

first principles on which the Hilbert Book Model Game 

will be based. Together these axioms define part of the 

basic modularization law. 

On itself the skeleton relational structure does not pro-

vide a recipe for modular construction. A mechanism 

that binds building blocks into composites and that en-

capsulates relations that are internal to the composites 

must complete the recipe. 

 

All discrete constructs in physical reality are sup-

posed to expose the skeleton relational structure 

that is defined by quantum logic 



Specifying a suitable skeleton relational structure and 

adding the mechanism can drastically reduce the com-

plexity of a model. The HBM selects quantum logic as 

its skeleton relational structure.  

It may not immediately become clear that this structure 

installs a modular way of building systems and subsys-

tems. For example it is not directly clear how this struc-

ture binds building blocks into composites and how it 

encapsulates relations inside these composites. 

 

These capabilities of the skeleton relational structure be-

come more apparent when the lattice isomorphism be-

tween the elements of quantum logic and the set of 

closed subspaces of an infinite dimensional separable 

Hilbert space is considered. Via this isomorphism the 

superposition principle enters the model. The superposi-

tion principle is the driving force behind binding build-

ing blocks into composites and behind encapsulating re-

lations within that composite.  

How this is achieved is a delicate process that will be 

explained in the course of the development of the 

model. Here we just state that superposition implements 

the required functionality. 

 



The full basic modularization law can be formulated in 

the realm of this Hilbert space. 

 

The full basic modularization law only concerns discrete 

objects and its describes the situation in a static status 

quo of the universe. 

 

So now we have a two stage model. The first stage de-

livers the skeleton relational structure and the second 

stage adds the superposition principle. However, the two 

stage model only describes a static status quo and it 

does not describe continuums. 

 

At any progression instant, all discrete constructs 

in physical reality can be represented by a closed 

subspace of a single separable Hilbert space 



 
 

Further the second law talks in terms of subspaces. 

These subspaces are spanned by Hilbert vectors. So, the 

subspaces contain more detail than the elements of 

quantum logic. 

 

The first version of our model is very simple and needs 

extension. Especially the Hilbert vectors that span the 

subspaces need interpretation. These Hilbert vectors can 

take the role of eigenvectors of linear operators. What 

will be the role of the corresponding eigenvalues? They 

represent the way that geometry emerges into the 

model! 

 

Quantum logic and the lattice isomorphism with a sepa-

rable Hilbert space was uncovered in a paper written by 

Garret Birkhoff and John von Neumann.  



The number systems that can be used by the separable 

Hilbert space are confined to members of a suitable di-

vision ring. This was already mentioned in the 1936 pa-

per of Birkhoff and von Neumann and was affirmed by 

Constantin Piron and Maria Pia Solèr in the sixties. It 

means that the only suitable number systems are real 

numbers, complex numbers and quaternions.  

The eigenvalues of the linear operators introduce geo-

metrical aspects into the model.  

 

First we will study the skeleton relational structures and 

the separable Hilbert spaces. 

  



 

 Skeleton relational structures  

3.1 Quantum logic 
Elementary particles behave non-classical. They can 

present themselves either as a particle or as a wave. A 

measurement of the particle properties of the object de-

stroys the information that was obtained from an earlier 

measurement of the wave properties of that object.  

With elementary particles it becomes clear that that na-

ture obeys a different logic than our old trusted classical 

logic. The difference resides in the modularity axiom. 

That axiom is weakened.  

Classical logic is congruent to an orthocomplemented 

modular lattice.  

Quantum logic is congruent to an orthocomplemented 

weakly modular lattice. Another name for that lattice is 

orthomodular lattice. 

  



 Lattices 

A subset of the axioms of the logic characterizes it as a 

half ordered set. A larger subset defines it as a lattice. 

A lattice is a set of elements 𝑎, 𝑏, 𝑐, …that is closed for 

the connections ∩ and ∪.  

 

∩ is called conjunction2. 
 

 
 
∪ is called disjunction. 
 

 
 

These connections obey: 

  

 The set is partially ordered. With each pair of el-

ements 𝑎, 𝑏 belongs an element 𝑐, such that 𝑎 ⊂
 𝑐 and 𝑏 ⊂  𝑐.  

 The set is a ∩half lattice if with each pair of ele-

ments 𝑎, 𝑏 an element 𝑐 exists, such that 𝑐 =

 𝑎 ∩  𝑏.  

                                                 
2 http://en.wikipedia.org/wiki/Logical_conjunction 



 The set is a ∪half lattice if with each pair of ele-

ments 𝑎, 𝑏 an element 𝑐 exists, such that 𝑐 =

 𝑎 ∪  𝑏.  
 The set is a lattice if it is both a ∩half lattice and 

a ∪half lattice. 

 

The following relations hold in a lattice:  

 

𝑎 ∩  𝑏 =  𝑏 ∩  𝑎 
 

(𝑎 ∩  𝑏)  ∩  𝑐 =  𝑎 ∩  (𝑏 ∩  𝑐) 
 

𝑎 ∩ (𝑎 ∪  𝑏)  =  𝑎 
 

𝑎 ∪  𝑏 =  𝑏 ∪  𝑎 
 

(𝑎 ∪  𝑏)  ∪  𝑐 =  𝑎 ∪  (𝑏 ∪  𝑐) 
 

𝑎 ∪ (𝑎 ∩  𝑏)  =  𝑎 
 

The lattice has a partial order inclusion ⊂: 

 

a ⊂ b ⇔ a ⊂ b = a 

 

  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 



A complementary lattice contains two elements 𝑛 and 𝑒 

with each element a an complementary element a’ such 

that: 

 

𝑎 ∩  𝑎’ =  𝑛 
 

𝑎 ∩  𝑛 =  𝑛 
 

𝑎 ∩  𝑒 =  𝑎 
 

𝑎 ∪  𝑎’ =  𝑒 
 

𝑎 ∪  𝑒 =  𝑒 
 

𝑎 ∪  𝑛 =  𝑎 
 

𝑒 is the unity element; 𝑛 is the null element of the lattice 

 

  

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 



An orthocomplemented lattice contains two elements 𝑛 

and 𝑒 and with each element 𝑎 an element 𝑎” such that: 

 

𝑎 ∪  𝑎” =  𝑒 
 

𝑎 ∩  𝑎” =  𝑛 
 

(𝑎”)” =  𝑎 
 

𝑎 ⊂  𝑏 ⟺  𝑏” ⊂  𝑎” 
 

 

A distributive lattice supports the distributive laws: 

 

𝑎 ∩ (𝑏 ∪  𝑐)  =  (𝑎 ∩  𝑏)  ∪  ( 𝑎 ∩  𝑐) 
 

𝑎 ∪ (𝑏 ∩  𝑐)  =  (𝑎 ∪  𝑏)  ∩  (𝑎 ∪  𝑐) 
 

A modular lattice supports: 

 

(𝑎 ∩  𝑏)  ∪ (𝑎 ∩  𝑐)  
=  𝑎 ∩  (𝑏 ∪ (𝑎 ∩  𝑐)) 

 

  

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 



A weak modular lattice supports instead: 

 

There exists an element 𝑑 such that 

 

𝑎 ⊂  𝑐 ⇔  (𝑎 ∪  𝑏) ∩  𝑐 

 =  𝑎 ∪ (𝑏 ∩  𝑐)  ∪ (𝑑 ∩  𝑐) 

 

where 𝑑 obeys: 

 

(𝑎 ∪  𝑏)  ∩  𝑑 =  𝑑 
 

𝑎 ∩  𝑑 =  𝑛 
 

𝑏 ∩  𝑑 =  𝑛 
 

[(𝑎 ⊂  𝑔) 𝑎𝑛𝑑 (𝑏 ⊂  𝑔)  ⇔  𝑑 ⊂  𝑔 
 

In an atomic lattice holds  

 

∃𝑝 𝜖 𝐿 ∀𝑥 𝜖 𝐿 {𝑥 ⊂  𝑝 ⇒  𝑥 =  𝑛} 
 

∀𝑎 𝜖 𝐿 ∀𝑥 𝜖 𝐿 {(𝑎 <  𝑥 <  𝑎 ∩  𝑝) 

 

 ⇒  (𝑥 =  𝑎 𝑜𝑟 𝑥 =  𝑎 ∩  𝑝)} 
 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 



𝑝 is an atom 

 

Both the set of elements of quantum logic and the set of 

subspaces of a separable Hilbert space Ң have the struc-

ture of an orthomodular lattice. In this respect these sets 

are congruent. 

In Hilbert space, an atom is a pure state (a ray spanned 

by a single vector). 

 

Classical logic has the structure of an orthocomple-

mented distributive modular and atomic lattice. 
 

Quantum logic has the structure of an orthomodular 

lattice. That is an orthocomplented weakly modular 

and atomic lattice.  
 

The set of closed subspaces of a Hilbert space also has 

that structure.  

  



 Lattice elements 

Lattice elements can, but must not be propositions. In 

logic systems the elements are considered as proposi-

tions. This is why the name quantum logic has confused 

many physicists. For the purpose of model generation 

the elements of this structure can better be interpreted as 

modular construction elements. 

 

Thus quantum logic is an exception. At has a treacher-

ous name. In this skeleton relational structure the ele-

ments can be interpreted as building blocks and compo-

sites of building blocks. With this interpretation the 

skeleton relational structure becomes a recipe for modu-

lar construction. 

3.1.2.1 Propositions 

In Aristotelian logic a proposition is a particular kind of 

sentence, one which affirms or denies a predicate of a 

subject. Propositions have binary values. They are either 

true or they are false. 

Propositions take forms like "This is a particle or a 

wave". In mathematical logic, propositions, also called 

"propositional formulas" or "statement forms", are state-

ments that do not contain quantifiers. They are com-

posed of well-formed formulas consisting entirely of 



atomic formulas, the five logical connectives3, and sym-

bols of grouping (parentheses etc.). Propositional logic 

is one of the few areas of mathematics that is totally 

solved, in the sense that it has been proven internally 

consistent, every theorem is true, and every true state-

ment can be proved. Predicate logic is an extension of 

propositional logic, which adds variables and quantifi-

ers. 

Predicates may accept attributes and quantifiers. The 

predicate logic is also called first order logic. A dy-

namic logic can handle the fact that predicates may in-

fluence each other when atomic predicates are ex-

changed. 

3.2 Hilbert space 
The set of closed subspaces of an infinite dimensional 

separable Hilbert space is lattice isomorphic with the set 

of elements of a quantum logic system. 

3.3 Hilbert logic 
The set of elements of traditional quantum logic is lat-

tice isomorphic  with the set of closed subspaces of a 

separable Hilbert space. However there exist still signif-

icant differences between this logic system and the Hil-

bert space.  

 

                                                 
3 http://en.wikipedia.org/wiki/Logical_connective 

http://en.wikipedia.org/wiki/Logical_connective
http://en.wikipedia.org/wiki/Logical_connective


This gap can be closed by refining the specification of 

quantum logic.  

 

Step 1: Add to each element as an extra attribute a nu-

meric value that gets the name relevance factor. 

Step 2: Require that linear combinations of atomic ele-

ments also belong to the logic system.  

Step 3: Introduce the notion of a relational coupling 

measure between two linear elements. This measure has 

properties that are similar to the properties of the inner 

product of Hilbert space vectors. 

Step 4: Close the subsets of the new logic system with 

respect to this relational coupling measure. 

 

The relevance factor and the relational coupling meas-

ure can have values that are taken from a suitable divi-

sion ring4. The resulting logic system will be called Hil-

bert logic.  

3.4 Similarity with Hilbert space 
The addition of the relevance factor installs the superpo-

sition principle. A linear combination of linear element 

is again a linear element. 

                                                 
4 The restriction to a division ring is taken from the fact 

that also Hilbert space restricts its numbers to elements 

of a division ring. 



In this way the Hilbert logic is lattice isomorphic as well 

topological isomorphic with the corresponding Hilbert 

space. 

Due to this similarity the Hilbert logic will also feature 

linear operators. 

In a Hilbert logic linear operators can be defined that 

have linear atoms as their eigen-elements. The eigen-

space of these operators is countable. The eigenvalues 

are numbers that introduce geometry into the model. 

Linear elements are the equivalents of Hilbert vectors. 

General basic modularization structure elements are the 

equivalents of (closed) subspaces of a Hilbert space. 

The measure of the relational coupling between two lin-

ear elements is the equivalent of the inner product be-

tween two Hilbert vectors. 

3.5 Free elements 
The relevance factor can be used to define the notion of 

free elements. 

If the modulus of the relevance factor is maximized at a 

fixed value, for example unity, then a free element can 

be defined as an element for which this maximum is 

reached. It means that free elements cannot be consid-

ered as members of a superposition. On the other hand 

free elements can be superpositions of bounded ele-

ments. 

When used in this way the relevance factor takes the 

role of a probability amplitude. 



3.6 Binding building blocks and encap-
sulating their relations. 

The superposition principle is the driving force behind 

the binding of building blocks into composites. Compo-

sites are construction elements that can be written as lin-

ear combinations of more basic building blocks. Thus, 

the constituents of composites are not free elements. In-

stead they are bounded elements. The constituents lose 

their individuality and the relations in which these con-

stituents play a role become less apparent. With other 

words, the superposition principle installs the relational 

encapsulation of the constituents of the composite. 

3.7 Restrictions 
The skeleton relational structures can only model count-

able sets of discrete elements. The structures offer no 

means for modeling continuums. 

The axioms that define these structures specify relations 

between the elements. These axioms do not specify the 

content of the elements. 

The axioms do not provide a means to implement dy-

namics. The skeleton relational structures can only 

model a static status quo. 

These restrictions also hold for separable Hilbert spaces. 

  



 Modelling continuums 

In the sixties Gelfand introduced a way to model contin-

uums via an extension of the separable Hilbert space via 

a so called Gelfand triple. The Gelfand triple often gets 

the name rigged Hilbert space, which is confusing, be-

cause this construct is not a Hilbert space. 

The Gelfand triple offers linear operators that have con-

tinuums as eigenspaces. The restrictions that hold for 

the number systems that can be applied for the separable 

Hilbert space, also hold for the Gelfand triple. 

 

 

 
 



In this stage the model introduces geometry via the ei-

genspaces of linear operators and it offers the possibility 

to embed discrete objects in a continuum. 

In this phase the model cannot implement dynamics. 

Still, like the separable Hilbert space, the Gelfand triple 

can only represent a static status quo. 

4.1 Hilbert space and its Gelfand triple 
Start with a separable Hilbert space that contains a nor-

mal operator that uses all rational numbers of a selected 

division ring as its eigenvalues. 

Take the set of eigenvectors of this operator.  

Now define vectors that are linear combinations of these 

eigenvectors and that have a norm that is equal to unity. 

Next take series of such constructs that converge to sets 

in which all pairs of vectors have inner products, which 

approach to unity. 

Finally close this space such that all limits of the series 

are included. 

Now the space includes vectors that are eigenvectors 

with eigenvectors that are limits of converging series of 

rational numbers. Thus all real numbers have an eigen-

vector in the new construct. 

Call this new construct the Gelfand triple of the original 

separable Hilbert space. 

 

The resulting construct is a vector space that possesses 

continuum vector spaces. 



The construct is the Gelfand triple of the Hilbert space. 

Sometimes it is falsely called a rigged Hilbert space5.  

 

The selected operator in the Hilbert space and the corre-

sponding operator in the Gelfand triple are each other’s 

brothers. The eigenvectors of the operator in the Gel-

fand triple that have rational eigenvalues have a one to 

one correspondence to the eigenvectors of the brother 

operator in the separable Hilbert space. Later we use the 

selected operators as reference operators that deliver flat 

parameter spaces. 

 

The Hilbert Book Model uses the eigenspaces of these 

operators as parameter spaces. 

  

                                                 
5 A Gelfand triple is NOT a Hilbert space. 



 Modelling dynamics 

From observations we know that we live in a dynamical 

environment. Thus the target model must implement dy-

namics. 

 

A very simple and efficient way to convert an essen-

tially static model into a dynamic model is the conver-

sion of the model into an ordered sequence of the static 

sub-models. These static sub-models must slightly differ 

from each other such that sufficient coherence exists be-

tween subsequent members of the sequence, otherwise 

dynamical chaos will result. On the other hand the co-

herence must not be too stiff, otherwise no dynamics 

will take place. 

 

The static sub-models offer no built-in support for en-

suring this coherence. This means that the model must 

be extended with an external mechanism that takes care 

of the coherence between subsequent steps. This mecha-

nism acts as a kind of operating system. 

 

The resulting model proceeds with model wide steps 

from each static status quo to the next static status quo. 

As a consequence a model wide clock resides in the 

model that ticks with the highest frequency that can oc-



cur in the model. The clock tick corresponds to a pro-

gression step and its “reading” represents a progression 

parameter. 

 

The resulting model looks like the set of pages of a book 

where the progression parameter plays the role of the 

page number. Each page describes a static status quo of 

the geometry of the model. The countable eigenspaces 

of linear operators in the separable Hilbert spaces and 

the continuum eigenspaces of linear operators in the 

Gelfand triple act as storage places for geometrical 

data. 

 

At each progression step the separable Hilbert space is 

regenerated. The Gelfand triple and its operators may 

survive this regeneration step. This means that progres-

sion steps along separable Hilbert spaces and flows in 

the Gelfand triple. This fact is used by the operating sys-

tem in order to establish the required dynamical coher-

ence between subsequent progression steps. 

5.1 Paginated space progression model 
The resulting model is a paginated space-progression 

model. Here space is represented by eigenspaces of a se-

ries of linear operators in the Gelfand triple. Another ei-

genspace acts as a static and flat parameter space that is 

formed by a quaternionic number system.  

 



This space-progression model features a Euclidean sig-

nature. Progression cannot be measured. It proceeds so 

fast that no observable readings can be provided. 

In the paginated space progression model the observer 

does not play an essential role. 

5.2 Spacetime model 
At this stage the model deviates significantly from the 

spacetime model that is used in contemporary physics. 

The spacetime model features a Minkowski signature, 

while the paginated model features a Euclidean signa-

ture. 

The difference between the spacetime model and the 

paginated space-progression model is located in the role 

of the observer. In the spacetime model the observer 

plays an essential role. 

The progression parameter of the paginated space pro-

gression model has much in common with the proper 

time concept in the space time model. Proper time is 

ticking on a virtual clock that ticks at the location of the 

observed item. In the paginated space-progression 

model all proper time clocks are synchronized. In the 

spacetime model proper time may be measured by a 

suitable clock that is located at the position of the ob-

server.  

The spacetime model offers another notion of time. This 

is the coordinate time. Usually coordinate time is meas-

ured using a clock at the location of the observer. This 



makes coordinate time an easily observable value. The 

virtual proper time at the location of the observed item 

is deduced from this measurement and the knowledge 

about the information path that runs from the observed 

item to the observer. The value includes the clock ticks 

that pass during the travel of the information from the 

observed item until it reaches the observer. That travel 

is supposed to occur with the highest possible speed. 

Thus, coordinate time is a mixed concept. It includes the 

information path that runs from observed item to the ob-

server. In arbitrary curved space this path is not exactly 

known. 

5.3 The Hilbert Book Model 
Due to the great resemblance of the members of the se-

quence with the pages of a book and its relation with 

Hilbert spaces, the model is baptized “The Hilbert Book 

Model”. 

  



 The embedding process 

6.1 Embedding a building block 
The members of the sequence are recreated at every pro-

gression step. Thus the embedding of a building block is 

a recurrent operation. Since the subsequent elements of 

the sequence must not differ much, the embedding will 

differ not much of the same embedding in the previous 

member. For example the location of the embedding 

must be nearly the same. After a series of progression 

steps, the locations used by the embedding of the con-

sidered building block form a swarm. This swarm forms 

a coherent set of used locations. 

 

The mechanism that takes care of the dynamic coher-

ence uses the density distribution of the swarm in order 

to regulate this coherence. This means that this density 

distribution is a continuous function. Since the locations 

are points in a continuum the location density distribu-

tion can also be characterized as a probability density 

distribution. That probability density distribution is a 

continuous function that defines the probability of find-

ing the building block at the location that is given by the 

value of the parameter of the building block. 

6.2 Swarming conditions 
It is suggested here that the mechanism, which installs 

dynamic coherence installs four swarming conditions. 



1. The locations that are used by the embed-

ding of a single building block form a co-

herent set. 

2. The set is characterized by continuous lo-

cation density function 

3. The set can also be interpreted as a proba-

bility density distribution 

4. The probability density distribution has a 

Fourier transform 
The reason for this suggestion is the great resemblance 

of the probability density distribution of the building 

block with the squared modulus of the wave function of 

elementary particles. 

 

The fourth condition has some strong consequences. 

1. The fact that the swarm has a Fourier 

transform means that it owns a displace-

ment generator. 

2. The fact that the swarm owns a displace-

ment generator means that at first ap-

proximation the swarm moves as one unit 

3. The fact that the probability density dis-

tribution has a Fourier transform means 



that it can be interpreted as a wave pack-

age 

4. As a consequence interfering swarms can 

form detection patterns in the form of in-

terference patterns. 
 

We add the following suggestions: 

1. The swarm is prepared in advance 

2. This preparation is done on a flat (non-

curved) continuum. 

3. The planned swarm contains a fixed num-

ber of potential locations. 

4. After preparation the planned swarm is 

mapped onto the actual (eventually 

curved) continuum 

5. At each progression step, after the map-

ping onto the target continuum, via ran-

dom choice, a single location is selected as 

the current location. 

6. Each location in the planned swarm is 

used only once. 

7. After using all locations a new planned 

swarm is generated 



8. The planned swarm characterizes the 

type of the building block 

6.3 Micro-path 
The hopping of the building block along the locations 

that are selected from the swarm can be interpreted as 

the hopping along a stochastic micro-path. 

This hopping also occurs when the swarm stays at the 

same location. 

If the swarm moves, then the micro-path stretches along 

the movement path of the swarm. 

If the swarm oscillates with small enough amplitudes, 

then the oscillation will be drowned in the micro-path. 

The micro-path may implement a quasi-rotation. 

The micro-path may be walked in one of two directions. 

We add the following suggestions: 

1. Like the swarm the micro-path contains a 

fixed number of hops. 

2. The micro-path is not a closed loop. 

3. Thus, at each cycle the swarm has taken a 

small step. 
 

As a consequence the non-moving swarms jitter.  

  



 The mapping process 

The embedding of a building block can be considered as 

a mapping process. First the operating system prepares a 

planned swarm in a flat continuum. Next this planned 

swarm is mapped onto the target continuum, which is 

curved. At each progression step one location is selected 

via a random choice out of the mapped swarm. At this 

location the building block resides during this progres-

sion step. 

The preparation of the planned swarm can be considered 

as a stochastic process, that consists of two separate sto-

chastic processes. The first process is a Poisson process 

that produces a germ location. The second process is a 

binomial process that is implemented by a 3D spread 

function whose parameter is formed by the germ. We 

will call the combination of the two stochastic processes 

a stochastic spatial spread function. 

The result of the stochastic spatial spread function is 

mapped onto the target continuum. This map can be im-

plemented by a continuous quaternionic allocation func-

tion that has a flat parameter space that is spanned by a 

quaternionic number system. 

This quaternionic function defines the target embedding 

continuum. 

The total map can be considered as the convolution of 

the stochastic spatial spread function and the continuous 

quaternionic allocation function. 



7.1 Mapping quality 
The Fourier transform of the location density distribu-

tion that describes the planned swarm acts as a quality 

characteristic of the mapping process that is installed by 

the mechanism that controls the dynamic coherence. 

This quality characteristic works together with the Opti-

cal Transfer Function that acts as quality characteristic 

of linear imaging equipment. 

It also corresponds to the frequency characteristic that 

characterizes the quality of linear operating communica-

tion equipment 

  



 Quaternions and quaternionic 
functions 

8.1 Number systems 
The numbers that can be used as coefficients in superpo-

sitions and as eigenvalues of linear operators in separa-

ble Hilbert spaces and their Gelfand triple must be ele-

ments of a suitable division ring. Only three suitable 

division rings exist: 

 The real numbers 

 The complex numbers 

 The quaternions 
The complex numbers comprise the real numbers and 

the quaternions comprise the complex numbers. Thus 

the quaternions form the most elaborate choice. 

An N-dimensional number system exist in 2N versions 

that only differ in their discrete symmetries. This means 

that the quaternionic number system exist in 16 sym-

metry flavors. 

  



8.2 Quaternions 

 Quaternion symmetry flavors 

Quaternionic number systems exist in 16 versions that 

differ in their symmetry flavor 

 

• If the real part is ignored, then still 8 symmetry 

flavors result 

• They are marked by special indices 𝒂④ 

• 𝒂⓪is the reference symmetry flavor 

• They are also marked by colors 

𝑁, 𝑅,  𝐺, 𝐵, 𝐵̅, 𝐺̅, 𝑅̅, 𝑁̅  
• Half of them is right handed R,  

• The other half is left handed L 

 

 
 



 Quaternion geometry and arithmetic 

Quaternions can be considered as the combination of a 

real scalar and a 3D vector that has real coefficients. 

This vector forms the imaginary part of the quaternion. 

Quaternionic number systems are division rings. 

Biquaternions exist whose imaginary part exists of a 3D 

vector that has complex coefficients. Biquaternions do 

not form division rings. 

8.2.2.1 Notation 

We indicate the real part of quaternion 𝑎 by the suffix 

𝑎0. 

We indicate the imaginary part of quaternion 𝑎 by bold 

face 𝒂. 

 

𝑎 = 𝑎0 + 𝒂 

8.2.2.2 Sum 

𝑐 = 𝑐0 + 𝒄 = 𝑎 + 𝑏 
 

𝑐0 = 𝑎0 + 𝑏0 
 

𝒄 = 𝒂 + 𝒃 

8.2.2.3 Product 

𝑓 = 𝑓0 + 𝒇 = 𝑑 𝑒 
 

(1) 

(1) 

(2) 

(3) 

(1) 



𝑓0 = 𝑑0𝑒0 − ⟨𝒅, 𝒆⟩ 
 

𝒇 = 𝑑0𝒆 + 𝑒0𝒅 + 𝒅 × 𝒆 

8.2.2.4 Norm 

|𝑎| = √𝑎0𝑎0 + 〈𝒂, 𝒂〉 
  

(2) 

(3) 

(1) 



8.3 Discrete quaternionic distributions 
A distribution of quaternionic geometric location and 

displacement data can be stored in a discrete quaterni-

onic distribution.  

The locations are stored in the real part of the discrete 

quaternionic distribution and the displacements are 

stored in the imaginary part of the discrete quaternionic 

distribution. 

 

Swarms are candidates for such descriptors. The loca-

tions and the corresponding hops form the elements of 

the discrete quaternionic distribution and progression 

acts as an enumerator of these elements. 

Together with this enumerator, the discrete quaternionic 

distribution defines a path. 

 

If the discrete data belong to the same symmetry flavor 

and the density of these discrete data forms a suffi-

ciently smooth function, then the discrete distribution 

can be described by a continuous quaternionic density 

distribution. 

 

Due to the fact that the locations are points, the real part 

of this continuous density distribution can be considered 

as a probability density distribution. 

 



8.4 Quaternionic functions 

 Quaternionic function symmetry flavors 

Continuous quaternionic functions do not switch to 

other symmetry flavors. Thus they also exist in 16 ver-

sions that only differ in their symmetry flavor 

 

• If the real part is ignored, then still 8 symmetry 

flavors result 

• They are marked by special indices 𝝍④ 

• 𝝍⓪is the reference symmetry flavor 

• They are also marked by colors 

𝑁, 𝑅,  𝐺, 𝐵, 𝐵̅, 𝐺̅, 𝑅̅, 𝑁̅  
• Half of them is right handed R,  

• The other half is left handed L 



 

 

8.4.1.1 Symmetry flavor 
bundle 

Mostly continuous functions are functions that are con-

tinuous apart from a finite number of singular points. 

Mostly continuous quaternionic functions exist in 16 

different symmetry flavors. 

Mostly continuous quaternionic functions exist in bun-

dles that contains all symmetry flavors of that function 

Such bundles are called symmetry flavor bundles. 

  



 Algebra 

We use similar notations as for quaternionic numbers. 

Without further notice, we suppose that the parameter 

space is formed by a selected quaternionic number sys-

tem. 

 Notation 

𝑔(𝑞) = 𝑔0(𝑞) + 𝒈(𝑞)  

 

𝑔 is a quaternionic function.  

𝑔0 is a real scalar function. 

𝒈 is a real vector function. It is the imaginary part of 𝑔. 

𝑞 is a quaternion that resides in the parameter space. 

 

𝑞 =  {𝜏, 𝑥, 𝑦, 𝑧} = {𝑞0, 𝑞1, 𝑞2, 𝑞3} 

 

= 𝑞0 + 𝒒 = 𝑞0 + 𝑞1𝑰 + 𝑞2𝑱 + 𝑞3𝑲  
 

If 𝑔 is differentiable then the quaternionic nabla 𝛻𝑔 of 𝑔 

exists. 

The quaternionic nabla 𝛻 is a shorthand for 𝛻0 + 𝜵 

 

𝛻0 =
𝜕

𝜕𝜏
 

 

𝛁 = {
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
} 

(1) 

(2) 

(3) 

(4) 



 

ℎ = ℎ0 + 𝒉 = ∇𝑔 
 

ℎ0 = ∇0𝑔0 − ⟨𝛁, 𝒈⟩ 
 

𝒉 = ∇0𝒈 + 𝛁𝑔0 + 𝛁 × 𝒈 

 Norm 

Square-integrable functions are normalizable. The norm 

is defined by: 

 

‖𝜓‖ = ∫ |𝜓|2 𝑑𝑉
𝑉

 

= ∫ {|𝜓0|2 +  |𝝍|2 }𝑑𝑉
𝑉

 

 

= ‖𝜓0‖ + ‖𝝍‖ 
 

8.4.4.1 Sum 

𝑔 can be a quaternion or a function 𝑔(𝑞). 

ℎ can be a quaternion or a function ℎ(𝑞). 

 

𝑘 = 𝑘0 + 𝒌 = 𝑔 + ℎ 
 

𝑘0 = 𝑔0 + ℎ0 
 

(4) 

(5) 

(6) 

(1) 

(1) 

(2) 



𝒌 = 𝒈 + 𝒉 

8.4.4.2 Product 

𝑑 can be a quaternion or a function 𝑑(𝑞). 

𝑒 can be a quaternion or a function 𝑒(𝑞). 

 

𝑓 = 𝑓0 + 𝒇 = 𝑑 𝑒 
 

𝑓0 = 𝑑0𝑒0 − ⟨𝒅, 𝒆⟩ 
 

𝒇 = 𝑑0𝒆 + 𝑒0𝒅 + 𝒅 × 𝒆 

 The coupling equation 

The coupling equation follows from peculiar proper-

ties of the differential equation. We start with two nor-

malized functions 𝜓 and 𝜑.  

 

‖𝜓‖ = ‖𝜑‖ = 1 
 

Φ = 𝛻𝜓 = 𝑚 𝜑 
 

Φ = 𝛻𝜓 defines the differential equation. 

 

𝛻𝜓 = Φ formulates a continuity equation. 
 

(3) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(4) 



𝛻𝜓 = 𝑚 𝜑 formulates the coupling equation. It 
couples 𝜓 to 𝜑, where 𝜑 is located in the embed-
ding continuum and acts as source. 

 
𝑚 is the coupling factor. 

8.4.5.1 In Fourier space 

The Fourier transform of the coupling equation is: 

 

ℳ𝜓̃ = 𝑚𝜑̃ 
 
ℳ is the displacement generator 

  

(1) 



8.4.5.2 The Dirac equa-
tion 

The Dirac equation runs: 

 

𝛻0[𝜓] + 𝜵𝜶[𝜓] = 𝑚𝛽[𝜓] 
 

[𝜓] is a Spinor. 

 

𝜶 and 𝛽 are Dirac matrices 

 

Dirac matrices Pauli matrices 

𝛼1 ≡ [
0 𝒊

−𝒊 0
] 

 

𝒊 ⟼ 𝜎1 ≡ [0  1
1 0

] 

 

𝛼2 ≡ [
0 𝒋

−𝒋 0
] 

 

𝒋 ⟼ 𝜎2 ≡ [ 
0 −𝑖
𝑖 0

] 

 

𝛼3 ≡ [
0 𝒌

−𝒌 0
] 

 

𝒌 ⟼ 𝜎3 ≡ [
1 0
0 −1

] 

𝛽 ≡ [
0 1
1 0

] 1 ⟼ 𝐼 ≡ [
1 0
0 1

] 

 

 

The 2x2 matrices combine into 4x4 matrices 

 

Split into right handed and left handed spinors 

 

(1) 



𝛻0𝜓𝑅 + 𝜵𝜓𝑅 = 𝑚𝜓𝐿 
 

𝛻0𝜓𝐿 − 𝜵𝜓𝐿 = 𝑚𝜓𝑅 
 

8.4.5.3 Dirac equation in 
quaternionic for-
mat 

 

𝛻𝜓 = 𝑚𝜓∗ holds for the electron. 
 

𝛻∗𝜓∗ = 𝑚𝜓 holds for the positron. 
 

𝜓∗ is the quaternionic conjugate from 𝜓. 

 

Thus the electron and the positron couple to another 

member of the same symmetry flavor bundle to which the 

quantum state function belongs. 

The positron does obey the conjugate of the coupling 

equation. It looks as if no difference exists between the 

two equations. However, the parameters of the functions 

are not touched by the conjugation. 

 

𝛻𝜓 = 𝑚𝜓∗ is a special form of the coupling equation. 

Here the source function φ equals 𝜓∗. The quantum state 

function 𝜓 acts as a drain. 

 

(2) 

(3) 

(1) 

(2) 



  



 Elementary particle hypothesis 

9.1 Elementary coupling equation 
The coupling equation for the electron and the positron 

as it is depicted by Paul Dirac, gives us a lead how to in-

terpret this equation for other types of elementary parti-

cles. 

 

The electron is an elementary particle and the question 

arises whether this particular form of the coupling equa-

tion is characteristic for elementary particles.  

 

The HBM suggests that elementary particles are the re-

sult of couplings between the members of the symmetry 

flavor bundle that constitutes the Palestra. 

 

One of these members is the reference member and has 

the same symmetry flavor as the parameter space of the 

bundle has. 

 

One of the member fields plays the role of the quantum 

state function of the particle. The other field plays the 

role of the embedding field.  

 

The operating system maps the quantum state function 

on the embedding field. Only the partial mirror of the 

quantum state function in this embedding field is used in 

the coupling. 



 

Thus the coupling equation for elementary particles will 

be: 

 

𝛻𝜓𝑥 = 𝑚𝜓𝑦 
 

The elementary antiparticle equation would be. 

 

𝛻∗(𝜓𝑥)∗ = 𝑚(𝜓𝑦)∗ 
 

Here the functions 𝜓𝑥and 𝜓𝑦are two members of the 

symmetry flavor bundle that constitutes the Palestra.  

This limits the choice to functions that have the same real 

part. This choice enables the existence of 8x8=64 differ-

ent types of particles whose properties depend on the cou-

pled symmetry flavors. 

We consider two categories of particles. 

The F-category couples the quantum state function to 

the reference member of the Palestra. 

Other particles belong to the B-category. 

Contemporary physics has shown that a significant dif-

ference exists between these two categories. 

9.2 Elementary particle characteristics 
Now we have collected sufficient ammunition in order 

to tackle what coupling means. In the elementary cou-

pling equation, one of the pair {𝜓𝑥 , 𝜓𝑦} will act as the 

source and the other 𝜓𝑥 will act as the drain. 

(1) 

(2) 



The dimensions in which the symmetry flavors differ 

determine what the meaning of source and drain will be. 

 Categories and spin 

We will give the reference symmetry flavor a prefer-

ence status. 

This will single out a category of elementary particles 

that can be characterized by the pair {𝜓𝑥 , 𝜓⓪}. We call 

this category the F-category6. Alternative particles be-

long to the B-category7. 

 

Anti-particles obey the antiparticle coupling equation. 

There the F-category is characterized by the pair 

{(𝜓𝑥
)

∗
, (𝜓⓪

)
∗

} = {(𝜓𝑥
)

∗
, 𝜓⑦

} . 

The F-category is generated in a way that differs from 

the way that the B-category is generated. As a conse-

quence these categories show different spins. 

The F-category particles have half integer spin. 

The B-category particles have integer spin. 

Later a suggestion is given why that is the case. 

 

The standard model contains only particle types that can 

be discerned by measuring results.  

                                                 
6 This refers to fermions. 
7 This refers to bosons. 

(1) 



The HBM scheme discerns on properties and does not 

mind whether they can be discerned by measurements. 

 e-charge 

The dimensions in which the symmetry flavors differ 

determine the other characteristics of the elementary 

particle. 

The HBM uses one third of the electric charge of the 

positron as its e-charge unit. 

The e-charge equals the number of different dimen-

sions between the x-symmetry flavor and the y-symmetry 

flavor. The sign of the e-charge count is switched if the 

handedness differs8. 

 c-charge 

The color of the participating fields results in the col-

oring for the resulting particle. Since the embedding field 

for F-category is neutral the coloring of the particle types 

is straight forward for members of this category. 

B-category types can be multi-colored. 

  

                                                 
8 The size of the e-charge is one third of the electron 

charge. 



9.3 The HBM scheme 

 F-category 

We do not yet treat generations. 

According to the standard model, the F-category exists 

in three generations. 

The F-category concerns 8 particle types and 8 anti-par-

ticle types. 

9.3.1.1 Leptons 

Leptons are color neutral. 

9.3.1.1.1 Electrons and positrons 

The electrons and positrons are easily comprehensible. 

They are isotropic (color neutral) particles. 

 

Pair s-

type 

e-

charge 

c-

charge 

Hand-

ed-

ness 

SM 

Name 

{𝜓⑦, 𝜓⓪} fer-

mion 

-3 N LR electron 

{𝜓⓪, 𝜓⑦} Anti-

fer-

mion 

+3 W RL positron 

 

 



9.3.1.1.2 Neutrinos 

Neutrinos are the most difficult to understand elemen-

tary particles. Their quantum state function has the same 

symmetry flavor as the embedding continuum has. 

 

type s-type e-

char

ge 

c-

charg

e 

Hand-

edness 

SM 

Name 

{𝜓⑦, 𝜓⑦} fer-

mion 

0 NN RR neu-

trino 

{𝜓⓪, 𝜓⓪} anti-

fer-

mion 

0 WW LL neu-

trino 

 

  



9.3.1.2 Quarks 

Pair s-type e-

charge 

c-

charge 

Handed

-ness 

SM 

Name 

{𝜓①, 𝜓⓪} fermion -1 R LR down-

quark 

{𝜓⑥, 𝜓⑦} anti-fer-

mion 
+1 R̅ RL Anti-

down-

quark 

{𝜓②, 𝜓⓪} fermion -1 G LR down-

quark 

{𝜓⑤, 𝜓⑦} anti-fer-

mion 
+1 G̅ RL Anti-

down-

quark 

{𝜓③, 𝜓⓪} fermion -1 B LR down-

quark 

{𝜓④, 𝜓⑦} anti-fer-

mion 
+1 B̅ RL Anti-

down-

quark 

{𝜓④, 𝜓⓪} fermion +2 B̅ RR up-

quark 

{𝜓③, 𝜓⑦} anti-fer-

mion 
-2 B LL Anti-

up-

quark 

{𝜓⑤, 𝜓⓪} fermion +2 G̅ RR up-

quark 



{𝜓②, 𝜓⑦} Anti-fer-

mion 
-2 G LL Anti-

up-

quark 

{𝜓⑥, 𝜓⓪} fermion +2 R̅ RR up-

quark 

{𝜓①, 𝜓⑦} anti-fer-

mion 
-2 R LL Anti-

up-

quark 

 

 B-category 

9.3.2.1 W-particles 

The W-particles are multi-colored.  

 

In the HBM scheme exist 4 different 𝑊+-like particles 

and 4 corresponding anti-particles. 

and 8 different 𝑊− -like particles. 

The standard discerns only one 𝑊+-like particle and one 

𝑊−-like particle. 

 

Pair s-

type 

e-

charge 

c-

charge 

Hand-

ed-

ness 

SM 

Name 

{𝜓⑥, 𝜓①} boson -3 R̅R RL 𝑊− 

{𝜓①, 𝜓⑥} anti-

boson 

+3 𝑅R̅ LR 𝑊+ 



{𝜓⑥, 𝜓②} boson -3 R̅G RL 𝑊− 

{𝜓②, 𝜓⑥} anti-

boson 

+3 𝐺R̅ LR 𝑊+ 

{𝜓⑥, 𝜓③} boson -3 R̅B RL 𝑊− 

{𝜓③, 𝜓⑥} anti-

boson 

+3 𝐵R̅ LR 𝑊+ 

{𝜓⑤, 𝜓①} boson -3 G̅G RL 𝑊− 

{𝜓①, 𝜓⑤} anti-

boson 

+3 GG̅ LR 𝑊+ 

{𝜓⑤, 𝜓②} boson -3 G̅G RL 𝑊− 

{𝜓②, 𝜓⑤} anti-

boson 

+3 GG̅ LR 𝑊+ 

{𝜓⑤, 𝜓③} boson -3 GB̅̅ ̅̅  RL 𝑊− 

{𝜓③, 𝜓⑤} anti-

boson 

+3 BG̅ LR 𝑊+ 

{𝜓④, 𝜓①} boson -3 B̅R RL 𝑊− 

{𝜓①, 𝜓④} anti-

boson 

+3 RB̅ LR 𝑊+ 

{𝜓④, 𝜓②} boson -3 B̅G RL 𝑊− 

{𝜓②, 𝜓④} anti-

boson 

+3 GB̅ LR 𝑊+ 

{𝜓④, 𝜓③} boson -3 B̅B RL 𝑊− 

{𝜓③, 𝜓④} anti-

boson 

+3 BB̅ LR 𝑊+ 

 



  



9.3.2.2 Z-particles 

.Z-particles are multi-colored. 

 

In the HBM scheme exist 6 different 𝑍-like particles and 

6 different 𝑊− -like anti-particles. 

The standard discerns only one 𝑍like particle and one 𝑍-

like anti-particle. 

 

 

Pair s-type e-

charge 

c-

charge 

Hand-

ed-

ness 

SM 

Name 

{𝜓②, 𝜓①} boson 0 GR LL Z 

{𝜓⑤, 𝜓⑥} anti-

boson 

0 G̅R̅ RR Z 

{𝜓③, 𝜓①} boson 0 BR LL Z 

{𝜓④, 𝜓⑥} anti-

boson 

0 R̅B̅ RR Z 

{𝜓③, 𝜓②} boson 0 BR LL Z 

{𝜓④, 𝜓⑤} anti-

boson 

0 R̅B̅ RR Z 

{𝜓①, 𝜓②} boson 0 RG LL Z 

{𝜓⑥, 𝜓⑤} anti-

boson 

0 R̅G̅ RR Z 

{𝜓①, 𝜓③} boson 0 RB LL Z 



{𝜓⑥, 𝜓④} anti-

boson 

0 R̅B̅ RR Z 

{𝜓②, 𝜓③} boson 0 RB LL Z 

{𝜓⑤, 𝜓④} anti-

boson 

0 R̅B̅ RR Z 

9.3.2.3 Other particles 

Until now we have treated particles that may represent 

the particles that are recognized in the standard model. 

This set already contains more particles than the SM 

discerns. Since the “extra” bosons only differ in their 

multi-color charge, which cannot yet be measured, these 

particles may represent SM-particles. 

 

However, we have only treated 8 F-category particles 

and 8 F-category anti-particles. 

The B-category represents 9 versions of the 𝑊+-particle 

and 9 versions of the 𝑊−-particle. Further it contains 12  

potential representatives of the 𝑍-particle. The versions 

only differ in their multi-color charge. 

 

Thus result 64-16-16-12 = 20 “other particles”. 

Amongst them are 12 reverse-quark bosons. 

  



 Space hypothesis 

10.1 The Palestra 
The Palestra is the name of a symmetry flavor bundle 

that pays the role of our living space. 

 

This selection is raised by the fact that the Dirac equa-

tion seems to couple two members of a symmetry flavor 

bundle. Accepting the elementary coupling equation as 

a valid equivalent of the Dirac equation for other ele-

mentary particle offers the opportunity to suggest the 

existence of a large variety of these particles. 

 

The elementary coupling equation can be interpreted as 

the description of the embedding of a free elementary 

particle in a member of the Palestra. 

10.2 The space hypothesis 
Now we can formulate the space hypothesis. 

 

Our living space can be represented by a field that is 

represented by a symmetry flavor bundle. That field 

is called Palestra. 

 



10.3 The embedding of elementary parti-
cles 

All artifacts in universe are free elementary particles or 

they are composites of elementary particles. The constit-

uents of the composites are bounded in a modular way. 

The elementary particles represent locations where 

members of the symmetry flavor bundle couple. At 

those locations the elementary particles can be consid-

ered to be embedded in one of the two coupling mem-

bers of the Palestra. 

The locations of this embedding form a swarm. This 

swarm characterizes the embedded particle. 

The continuous density distribution that describes the 

swarm conforms to the squared modulus of what we 

know as the wave function of the elementary particle. 

  



 Preparing the swarm 

11.1 Storage 
The HBM suggests that the whole swarm is prepared in 

advance of its usage. The prepared swarm is stored in a 

persistent location. That must be an eigenspace of an ap-

propriate operator that resides in the Gelfand triple. We 

will call this operator the planned-swarm operator. The 

prepared swarm consists of a coherent set of locations 

and displacements that are generated relative to the ei-

genspace of an operator that provides a flat parameter 

space that is formed by a selected quaternionic number 

system9. 

11.2 Suggested creation mechanism 
The set of locations is created by a combination of a 

Poisson process that delivers a stochastic sequence of 

(real) rational numbers that act as design parameters. 

The Poisson process is combined with a binomial pro-

cess that uses the design parameters as parameter of a 

3D spread function. Together these processes produce a 

stochastic spatial spread function that can be stored in a 

discrete quaternionic distribution. On its turn this dis-

                                                 
9 A quaternionic number system with a selected sym-

metry flavor. 



crete quaternionic distribution is stored in the eigen-

space of the planned-swarm operator in the Gelfand tri-

ple. 

As indicated earlier the discrete quaternionic distribu-

tion implements a path of subsequent locations. 

 Example distribution 

As an example the combination of the Poisson process 

and the binomial process may generate a discrete qua-

ternionic distribution that comes close to a 3D Gaussian 

distribution10. 

 

A charge distribution in the form of this example distri-

bution corresponds to an isotropic potential in the form 

 
𝐸𝑟𝑓(𝑟)

𝑟
 

 

This quickly reduces to the 1/𝒓 form of the gravita-

tional potential of a single charge. In contrast to the sin-

gle charge potential, the potential of the charge distribu-

tion does not contain a singularity. 

 

                                                 
10 A 3D normal distribution. 

(1) 



 
 

Due to the swarm, the potential of the particle has no 

longer a singularity. 

11.3 The stochastic spatial spread func-
tion 

The generator of the planned swarm will be called 

stochastic spatial spread function and it will be indicated 

with symbol 𝒮. 

The generated swarm can be represented by a continu-

ous quaternionic density distribution, which is also a qua-

ternionic probability density distribution. This quaterni-

onic function is indicated with symbol 𝜓 
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 Mapping the swarm 

12.1 The allocation function 
The planned swarm is mapped on a member of the Pa-

lestra that acts as the embedding continuum. 

The mapping can be described by a continuous quaterni-

onic allocation function ℘. 

This quaternionic allocation function℘ describes a path 

through (part of) the history of the Palestra. This path 

describes the live of the corresponding building block.  

The allocation function has a flat parameter space, 

which is formed by rational quaternions. The real part of 

these parameters represents progression. For each parti-

cle ℘ uses a separate parameter value. The spatial image 

of ℘ varies with this parameter value and thus with pro-

gression.  

 

With other words ℘ describes the target embedding 

continuum and the movement of the particle in this con-

tinuum. 

 Metric 

The differential of the allocation function describes a 

quaternionic metric. This metric describes the curvature 

of the Palestra. 

 

(1) 



𝑑𝑠(𝑞) = 𝑑𝑠𝜈(𝑞)𝑒𝜈 = 𝑑℘ = ∑
𝜕℘

𝜕𝑞𝜇
𝑑𝑞𝜇

𝜇=0…3

= 𝑐𝜇(𝑞)𝑑𝑞𝜇 

 

𝑞 is the quaternionic location. 

𝑑𝑠 is the metric. 

𝑐𝜇 is a quaternion. 

 

Pythagoras: 

 

𝑐2𝑑𝑡2 = 𝑑𝑠 𝑑𝑠∗ = 𝑑𝑞0
2 + 𝑑𝑞1

2+𝑑𝑞2
2+𝑑𝑞3

2 
 

Minkowski: 

 

𝑑𝑞0
2 = 𝑑𝜏2 = 𝑐2 𝑡2 − 𝑑𝑞1

2−𝑑𝑞2
2−𝑑𝑞3

2 

 

In flat space: 

 

∆𝑠𝑓𝑙𝑎𝑡 = ∆𝑞0 + 𝒊 ∆𝑞1 + 𝒋 ∆𝑞2 + 𝒌 ∆𝑞3 

 

In curved space: 

∆𝑠℘ = 𝑐0 ∆𝑞0 + 𝑐1 ∆𝑞1 +   ∆𝑞2 + 𝑐3 ∆𝑞3 

 

 

𝑑℘ is a quaternionic metric 

It is a linear combination of 16 partial derivatives 

(2) 

(3) 

(4) 

(5) 



 

𝑑℘ = ∑
𝜕℘

𝜕𝑞𝜇
𝑑𝑞𝜇

𝜇=0…3

= 𝑐𝜇(𝑞)𝑑𝑞𝜇 

 

= ∑ ∑ 𝑒𝜈

𝜕℘𝜈

𝜕𝑞𝜇
𝑑𝑞𝜇

𝜈=0,…3

𝜇=0…3

= ∑ ∑ 𝑒𝜈𝑐𝜈
𝜇

𝑑𝑞𝜇

𝜈=0,…3

𝜇=0…3

 

 

12.2 The blurred allocation function 
The real part of the parameter of the allocation function 

℘ represents progression. This progression value is used 

as enumerator value by the stochastic spatial spread 

function. 

The blurred allocation function 𝒫 describes the com-

bined effect of the allocation function ℘ and the sto-

chastic spatial spread function 𝒮. The combination is a 

convolution. 

 

𝒫 = ℘ ∘ 𝒮 
 

Like ℘, 𝒫 uses for each separate particle a single ra-

tional quaternion as a parameter and produces the cur-

rent location of that particle. ℘ produces the center loca-

tion of the complete mapped swarm. 

(6) 

(1) 



 

 
 

12.3 Names giving 
The planned swarm will be called Qpattern. It is pro-

duced by stochastic spatial spread function 𝒮.  

The Qpattern is mapped onto the embedding continuum 

by the allocation function ℘. There it becomes the vir-

tual swarm. 

The target of the allocation function ℘ for a given parti-

cle is called Qpatch. 

The target for the blurred allocation function 𝒫is the 

current location of the particle and it is called Qtarget. 

The blurred allocation function 𝒫 produces a virtual 

swarm. The Qtarget is the only actual location in this 

swarm. 



A continuous quaternionic density distribution 𝜓 char-

acterizes the virtual swarm. The real part of this distri-

bution corresponds to the squared modulus of the wave 

function of the particle. That is why we call 𝜓 the qua-

ternionic quantum state function of the particle. 

 

 
 Embedding process 

The embedding of a single building block can be inter-

preted as the arrival of the particle at a new location. 

The embedding recurs at every progression step. 

13.1 What happens? 
The elementary coupling equation describes the cou-

pling for a free elementary particle. 

One member of the Palestra couples to another member. 

At the location of the coupling a small amount of space 

is exchanged from the source member to the drain mem-

ber. This occurrence causes a local singularity in the 

Palestra. 

 

The coupling only lasts during a single progression step. 

The next coupling occurs at a slightly different location. 

The influence of the singularity keeps spreading in the 

form of a wave front that moves with the highest possi-

ble speed over the Palestra. 



The wave fronts combine into super-high frequency 

waves. The frequency of these waves is so high that they 

cannot be observed. Only the averaged effects of these 

waves can be observed. These averaged effects form the 

potentials of the building block 

 

 
 

In symmetry flavor A member, space is contracting to-

wards the worm hole. In symmetry flavor B member, 

space is expanding away from the worm hole. The 

worm hole forms a common singularity. At the instance 

of embedding the collected space is transported from 

symmetry flavor A to symmetry flavor B. At each pro-

gression step the worm hole appears at a slightly differ-

ent location. 



13.2 Wave fronts 
At every arrival at a step stone, the building block emits 

a wave front that carries a message about it presence 

and its properties. These properties become visible in 

the potentials that are formed by the wave fronts. 

The origin of space curvature is the fact that the wave 

fronts fold and thus curve the embedding continuum. 

Together, these wave fronts form super-high frequency 

waves 
The propagation of the wave fronts is controlled by 

Huygens principle 
For isotropic wave fronts their amplitude decreases with 

the inverse of the distance to their source 

The effect of the Huygens principle depends on the 

number of involved dimensions. The form of the 

Green’s function is determined by the Huygens princi-

ple. The Green’s function determines the contribution of 

the wave front to the potential. 

 

Depending on dedicated Green’s functions, the integral 

over the wave fronts constitutes a series of potentials. 

The Green’s function describes the contribution of a 

wave front to a corresponding potential 

Gravitation potentials and electrostatic potentials have 

different Green’s functions 



13.3 Potentials 
Potentials are the averaged effects of the wave fronts 

that are emitted during the coupling that forms the 

building block 

 

The wave fronts and the potentials are traces of the par-

ticle and its used step stones.  

The superposition of the singularities smoothens the ef-

fect of these singularities. 

Neither the emitted wave fronts, nor the potentials affect 

the particle that emitted the wave front 

Wave fronts interfere 

The wave fronts modulate a field 

 

 Binding 

14.1 Binding mechanism 
The fourth swarming condition enables the application 

of the superposition principle in the realm of Fourier 

space. 

In this way the superposition coefficients become dis-

placement generators 

The consequence is that these coefficients may define 

movements that are internal to the construction ele-

ments 



14.2 Composites 
The fact that superposition coefficients define internal 

movements can best be explained by formulating the 

definition of composites as follows. 

 

Composites are equipped with a quantum state func-

tion whose Fourier transform at any progression 

step equals the superposition of the Fourier trans-

forms of the quantum state functions of its constitu-

ents. 
 

Now the superposition coefficients can define internal 

displacements. As a function of progression they de-

fine internal oscillations. 

 

14.3 Internal kinetics 
Within free elementary building blocks these internal 

movements concern the micro-paths  

Within composites the internal movements concern 

oscillations of the constituting bounded elementary 

building blocks  

 

Like elementary particles, composites obey the 

swarming conditions 
For composites the coupling equation holds 

 

Φ = ∇𝜓 = 𝑚 𝜑 (1) 



 

𝜓 and 𝜑 are normalized quaternionic functions that 

represent density distributions. 

14.4 Geoditches 
Each of the step stones of the swarm causes a local 

pinch that describes the temporary (singular) curva-

ture of the embedding continuum. In a free elementary 

particle the swarm of pinches combine in a non-singu-

lar pitch. 

 

In a composite the micro-paths of the constituting ele-

mentary particles are folded along the internal oscilla-

tion paths. In the composite the pinches combine in 

ditches that like the micro-paths fold along the oscilla-

tion paths. These ditches form special kinds of geo-

desics that we call “Geoditches”.  

The geoditches explain the binding effect of the super-

position of the constituents. 

 

In a small composite, such as a nucleus or an atom, 

the geoditches might blur the oscillations with up-and-

down hops to such an extent, that the oscillations are 

no longer recognizable. For electrically charged con-

stituents this means that the oscillations of the charge 

do not generate corresponding EM waves! However, 

the hops and the oscillations contribute to the internal 



kinetic energy and in this way they contribute to the 

total energy 𝑚 of the free composite. 

 

  



 Wave front propagation 

At the instant of the embedding of an elementary parti-

cle a wave front is emitted in the embedding continuum. 

This wave front slightly folds and thus curves that me-

dium. These wave fronts cannot be observed. However 

their averaged effects can become noticeable as the po-

tentials of the particle. In order to investigate these phe-

nomena we must study the propagation of the wave 

fronts.  

 

At every progression step, each existing elementary par-

ticle emits a wave front. Each emission departs from a 

different step stone. Each wave front contributes to the 

potentials of the particle. The contribution of the wave 

front to the potential is described by a dedicated Green’s 

function. The Green’s function is determined by the 

Huygens principle. 

 

The HBM suggests: 

 

Depending on the dimension of the singularity that is 

caused by the embedding process, the wave front can be 

emitted into one, two or three dimensions.  

 

In each of these cases the Huygens principle acts differ-

ently. 

 



15.1 Huygens principle 
The propagation of waves is governed by the Huygens 

principle. The operating system uses this mechanism in 

order to regenerate all wave fronts at every progression 

step. 

 Huygens principle for odd and even 
number of spatial dimension 

The following is taken from http://www.math-

pages.com/home/kmath242/kmath242.htm  

 

The spherically symmetrical wave equation in n spatial 

dimensions can be written as 

 

𝜕2𝜓

𝜕𝑟2
+

𝑛 − 1

𝑟

𝜕𝜓

𝜕𝑟
=

𝜕2𝜓

𝜕𝑡2
 

 

Now suppose we define a new scalar field ϕ by the rela-

tion 

 

𝜙(𝑟, 𝑡) = 𝑟(n−1)/2𝜓(𝑟, 𝑡) 
 

This leads to 

 

𝜕2𝜙

𝜕𝑟2
+

(𝑛 − 1)(𝑛 − 3)

4𝑟2
𝜙 =

𝜕2𝜙

𝜕𝑡2
 

 

(1) 

(2) 

(3) 

http://www.mathpages.com/home/kmath242/kmath242.htm
http://www.mathpages.com/home/kmath242/kmath242.htm


If n equals 1, meaning that we have just a single space 

dimension, then the second term on the left hand side 

vanishes, leaving us with a one-dimensional wave equa-

tion, with has the well-known general solution 

 

𝜓(𝑟, 𝑡) = 𝑓(𝑟 − 𝑡) + 𝑔(𝑟 + 𝑡) 
 

for arbitrary functions f and g. 

 

if n equals 3, i.e., in the case of three spatial dimensions, 

the spherically symmetrical wave equation reduces 

again to a one-parametric wave equation, in the modi-

fied wave function 𝜙 =  𝑟𝜓. Hence the general solution 

in three space dimensions is 

 

𝜓(𝑟, 𝑡) =
𝑓(𝑟 − 𝑡)

𝑟
+

𝑔(𝑟 + 𝑡)

𝑟
 

 

The fact that this solution is divided by 𝑟 signifies that 

the magnitude of the wave tends to drop as r increases 

(unlike the one-dimensional case, in which a wave 

would theoretical propagate forever with non-dimin-

ished strength). Focusing on just the "retarded" compo-

nent of the wave, 𝑓(𝑟 − 𝑡)/𝑟, the fact that the time pa-

rameter 𝑡 appears only in the difference 𝑟 − 𝑡 implies 

that the (attenuated) wave propagates in time with a 

phase velocity of precisely 1, because for any fixed 

(4) 

(5) 



phase 𝛽 we have 𝑟 − 𝑡 = 𝛽 and so 𝑑𝑟/𝑑𝑡 for this phase 

point is 1. Consequently if 𝑓 is a single pulse, it will 

propagate outward in a spherical shell at precisely the 

speed 1, i.e., on the light cone. Conversely, it can be 

shown that the wave function at any point in space and 

time is fully determined by the values and derivatives of 

that function on the past light cone of the point. 

 

Any wave equation for which this is true (i.e., for which 

disturbances propagate at a single precise speed) is said 

to satisfy Huygens' Principle. The connection with Huy-

gens' original statement about secondary wavelets is that 

each wavelet - with the same speed as the original wave 

- represents a tiny light cone at that point, and Huygens' 

principle asserts that light is confined to those light 

cones. 

 

For n equals 2 the extra term in equation (3) does not 

vanish. We can still solve the wave equation, but the so-

lution is not just a simple spherical wave propagating 

with unit velocity. Instead, we find that there are effec-

tively infinitely many velocities, in the sense that a sin-

gle pulse disturbance at the origin will propagate out-

ward on infinitely many "light cones" (and sub-cones) 

with speeds ranging from the maximum down to zero. 

Hence if we lived in a universe with two spatial dimen-

sions (instead of three), an observer at a fixed location 

from the origin of a single pulse would "see" an initial 



flash but then the disturbance "afterglow" would persist, 

becoming less and less intense, but continuing forever, 

as slower and slower subsidiary branches arrive. 

 The case of even spatial dimensions 
Now again start from equation (1) and try a solution in 

the form: 

 

𝜓(𝑟, 𝑡) = 𝑓(𝑟)𝑔(𝑡) 
 

Inserting this into the wave equation and expanding the 

derivatives by the product rule gives 

 

𝑔
𝜕2𝑓

𝜕𝑟2
+

𝑛 − 1

𝑟
𝑔

𝜕𝑓

𝜕𝑟
= 𝑓

𝜕2𝑔

𝜕𝑡2
 

 

Dividing through by 𝑓𝑔 gives 

 

1

𝑓

𝜕2𝑓

𝜕𝑟2
+

𝑛 − 1

𝑓 𝑟

𝜕𝑓

𝜕𝑟
=

1

𝑔

𝜕2𝑔

𝜕𝑡2
 

 

This decouples into two equations 

 

𝜕2𝑓

𝜕𝑟2
+

𝑛 − 1

𝑟

𝜕𝑓

𝜕𝑟
= 𝑘 𝑓 

 

And 

(1) 

(2) 

(3) 

(3) 



 

𝜕2𝑔

𝜕𝑡2
= 𝑘 𝑔 

 

If 𝑘 is positive or zero the right hand equation gives 

“run-away” solutions for 𝑔(𝑡), whereas if 𝑘is negative 

we can choose scaling so that 𝑘 =  −1 and then 𝑔(𝑡) 

satisfies the simple harmonic equation, whose solutions 

include functions of the form 𝑠𝑖𝑛(𝑐𝑡) and 𝑐𝑜𝑠(𝑐𝑡). In 

that case equation (9) can be re-written in the form 

 

𝑟
𝜕2𝑓

𝜕𝑟2
+ (𝑛 − 1)

𝜕𝑓

𝜕𝑟
+ 𝑟 𝑓 = 0 

 

This is the form of a Bessel’s equation. In fact for n=2 

the solution is the zero order Bessel function 𝐽0(𝑟).  

 

𝐽0(𝑟) =
2

𝜋
∫ sin(cosh(𝜃) 𝑟) 𝑑𝜃

∞

0

 

 

A plot of 𝐽0(𝑟) is shown below. 

  

(4) 

(5) 

(6) 



 
 

 

Inserting 𝑔(𝑡)  =  𝑠𝑖𝑛(𝑐𝑡) gives 

 

𝜓(𝑟, 𝑡) =
1

𝜋
∫ [cos(cosh(𝜃) 𝑟 − 𝑐𝑡)

∞

0

− cos(cosh(𝜃) 𝑟 + 𝑐𝑡)]𝑑𝜃 
 

Hence, instead of the solution being purely a function of 

𝑟 ±  𝑐𝑡 as in the case of odd dimensions, we find that it 

is an integral of functions of 𝑐𝑜𝑠ℎ(𝜃)𝑟 ±  𝑐𝑡. Each 

(7) 



value of 𝜃 corresponds to a propagation speed of 

𝑐/𝑐𝑜𝑠ℎ(𝜃), so the speeds vary from 𝑐 down to zero. 

This signifies that the wave function at any event is cor-

related not just with the wave function on its “light 

cone”, but with the wave function at every event inside 

its light cone. 

 

In two dimensions the Huygens principle corresponds to 

a centripetal force11 with potential 

 

𝑉 = −
ℏ

8𝑀𝑟2. 

 

 Huygens principle applied 
HYPOTHESIS : Particles transmit waves in dimensions 

where the discrete symmetry of the quantum state func-

tion differs from the discrete symmetry of the embedding 

background.  

 

The operating system uses the Huygens principle in or-

der to restore the potentials at each progression step. 

The Huygens principle works differently depending on 

the number of dimensions in which the waves are trans-

mitted. 

 

                                                 
11 http://cds.cern.ch/record/514621/files/0108083.pdf 

(8) 

http://cds.cern.ch/record/514621/files/0108083.pdf


The characteristics of the potentials that are emitted or 

absorbed by elementary particles are determined by the 

differences between the discrete symmetry set of the 

quantum state function of the particle and the symmetry 

set of the coupled QPDD that represents the embedding 

continuum. This difference determines whether the po-

tentials act in 1, 2 or 3 dimensions. In odd dimensions 

the persistence of the potentials can be explained by the 

common interpretation of the Huygens principle. This 

common interpretation is that at every point of each 

wave front new waves are generated. This does not 

work for particles that send their waves in two dimen-

sions. This includes quarks, W-particles and Z-particles. 

The corresponding messengers are gluons. For these ob-

jects the potentials also act in two dimensions. In even 

dimensions the Huygens principle does not act in its 

normal way. 

The same conditions that determine whether waves are 

emitted in 1, 2, or 3 dimensions also determine whether 

the particle has 1/3, 2/3 or 3/3 integer electric charge. 

The re-emitted waves consist out of a retarded compo-

nent and an advanced component. These components 

correspond to outbound interactions and inbound inter-

actions.  

15.2 Discussion 
The particular behavior of the Huygens principle for po-

tential contributions that cover even dimensions might 



explain the exceptional strength of the corresponding 

strong force mechanism. 

 

It appears that fermions with electric charges of ±n/3 e 

produce n dimensional waves that contribute to their 

electrostatic potential.  

For n=3 the Green’s function is of form 1/r. 

For n=2 the Green’s function is a zero order Bessel 

function. 

For n=1 the Green’s function is a constant. 

 

On the other hand the color confinement principle12 pre-

vents that the even dimensional actions of the Huygens 

principle will ever become observable in a long lasting 

way. 

The gravitation potential is not influenced by the dis-

crete symmetries. The corresponding potential contribu-

tions are always transmitted isotropic in three dimen-

sions.  

 

The electrostatic potential is controlled by the discrete 

symmetry sets. Depending on the resulting electric 

charge of the particle the electric potential contributions 

are transmitted in 1, 2 or 3 dimensions.  

 

                                                 
12 See color confinement. 



The operating system applies the Huygens principle for 

the recreation in each progression step of the corre-

sponding potentials. 

15.3 Green’s functions 
No mathematical solution is known for the conversion 

to a rather static potential function of a super-high fre-

quency train of wave fronts that start at slightly different 

positions. Normally the relation between a set of static 

and identical charges and a potential function is regu-

lated by a dedicated Green’s function.  

We can try a similar solution by letting each of the wave 

fronts play the role of the potential of a single “charge”. 

We can also use the fact that a building block contains a 

fixed number of step stones. Thus, instead of an integral 

a sum over 𝑁𝑤 step stones can be used.  

15.4 Gravity and electrostatics 
Potentials depend on the Green’s function that is used to 

convert the corresponding density distribution into a po-

tential function. Apart from their Green’s function, 

gravity and electrostatics can be treated by similar equa-

tions. We use the fact that charge Q is spread over 𝑁𝑤 

step stones that have charge 𝑞 = 𝑄/𝑁𝑤. 

 

Description Gravity Electrostatics 

Field 𝒈 = −𝛁 φ 𝑬 = −𝛁 φ 

Force 𝑭 = 𝑚𝒈 𝑭 = 𝑄𝑬 



Gauss law 〈𝛁, g〉 = −4𝜋𝐺𝜌 
〈𝛁, E〉 =

𝑄

𝜀
 

Poisson law 

∆𝜑 =
〈 𝜵, 𝜵𝜑〉 

∆𝜑 = 4𝜋𝐺𝜌 
∆𝜑 = −

𝑄

𝜀
 

Greens func-

tion 

−𝜌(𝒓′)

|𝒓 − 𝒓′|
 

𝑞

|𝒓 − 𝒓′|
 

Single 

charge po-

tential 

𝜑 = −
4𝜋𝐺𝑚

|𝒓|
 𝜑 =

𝑄

4𝜋𝜀|𝒓|
 

Single 

charge field 
𝑔 = −

4𝜋𝐺𝑚

|𝒓|2
𝒓 𝑬 =

𝑄

4𝜋𝜀|𝒓|2
𝒓 

Two charge 

force 
𝑭 = −

4𝜋𝐺𝑚1𝑚2

|𝒓|3
𝒓 𝑭 =

𝑄1𝑄2

4𝜋𝜀|𝒓|3
𝒓 

Mode attracting repelling 

 

 

The table shows that the Greens functions of both fields 

differ in sign. For the gravitation potential the Green’s 

function is charged with the local “charge” density 

𝜌(𝒓′). For the electrostatic potential the Green’s func-

tion is charged with a (constant) electric charge 𝑄. 

The Yukawa potential13 uses a short range Green’s func-

tion:  

 

                                                 
13 http://en.wikipedia.org/wiki/Yukawa_potential 

http://en.wikipedia.org/wiki/Yukawa_potential


−𝜌(𝒓′)

|𝒓 − 𝒓′|
exp(−𝜇|𝒓 − 𝒓′|) 

 

(1) 



 In this example we use the gravitational Green’s function.  

 

Since the items are carriers with charge 𝜌𝑖, the density distribu-

tionρf(𝐫) correspond to a potential 𝜑(𝒓).  

Every item contributes a term 𝜑𝑖(𝒓 − 𝒓𝒊) =
−𝜌𝑖

|𝒓−𝒓𝒊|
 

 

𝜑(𝒓) = ∑ 𝜑𝑖(𝒓 − 𝒓𝒊)

𝑖

= ∑
−𝜌𝑖

|𝒓 − 𝒓𝒊|
𝑖

 

 

Example: If there is a static spherically symmetric Gaussian charge 

density 

 

ρg(r) =
ρ𝑐

σ3√2π
3 exp (

−r2

2σ2
) 

 

where ρ𝑐 is the total charge, then the solution 𝜑(𝑟) of Poisson's 

equation, 

 

∇2φ = ρg 

 

is given by 

 

φ(r) =
ρ𝑐

4πεr
erf (

r

√2σ
) =

−1

4πε
∫

ρg(𝒓′)

|𝒓 − 𝒓′|
𝑑3𝒓′ 

 

where 𝑒𝑟𝑓(𝑥) is the error function. 

 

Note that, for 𝑟 much greater than 𝜎, the erf function approaches 

unity and the potential 𝜑 (𝑟) approaches the point charge potential 

 

φ(r) ≈
−ρ𝑐

4πεr
 

as one would expect. Furthermore the 𝑒𝑟𝑓 function approaches 1 

extremely quickly as its argument increases; in practice for 𝑟 >
 3𝜎 the relative error is smaller than one part in a thousand. 

http://en.wikipedia.org/wiki/Gaussian_distribution
http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Electrical_potential


 Interpretation 
The above integral can be interpreted as a summation of 

influences by all step stones that constitute the micro-

path of the particle. 

Thus the potential of the (Gaussian) particle is given by: 

 

 

φ(r) ≈
ρ𝑐

4πεr
erf (

r

√2σ
) 

 

This no longer represents a singularity. 

 Bertrand’s theorem 
Now we remember Bertrand’s theorem.14 : 

Bertrand's theorem states that only two types of central force poten-

tials produce stable, closed orbits:  

(1) an inverse-square central force such as the gravita-
tional or electrostatic potential 

𝑉(𝑟) =  
−𝑘

𝑟
 

and  

                                                 
14 http://en.wikipedia.org/wiki/Bertrand's_theorem. 

(1) 

(1) 

http://en.wikipedia.org/wiki/Central_force
http://en.wikipedia.org/wiki/Potential
http://en.wikipedia.org/wiki/Potential
http://en.wikipedia.org/wiki/Orbit_(dynamics)
http://en.wikipedia.org/wiki/Gravity
http://en.wikipedia.org/wiki/Gravity
http://en.wikipedia.org/wiki/Electrostatics


(2) the radial harmonic oscillator potential 

𝑉(𝑟) =  ½ 𝑘 𝑟2 

According to this investigation it becomes acceptable to 

assume that the undisturbed shape of the Qpatterns can 

be characterized by something that comes close to a 3D 

Gaussian distributions. Since such a distribution pro-

duces the correct shape of the gravitation potential, the 

underlying mechanism would explain the origin of 

curvature.  

15.5 Multiple sets of wave fronts 
There are at least two kinds of potentials. This means 

that there are at least as many sets of wave fronts that 

play a role. 

It is already indicated that wave fronts may depend on 

the number of participating dimensions. This may de-

pend on the kind of singularity that governs the embed-

ding process. On its turn this depends on the symmetry 

flavors of the fields that are coupled by the embedding 

process. In each embedding two fields are participating. 

One plays the role of the source and the other plays the 

role of the drain. Each of the participating field has its 

own set of wave fronts and each of these sets corre-

sponds to a type of potential.  

 

(2) 

http://en.wikipedia.org/wiki/Simple_harmonic_oscillator


The HBM suggests that the field that characterizes the 

quantum state function will deliver the electrostatic po-

tential. The embedding field delivers the gravitation po-

tential. Both fields are members of the symmetry flavor 

bundle that constitutes the Palestra.  

  



 Interpreting the coupling equation. 

16.1 Speed 
The definition of the norm involves an integral. 

For the continuous density distribution this means: 

 

‖𝜓‖ = ∫ |𝜓|2 𝑑𝑉
𝑉

 

 

The coupling equation in integral format runs: 

 

‖𝜙‖ = ∫ |𝜙|2 𝑑𝑉
𝑉

= ∫ |∇𝜓|2 𝑑𝑉
𝑉

 

 

= 𝑚2 ∫ |𝜓|2 𝑑𝑉
𝑉

= 𝑚2 

 

Now let us apply this to the swarm by replacing the inte-

gral by a summation of squared hop sizes |ℎ𝑖|. 
 

𝑚2 = ∑|ℎ𝑖|
2

𝑁

𝑖

= 𝑁|ℎ𝑖|2̅̅ ̅̅ ̅̅  

 



ℎ𝑖is the quaternionic value of the i-th hop. It is an imagi-

nary quaternion. 𝑁 is the number of elements in the 

swarm15. 𝑁 is not affected by uniform movement. 

 

ℎ𝑖 = 𝑙𝑖 − 𝑙𝑖−1; 𝑖 = 1 … 𝑁 
 

𝑙0 is the start location. 𝑙𝑖 is the location of the i-th swarm 

element. 

 

The displacement of the whole swarm after a full cycle 

is: 

 

∆𝒔= ∑ 𝒉𝒊

𝑁

𝑖

 

 

∆𝒔 is a vector. This move takes N progression steps. 

Thus the swarm speed is 

 

𝒗 =
∆𝒔

𝑁 ∆𝜏
 

 

                                                 
15 Later we will see that this interpretation only holds for 

closed micro-paths. 𝑁 depends on the oscillation mode 

of the closed path particle. 



𝑁 ∆𝜏 is the swarm recycle period. It is the duration of 

walking through the full micro-path. 𝒗 is a vector. 

∆𝜏 is the progression step size. 

16.2 Maximum speed 
The micro-path wraps along the movement path of the 

swarm. In the most extreme case the path fits on a part 

of a single geodesic. In that case the swarms maximum 

speed is reached. The whole swarm is stretched along 

the geodesic. All hops are part of the geodesic. 

 

In the case of an open micro-path: 

 

∆𝑠𝑚𝑎𝑥= ½ ∑|ℎ𝑖|

𝑁

𝑖

 

 

In the case of a closed micro-path: 

 

∆𝑠𝑚𝑎𝑥= ¼ ∑|ℎ𝑖|

𝑁

𝑖

 

 

∆𝑠𝑚𝑎𝑥 is a real number. 

This move still takes N progression steps. Thus the 

maximum swarm speed 𝑐 is 

 



𝑐 =
∆𝑠𝑚𝑎𝑥

𝑁 ∆𝜏
=  

𝑁|ℎ𝑖|̅̅ ̅̅̅ 

𝑛 𝑁 ∆𝜏
=

 |ℎ𝑖|̅̅ ̅̅̅

𝑛 ∆𝜏
 

 

Here |ℎ𝑖|̅̅ ̅̅̅ is the average value of the hop size |ℎ𝑖|.  
𝑛 is 2 for an open path and 4 for a closed path. 

 

A fixed maximum speed of building blocks goes to-

gether with a fixed size of the length of the micro-path 

and a fixed number 𝑵 of elements in the swarm. 

 

Two types of articles exist 

 

 Open path particles 

 Closed path particles 
 

At any speed holds: 

 

𝑁𝑐𝑙𝑜𝑠𝑒𝑑 ≥ 𝑁𝑚𝑎𝑥 ≥ 2 𝑁𝑜𝑝𝑒𝑛  
 

At maximum speed no oscillations take place. 
In that case: 

 

𝑁𝑐𝑙𝑜𝑠𝑒𝑑 = 𝑁𝑚𝑎𝑥 ≥ 2 𝑁𝑜𝑝𝑒𝑛 

 

An open path particle may contain less than ½𝑁𝑚𝑎𝑥 

hops. 

 



A transition from closed path in open path splits the 

closed path particle in two open path particles. 

The converse transition combines two open path parti-

cles into a closed path particle. 

 

The existence of a generally valid maximum speed of 

building blocks is the base of special relativity theory. 

 

In contemporary physics c is considered to be equiva-

lent to the speed of free information transfer. 

 Closed path particles 

For closed particles hold: 

 

𝑁 depends on the oscillation mode. 

 

𝑚2 = ∑|ℎ𝑖|
2

𝑁

𝑖

= 𝑁|ℎ𝑖|2̅̅ ̅̅ ̅̅  

 

𝜎|ℎ𝑖| = √∑(|ℎ𝑖| − |ℎ𝑖|̅̅ ̅̅̅)
2

𝑁

𝑖

 

 

𝜎|ℎ𝑖| is the standard deviation of the step size |ℎ𝑖|. 



𝜎|ℎ𝑖|
2 = 𝑣𝑎𝑟(|ℎ𝑖|) = ∑ {|ℎ𝑖|

2 − (|ℎ𝑖|̅̅ ̅̅ ̅)
2

}

𝑁

𝑖

 

 

= 𝑁|ℎ𝑖|2̅̅ ̅̅ ̅̅ − 𝑁(|ℎ𝑖|̅̅ ̅̅̅)
2
 

 

 = 𝑚2 − 𝑁 (𝑐 ∆𝜏)2 
 

=𝑚2 −
∆𝑠

2

𝑁
 

 

𝑚2 = 𝜎|ℎ𝑖|
2 + 

∆𝑠
2

𝑁
 

 

𝑁, 𝑐, ∆𝜏 and∆𝑠are supposed to be constants. Thus 𝑚 de-

pends on 𝜎|ℎ𝑖|. For particles at rest this is also a con-

stant. 

16.3 Unfolding the micro-path 
The micro-path can be unfolded in many different ways.  

 

An open micro-path unfolds to a condition that leads to 

a maximum speed in the condition that all folds are ar-

ranged along a part of a single geodesic. In that condi-

tion it moves at maximum speed 𝑐. 

 

A closed micro-path may unfold in an oscillation that 

keeps the micro-path a closed cycle and that follows a 



closed geodesic. This may be done such that the loca-

tion of the full swarm follows a part of a single open ge-

odesic. 

 

A closed micro-path may unfold such that in the ex-

treme condition the closed path is aligned up and down 

along a single geodesic. In that condition the particle 

moves at maximum speed 𝑐. 

 

The closed path particle resists unfolding. In its most 

stable condition the closed micro-path is maximally 

folded. In that case the swarm is at rest. 

 Unfolding to harmonic oscillation 

An oscillation that unfolds the closed micro-path can be 

interpreted as an harmonic oscillation16 and will occur in 

a range of modes that each corresponds to a discrete os-

cillation energy. This can be understood when the oscil-

lation increases the number of hops. 

Adding harmonic oscillation energy to a closed path 

particle can occur by absorbing the energy of an open 

path particle that contains the corresponding number of 

hops. 

                                                 
16 A quantum harmonic oscillation increases the energy 

of the object in a discrete fashion. Adding hops does the 

same. However, the energy levels can be better under-

stood via the harmonic oscillation. 



Increasing the energy higher than the maximum oscilla-

tion energy level will result in a displacement that corre-

sponds with a linear movement of the closed path parti-

cle. That movement may eventually break the closure of 

the micro-path. 

 

An oscillating swarm may also move with respect to its 

oscillation center. That condition can be treated as the 

superposition of a movement and an oscillation at a 

fixed center location. 

The harmonic oscillation can correspond to one of a 

range of discrete energies. Jumping from one energy 

mode to another requires a special procedure, which re-

sults in the emission or absorption of a photon or 

gluon17. 

 Relativity 

𝑚 is the total energy. According to relativity theory the 

energy of the swarm at rest is 𝑚𝑟 where18 

 

𝑚𝑟
2 = 𝑚2 − (𝑚 

𝑣

𝑐
)

2

 

 

                                                 
17 See sections on photon emission and photon absorp-

tion. 
18 See section on relativistic energy and momentum. 



𝑚 =
𝑚𝑟

√1 − ( 
𝑣
𝑐

)
2
 

 

Here 𝑣 is a real number. Thus if 𝑣 approaches 𝑐, then 

the total energy 𝑚 goes to infinity. 

Thus completely unfolding the micro-path is effectively 

made impossible by the operating system. 

16.4 Interpretation 
The swarm has a built-in mechanism that resists the un-

folding of the micro-path. 

 

Breaking the micro-path oscillation cycle results in a 

moving object that itself can be considered as a swarm 

at rest or a swarm at a lower oscillation mode. 

 Lorentz transformation 

17.1 Reference frames 
Differences between positions in subsequent members 

of the sequence of HBM pages can be interpreted as dis-

placements. The displacement is a coordinate transfor-

mation. For the properties of this transformation it does 

not matter where the displacement starts or in which di-

rection it is taken. 

 



The same holds for displacements that concern sequence 

members that are located further apart. The correspond-

ing displacements form a group. The displacement is a 

function of both the position and the sequence number. 

The sequence number is represented by the progression 

step number. 

 

 

The Lorentz transform concerns the sequence of Hilbert 

spaces and NOT the Gelfand triple. With other words 

the transform does not concern the field that represents 

space! The reference frames that are treated here are 

pairs of locations and progression step numbers. These 

are discrete objects. For simplicity the next section 

treats them as quaternions that have real, rather than ra-

tional coefficients. 

The locations are locations of swarms (Qpatches) and 

not locations of step stones (Qtargets). 

17.2 The transformation 
The displacement 𝜏, 𝑧 → 𝜏′, 𝑧′ can be interpreted as a 

coordinate transformation and can be described by a 

matrix. Here 𝜏 is progression and it is the real part of the 

quaternion. 𝑧 represents the imaginary part of the qua-

ternion. Both quaternions concern characteristic data of 

a single complete swarm. From the previous chapter we 

know that the dynamics of the swarm is limited by a 



maximum speed 𝑐. The condition of the swarm at the 

two reference frames can be represented by a matrix. 

 

[
𝜏′

𝑧′] = [
𝛾 𝛿
𝛽 𝛼

] [
𝜏
𝑧

] 

 

The matrix elements are interrelated. When the dis-

placement concerns a uniform movement, the interrela-

tions of the matrix elements become a function of the 

speed 𝑣. Here 𝑣 is the speed measured as displacement 

per progression interval. The group properties together 

with the isomorphism of space fix the interrelations. 

 

[
𝜏′

𝑧′] = 1/√1 + 𝑘𝑣2 [
1 𝑘𝑣

−𝑣 1
] [

𝜏
𝑧

] 

 

If 𝑘 is positive, then there may be transformations with 

𝑘𝑣2 ≫ 1 which transform progression into a spatial co-

ordinate and vice versa. This is considered to be un-

physical. The Hilbert book model also supports that vi-

sion. 

 

The condition k = 0 corresponds to a Galilean transfor-

mation 
 

[
𝜏′

𝑧′] = [
1 0

−𝑣 1
] [

𝜏
𝑧

] 

 

(1) 

(2) 

(3) 



The condition 𝑘 <  0 corresponds to a Lorentz transfor-

mation. We can set 𝑘𝑐2 = −1, where 𝑐 is an invariant 

speed that corresponds to the maximum of 𝑣. 

 

[
𝜏′

𝑧′] = 1/√1 − 𝑣2/𝑐2 [ 1 −𝑣/𝑐2

−𝑣 1
] [

𝜏
𝑧

] 

 

𝜏′ =
1

𝛾
(𝜏 −

𝑣𝑧

𝑐2
) 

 

𝑧′ =
1

𝛾
(𝑧 − 𝑣 𝜏) 

 

𝜏 =
𝑧 − 𝛾 𝑧′

𝑣
 

 

17.3 Phenomena 
Lorentz transformations introduce the phenomena that 

go together with relativity, such as length contraction, 

progression dilatation and relativity of simultaneity that 

occur when two inertial reference frames are consid-

ered. Within an inertial reference frame Newton’s first 

law holds and in our consideration all points move at the 

same speed.  

(4) 



 

𝜏1
′ =

1

𝛾
(𝜏1 −

𝑣𝑧1

𝑐2
) 

 

𝜏1
′ − 𝜏2

′ =
1

𝛾
(𝜏1−𝜏2 −

𝑣(𝑧1−𝑧2)

𝑐2
) 

 

With 𝑧1 = 𝑧2 this delivers: 

 

∆𝜏′ =
∆𝜏

𝛾
 

 

This explains progression dilation 

𝑧1
′ =

1

𝛾
(z1 − 𝑣 𝜏1) 

 

∆𝑧′ =
∆𝑧

𝛾
 

This explains length contraction. 

 

 

These phenomena occur in the Hilbert Book Model 

when different members of the sequence of Hilbert 

spaces are compared. Usually the inertial frames are 

spread over a range of Hilbert book pages. 



Since the members of the sequence represent static sta-

tus quos and swarms are only defined within such a 

static status quo, the relativity of simultaneity restricts 

the selection of the inertial frames. Each of the inertial 

frames must be situated completely in a single member 

of the sequence. 

 

The indicated phenomena arise when one inertial frame 

is observed from the other inertial frame. 

17.4 Relativistic energy and momentum 
The micro-path of the elementary particle stretches 

along the movement path. On the other hand, for ob-

serving objects the length in the direction of movement 

contracts. These effects compensate. Time dilation is 

not compensated. 

 

The observing object gets its information via the wave 

fronts that at super-high frequency are emitted by the 

observed elementary particle. This super-high frequency 

cannot be observed. 

 

Displacements of the considered moving particle will be 

observed to be smaller. Thus its momentum will be af-

fected. Phenomena inside the realm of the particle run 

slower. 

𝒑 and 𝑝0 are both generators of increments of respec-

tively 𝛿𝒒 and 𝛿𝑞0 



 

𝛿𝑔 = 𝑝 𝛿𝑞 
 

The real part of 𝛿𝑔 is used as the generator in the uni-

tary transform, which is invariant against inversion19. 

 
𝛿𝑔0 = 𝑝0 𝛿𝑞0 − 〈𝒑, 𝛿𝒒〉 

 

= 𝛿𝑔0
′ = 𝑝0

′  𝛿𝑞
0
′ − 〈𝒑′, 𝛿𝒒′〉 

 

𝛿𝑞0 =
𝛿𝑞

0
′ − 〈𝛿𝒒′,

𝒗

𝑐2〉

𝛾
 

 

𝛿𝒒 =
𝛿𝒒′ − 𝒗 𝛿𝑞

0
′

𝛾
 

 

 
𝑝0 𝛿𝑞0 − 〈𝒑, 𝛿𝒒〉 

 

= 𝑝0  
𝛿𝑞0

′ − 〈𝛿𝒒′,
𝒗
𝑐2〉

𝛾
− 〈𝒑,

𝛿𝒒′ − 𝒗 𝛿𝑞0
′

𝛾
〉 

 

                                                 
19 This approach was taken according to ideas of Shan 

Gao in his “Derivation of the energy momentum rela-

tion”. 



=(〈
𝒑

𝛾
, 𝒗〉 +

𝑝0

𝛾
) 𝛿𝑞0

′ − 〈
𝒑

𝛾
, 𝛿𝒒′〉 + 〈

𝑝0

𝛾

𝒗

𝑐2 , 𝛿𝒒′〉 

 

=
〈𝒑, 𝒗〉 + 𝑝0

𝛾
𝛿𝑞0

′ − 〈𝛿𝒒′,
𝒑 +

𝒗
𝑐2

𝛾
〉 

 

= 𝑝0
′  𝛿𝑞0

′ − 〈𝒑′, 𝛿𝒒′〉 

 

  



 

𝒑′ =
𝒑 + 𝑝0

𝒗
𝑐2

𝛾
  

 

𝑝0
′ =

〈𝒑, 𝒗〉 + 𝑝0

𝛾
 

 

These equations represent the relativistic energy and 

momentum equations. 

 

The formulas can be reversed: 

 

𝑝0 = 𝛾𝑝0
′ − 〈𝒑, 𝒗〉 

 

𝒑 = 𝛾𝒑′ − 𝑝0

𝒗

𝑐2
 

 

𝑝0 = 𝛾𝑝0
′ − 𝛾〈𝒑′, 𝒗〉 + 𝑝0

𝑣2

𝑐2
 

 

𝑝0 = 𝑝0
′ − 〈𝒑′, 𝒗〉 

 

𝒑 = 𝛾𝒑′ − (𝛾𝑝0
′ − 〈𝒑′, 𝒗〉)

𝒗

𝑐2
 

  



17.5 Analyzing the imaginary part of the 
generator 

The imaginary part of the generator 𝛿𝑓 might also be in-

variant. 

 

𝛿𝑓 = 𝑝 𝛿𝑞 
 

𝛿𝒇 = 𝒑 𝛿𝑞0 + 𝑝0 𝛿𝒒 + 𝒑 × 𝛿𝒒 

 

𝛿𝒇 = 𝛿𝒇′ 

 

So let us investigate whether: 

 

𝒑 𝛿𝑞0 + 𝑝0 𝛿𝒒 + 𝒑 × 𝛿𝒒 

 

≟ 𝒑′ 𝛿𝑞0
′ + 𝑝0

′  𝛿𝒒′ + 𝒑′ × 𝛿𝒒′ 

 

= 𝒑 
𝛿𝑞

0
′ − 〈𝛿𝒒′,

𝒗

𝑐2〉

𝛾
+ 𝑝0  

𝛿𝒒′ − 𝒗 𝛿𝑞
0
′

𝛾
+ 𝒑 ×

𝛿𝒒′ − 𝒗 𝛿𝑞
0
′

𝛾
 

 

 

Or: 

 

𝒑′ 𝛿𝑞0
′ + 𝑝0

′  𝛿𝒒′ + 𝒑′ × 𝛿𝒒′ 

 

≟ (𝛾𝒑′ − (𝑝0
′ − 〈𝒑′, 𝒗〉)

𝒗

𝑐2
)

𝛿𝑞
0
′ − 〈𝛿𝒒′,

𝒗

𝑐2〉

𝛾
 



 

+(𝑝0
′ − 〈𝒑′, 𝒗〉)

𝛿𝒒′ − 𝒗 𝛿𝑞0
′

𝛾
 

 

+ (𝛾𝒑′ − (𝑝0
′ − 〈𝒑′, 𝒗〉)

𝒗

𝑐2
) ×

𝛿𝒒′ − 𝒗 𝛿𝑞
0
′

𝛾
 

 

Or: 

(𝑝0
′ − 〈𝒑′, 𝒗〉)

𝒗

𝑐2

〈𝛿𝒒′,
𝒗
𝑐2〉

𝛾
+ 〈𝒑′, 𝒗〉

𝒗 𝛿𝑞
0
′

𝛾
 

 

+(𝑝0
′ − 〈𝒑′, 𝒗〉)

𝒗

𝑐2
×

𝒗 𝛿𝑞
0
′

𝛾
≟ 𝟎 

 

Or: 

 

𝑝0
′ ≟ (1 +

𝑐4 𝛿𝑞
0
′

〈𝛿𝒒′, 𝒗〉
) 〈𝒑′, 𝒗〉 

 

This does not seem to be generally valid for all values of 𝛿𝑞 

and 𝑝. The conclusion is that the invariance only holds for 

the real part of the generator 𝛿𝑔. 

  



 Movement in an embedding field 

We use the strategy that Denis Sciama applied in his 

“On the origin of inertia”20.  

An elementary particle represents an artifact in its em-

bedding continuum. The “strength” of the artifact can be 

characterized by the total energy 𝑚, which acts as a 

charge in a surrounding field. Here the field equations 

for charged object apply. This consideration also holds 

for composites. 

 

The influence of the charge is determined by the 

Green’s function. For a free moving elementary particle 

that shows a Gaussian density distribution of its location 

swarm this Green’s function has a shape: 

 
𝐸𝑟𝑓(𝑟)

𝑟
 

 

Already at a small distance from the center this can be 

approached by 

 
1

𝑟
 

 

Together with the strength 𝑚 this corresponds to a po-

tential. 

                                                 
20 http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S 

http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S


 

𝜑 = ∭
𝜌

𝒓𝑉

 𝑑𝑉 

 

Here 𝜌 represents the “charge” density distribution 
of the contributing 𝑁 “charges” of (average) size 𝑚/𝑁 
to the potential 𝜑. 

𝜑 ∝ 𝑚 
 

𝜑 = 𝑔 𝑚 
 
𝑔 is a proportionality factor. 
A uniformly moving potential with speed 𝒗 corresponds 

to a vector potential 𝑨.  

 

𝑨 = ∭
𝜌

𝒓𝑉

𝒗 𝑑𝑉 = φ 𝒗 

 

𝐴 = 𝜙 + 𝜑 𝒗 

 

ϕ is the scalar part of the embedding field 𝑨. 
𝑨 is the imaginary part. We will use the quaternionic 

differential field equations. 

 

If the scalar potential 𝜑 accelerates, then this goes to-

gether with a new vector field 𝑬. 

 
𝜕𝐴

𝜕𝜏
=

𝜕𝜙

𝜕𝜏
+

𝜕𝜑

𝜕𝜏
 𝒗 +  𝜑 𝒗̇  



 

We separate the imaginary part of this equation: 

 
𝜕𝑨

𝜕𝜏
=

𝜕𝜑

𝜕𝜏
 𝒗 +  𝜑 𝒗̇  

 

Further we know: 

 

𝐸0 =
𝜕𝜙

𝜕𝜏
− ⟨𝛁, 𝑨⟩ 

 

𝑬 =
𝜕𝑨

𝜕𝜏
+ 𝛁𝜙 + 𝛁 × 𝑨 

 

𝑬 =
𝜕𝜑

𝜕𝜏
 𝒗 +  𝜑 𝒗̇ + 𝛁𝜙 + 𝛁 × 𝑨 

 

All terms on the right side, except the second term are 

very small. 

 

𝑬 ≈  𝜑 𝒗̇ = 𝑔 𝑚 𝒗̇  

 

Thus the acceleration goes together with an extra vector 

field 𝑬 that counteracts the acceleration of the moving 

potential. In physical terminology 𝑬 is a force field.  

In fact 𝑬 represents the action of inertia. 

 

With other words the fact that elementary particles emit 

wave fronts, whose averaged effect is noticeable as a 

(6) 



gravitation potential, results in the existence of inertia. 

This effect represents itself as a force field. 

  



 Photons 

19.1 Basic phenomena 
It is not yet clear why the maximum speed of building 

blocks 𝑐 conforms to the maximum speed of infor-

mation transfer. For that reason we must investigate the 

photons, which are the carriers of that information. 

 

The rest mass of photons equals zero. They may pro-

gress in space for billions of years and after that they 

can still be detected by a suitable detector. They can be 

interpreted as one dimensional wave fronts. With other 

words they are governed by the one dimensional Huy-

gens principle. Their sources may emit the photons in 

isotropic patterns, but each separate photon is a one di-

mensional wave front. 

The photons are emitted in energy quanta that have a 

discrete energy, which is encoded in the frequency of 

the photon. 

 

Atoms may emit photons. The electrons that belong to 

the atom travel in oscillation paths that are hidden by 

the geoditches, which are produced by these oscillating 

electrons. Due to this coverage the electromagnetic radi-

ation that normally would be emitted, does not appear. 

The up and down hopping in the micro-path completely 

disturbs the generation of the EM radiation. However, 

the kinetic energy of the oscillation adds to the kinetic 



energy of the hops and thus it adds to the total energy of 

the electron and as a consequence it adds to the mass of 

the atom. 

 

19.2 Photon emission 
If the electron switches to a lower energy oscillation 

mode, then a corresponding photon is emitted.  

 

The HBM suggests that this emission takes the comple-

tion of a full micro-path, which has a fixed duration. 

That time is used to encode the energy jump into the 

photon. 

 

The amplitudes of the regeneration wave fronts diminish 

with progression, but the photon wave front keeps its 

amplitude.  

 

In order to produce the one-dimensional wave front or 

series of wave fronts, the electron must emit the photon 

from nearly the same location and in exactly the same 

direction. 

 

 Explanation 

The situation can simply be explained, however that ex-

planation has strong implications. 

 



The elementary particle can obtain extra hops by partici-

pating in a harmonic oscillation. The number of extra 

hops corresponds to the energy of the oscillation. When 

a photon is emitted it takes a part of these extra hops as 

its bunch of energy. The extra hops are sent in a fixed 

progression interval. Thus the energy is encoded in the 

frequency of the photon. 

 

During this special cycle of the micro path, the electron 

emits the photon in a preselected direction. After this 

procedure the oscillation restarts in the other oscillation 

mode. 

 

The duration of the special micro-path cycle must not 

differ from the standard micro-path cycle. Also the har-

monic oscillation must not influence the duration of the 

micro-path cycle. With other words, during the har-

monic oscillation the hops are smaller. 

 

Harmonic oscillation energy is related to the number 

of hops in a micro-path cycle. 

 

If this explanation fits, then this is a strong indication 

that the duration of the regeneration of elementary parti-

cles is fixed. 



19.3 Red shift 
Due to space expansion as a function of progression the 

photon becomes red shifted. The wave length of the 

photon changes, but the number of progression ticks that 

this train of wave fronts last increases as well. The train 

still fits the duration of the special micro-path. However 

it corresponds with a lower energy jump. 

19.1 Photon absorption 
Photon absorption is the reverse of photon emission. 

At the arrival of a fitting photon the current oscillation 

and the regeneration of the elementary particle enter a 

special regeneration cycle in which the hops of the pho-

ton are added to the hops of the elementary particle. 

During the special cycle of the micro-path the photon 

energy is absorbed. Next the oscillation is restarted in 

the new oscillation mode. 

19.2 Annihilation of elementary particles 
The annihilation of a closed path elementary particle in-

volves the emission of all hops into two photons that 

have the same frequency and that when the particle is at 

rest will leave in opposite directions. 

19.1 Creation of elementary particles 
 

The creation of a closed path elementary particle in-

volves the absorption of the hops of two photons that 



have the same frequency and arrive from nearly oppo-

site directions. The created particle is at rest with re-

spect to the frame in which the photons have opposite 

directions. 

  



 Detection patterns 

The wave nature of free elementary particles and pho-

tons can be visualized by their detection patterns. 

Both free elementary particles and photons can be char-

acterized by the probability density distribution of their 

potential detection locations. This probability density 

distribution has a Fourier transform. As a consequence 

the probability density distribution is a wave package. 

 

The shape of the actual probability density distribution 

is affected by space curvature and by boundary condi-

tions. Since these conditions change with progression, 

the actual probability density distribution is also a func-

tion of progression. Thus the movement path of the con-

sidered object plays an important role. 

 

 Large sets of nearly similar objects that have such den-

sity distributions may show interference of the waves 

that are contained in the wave packages. As a conse-

quence the detection patterns may take the form of inter-

ference patterns. This gives the impression that the sepa-

rate objects show wave behavior. However, this 

behavior only appears when sets of similar objects inter-

fere and they are the result of the interaction of the prob-

ability density distributions of the particles and the 

boundary conditions. The potentials of the objects may 



interact and as such the potentials of other objects are 

part of the boundary conditions of the considered object. 

 

If a trail of elementary particles that all are prepared in 

the same way passes a given potential configuration or 

an aperture configuration, then the geometric configura-

tion of these boundary conditions acts as an imaging 

mechanism.  

 

The configuration of this imaging mechanism has an 

Optical Transfer Function that affects the resulting prob-

ability density distribution that defines the detection 

probability of the objects that are being imaged. The 

OTF is the Fourier transform of the geometric potential 

or aperture configuration.  

 

The Fourier transform of the probability density distri-

bution of the considered object is the mapping quality 

characteristic of that object. 

 

At every progression instant the product of this OTF and 

the mapping quality characteristic of a moving object 

determine the resulting detection density probability dis-

tribution of the moving object. 

 

At the instant of detection, part of the influencing distri-

butions is moving with the detected object, while the 

other part is rather static and represents the boundary 



conditions. Their Fourier transforms multiply in order to 

form the Fourier transform of the effective probability 

density distribution. The object just obeys the re-

strictions that are set by this final distribution. 

 

For a set of objects the angular distributions and the dis-

tribution of properties such as color (for photons), en-

ergy and charge play a role. A homogeneous set gives a 

different detection pattern than an inhomogeneous set. 

  



 Spin suggestion 

21.1 The micro-path 
The micro-path can be walked in two directions 

The micro-path may implement a quasi rotation 

If not closed the path defines a swarm movement step. 

A closed micro-path can still be stretched along an os-

cillation path. 

21.2 The generation of the swarm 
The generation of a planned swarm is started by a Pois-

son process that delivers a germ. This germ is used by 

the subsequent binomial process that is implemented by 

a binomial process. The spread function uses a spherical 

coordinate system, which can be characterized by three 

parameters. They are used in the sequence: 

1. The zenith vector 𝑟 

a. The germ selects the value of 𝑟. 

2. The polar angle φ. 

a. The polar angle axis is perpendicular 

on the zenith vector 

b. The polar angle has range 0 to 2π 

3. The azimuth angle axis (θ range π) 

a. The azimuth angle axis is perpendic-

ular on  

i. the zenith vector 



ii. polar angle axis 

b. The azimuth angle has range 0 to π 

In this case the spin vector is along the azimuth an-

gle. 

Or the parameters are used in the sequence: 

1. The zenith vector 𝑟 

a. The germ selects the value of 𝑟. 

2. The azimuth angle axis (θ range π) 

a. The azimuth angle axis is perpendic-

ular on  

i. the zenith vector 

ii. polar angle axis 

b. The azimuth angle has range 0 to π 

3. The polar angle φ. 

a. The polar angle axis is perpendicular 

on the zenith vector 

b. The polar angle has range 0 to 2π 
 

In this case the spin vector is along the polar angle. 

 The spin axis 

The spin axis can be along the φ axis, which 

leads to half integer spin or along the θ axis 

which leads to integer spin. 



 The unit speed path 

A difference exists between the description of the 

planned micro-path and the Frenet Serret description 

of the unit speed path of the swarm. 

 

At any point in the Palestra and in any direction a  path 

can be started 

Also Qpatches that represent particles follow such paths 

In the Palestra the “length” of the quaternionic path is 

the coordinate time duration 

 

𝑠(𝑑) = ∫ ‖𝑑℘‖ 
𝑑

0

= ∫ ‖
𝑑℘

𝑑𝜏
‖ 𝑑𝜏 

𝑑

0

 

 

𝒅 is the duration in proper time ticks.  

𝝉 is the progression parameter. It equals proper 

time.  

𝒔 is the coordinate time. 

 

We investigate constant speed curves in the imaginary 

Palestra.  

𝓡 is the imaginary part of ℘. 

 

𝑻 =
𝐼𝑚 (

𝑑℘
𝑑𝑠

)

‖𝐼𝑚 (
𝑑℘
𝑑𝑠

)‖
=

𝑑𝓡
𝑑𝑠

‖
𝑑𝕽
𝑑𝑠

‖
  



 

𝑻 is the tangent unit vector.  

 

𝑵 =

𝑑𝑻
𝑑𝑠

‖
𝑑𝑻
𝑑𝑠

‖
 

 

𝑵 is the principle normal unit vector. 

 

Since ‖𝑻‖ = 1 are 𝑵 and 𝑻 perpendicular. 

 

𝑩 = 𝑻 × 𝑵 

 

𝑩 is the binormal unit vector 

The sign of 𝑻, 𝑵, and 𝑩 depends on the discrete sym-

metry set of the embedding field. 

22.1 Path characteristics 
 

𝑑𝑻

𝑑𝑠
= 𝜅 𝑵 

 

𝜅 is the curvature.  

 
𝑑𝑵

𝑑𝑠
= −𝜅 𝑻 + 𝜏 𝑩 

 



𝜏 is the torque. 

 

 
𝑑𝑩

𝑑𝑠
= −𝜏 𝑵 

 

  



 Elementary particle types 

The coupling equation for the electron and the positron 

as it is depicted by Paul Dirac, gives us a lead how to in-

terpret this equation for other types of elementary parti-

cles. 

 

The HBM suggests that elementary particles are the re-

sult of couplings between the members of the symmetry 

flavor bundle that constitutes the Palestra. 

 

One of these members is the reference member and has 

the same symmetry flavor as the parameter space of the 

bundle has. 

 

One of the member fields plays the role of the quantum 

state function of the particle. The other field plays the 

role of the embedding field.  

 

The operating system maps the quantum state function 

on the embedding field. Only the partial mirror of the 

quantum state function in this embedding field is used in 

the coupling. 

 

Thus the coupling equation for elementary particles will 

be: 

 

 



  



 Generations 

 Superposition 

In a composite superposition of elementary particles can 

be considered in configuration space and it can be con-

sidered in Fourier space. At each progression instant 

these superposition coefficients may differ. With other 

words they are functions of progression. The Fourier 

transform ℱ is a linear operator. 

 

ℱ( 𝑔(𝑞)) =   𝑔̃(𝑝) 
 

ℱ(𝑎 𝑔(𝑞) + 𝑏 ℎ(𝑞)) =  𝑎 𝑔̃(𝑝) + 𝑏 ℎ̃(𝑝) 
 

With a superposition in Fourier space the superposition 

coefficients can be interpreted as displacement genera-

tors.  

 
g(𝑞) = ∇𝑓(𝑞) =  ∇0𝑓0(𝑞) ∓ 〈𝛁, 𝒇(𝑞)〉

± ∇0𝒇(𝑞) +  𝛁𝑓0(𝑞)

± (±𝛁 × 𝒇(𝑞)) 

 

g̃(𝑘) = k𝑓(𝑘) =  k0𝑓0̃(𝑘) ∓ 〈𝐤, 𝒇̃(𝑘)〉

± k0𝒇̃(𝑘) +  𝐤𝑓0(𝑘)

± (±𝐤 × 𝒇̃(𝑘)) 

(1) 

(2) 

(3) 

(4) 



 

Thus superposition coefficients that are a function of 

progression can implement internal oscillations of the 

constituents.  

The internal oscillation paths become internal ge-

oditches. Together these geoditches implement the bind-

ing of the elementary particles into the composite. 

On the other hand the geoditches obscure the locations 

of the constituents. The hopping inside the micro-paths 

also disturbs the generation of EM radiation. 

With other words the identity of the constituents is hid-

den from the environment of the composite. 

25.1 Entanglement 
 

The fact that the quantum state function of the compo-

site equals the superposition of the quantum state func-

tions of the constituents is usually interpreted as the en-

tanglement of the composite. 

25.2 Pauli principle 
If two components of an entangled (sub)system that 

have the same quantum state function are exchanged, 

then we can take the system location at the center of the 

location of the two components. Now the exchange 

means for bosons that the (sub)system quantum state 

function is not affected: 

 



∀𝛼,𝛽{𝛼𝜑(−𝑥) + 𝛽𝜑(𝑥) = 𝛼𝜑(𝑥) + 𝛽𝜑(−𝑥)}  

⇒ 𝜑(−𝑥) = 𝜑(𝑥) 
 

And for fermions that the corresponding part of the 

(sub)system quantum state function changes sign. 

 

∀𝛼,𝛽{𝛼𝜑(−𝑥) + 𝛽𝜑(𝑥) = −𝛼𝜑(𝑥) − 𝛽𝜑(−𝑥)}  

⇒ 𝜑(−𝑥) = −𝜑(𝑥) 
 

This conforms to the Pauli principle. It also indicates 

that the operating system, which controls the entangle-

ment, takes care of the fact that if one of these two twin 

components exposes any of its properties (e.g. its spin) 

that it has IMMEDIATE effect on the properties of the 

other component. 

25.3 Gauge transformations 
In quaternionic quantum mechanics the superposition of 

elementary particles achieve what in complex quantum 

mechanics gauge transformations will do. When the 

change of the quaternionic superposition coefficients re-

stricts to phase shifts, then the change represents a com-

plex gauge transformation. 



 Non-locality 

26.1 Within a particle 
In the Hilbert Book Model, the notion of non-locality 

exists. This is due to the fact that nature's building 

blocks have a set of discrete properties that can be pre-

pared or that can be observed via indirect means that 

does not touch their state, while the swarm that repre-

sents the building block may extend over relative large 

distances.  

 

So measuring the same property at nearly the same in-

stant at quite different locations will give the same re-

sult.  

 

If shortly before that these measurements were per-

formed the property is changed, then it might give the 

impression that an “instant action at a distance” oc-

curred, because neither light nor the wave fronts that 

constitute the potentials could bridge these locations in 

the period between the two measurements.  

 

The explanation is that the building block at each pro-

gression instant hops to a different step stone while at 

the same time these step stones may lay far apart. 

 

Apart from the property measurements, in this process 

no information transfer needs to take place.  



 

At each arrival at a step stone the building block trans-

mits contributions to its potentials. If the measurement 

uses these potentials, then the building block is not af-

fected by the measurement21.  

 

According to this explanation, at least one progression 

step must separate the two measurements. 

26.2 Between particles 
Non-locality between particles means that the reach of 

control of the operating system covers multiple elemen-

tary particles. This can be caused by the fact that the 

particles are considered to form a an entangled system. 

In that system the Pauli principle will take its role. It 

means that if the constituting particles are fermions, 

then at all progression instances they must al take differ-

ent states. This sounds familiar in composites and at-

oms, but it can also happen in other entangled systems.  

 

The coupling of entangled particles and the support of 

the Pauli principle are supported by special capabilities 

of the operating system. 

  

                                                 
21 It is also possible that the first measurement is used in 

order to prepare the state of the particle. 



 Modular construction 

27.1 Modularization 
A very powerful influencer is modularization. Together 

with the corresponding encapsulation it has a very 

healthy influence on the relational complexity of the en-

semble of objects on which modularization works.  

The encapsulation takes care of the fact that most rela-

tions are kept internal to the module.  

 

When relations between modules are reduced to a few 

types, then the module becomes reusable.  

 

The most influential kind of modularization is achieved 

when modules can be configured from lower order 

modules. 

 

Elementary particles can be considered as the lowest 

level of modules. All composites are higher level mod-

ules. 

 

When sufficient resources in the form of reusable mod-

ules are present, then modularization can reach enor-

mous heights.  

On earth it was capable to generate intelligent species. 



 Complexity 

Potential complexity of a set of objects is a measure that is 
defined by the number of potential relations that exist be-
tween the members of that set.  

 

If there are n elements in the set, then there exist n*(n-1) 

potential relations. 
 
Actual complexity of a set of objects is a measure that is de-
fined by the number of relevant relations that exist between 
the members of the set.  
 
In human affairs and with intelligent design it takes time and other 

resources to determine whether a relation is relevant or not. Only an 

expert has the knowledge that a given relation is relevant.  

Thus it is advantageous to have as little irrelevant potential rela-

tions as is possible, such that mainly relevant and preferably usable 

relations result.  

 

Physics is based on relations. Quantum logic is a set of 

axioms that restrict the relations that exist between 

quantum logical elements.  

In applications in physics the quantum logical elements 

are not propositions, but instead they are construction 

elements. 

 

Via its isomorphism with Hilbert spaces quantum logic 

forms a fundament for quantum physics.  



 

Classical logic is a similar set of restrictions that define 

how we can communicate logically. Like classical logic, 

quantum logic only describes static relations.  

 

Traditional quantum logic does not treat physical fields 

and it does not touch dynamics. However, the model 

that is based on traditional quantum logic can be ex-

tended such that physical fields are included as well and 

by assuming that dynamics is the travel along subse-

quent versions of extended quantum logics, also dynam-

ics will be treated.  

 

The set of elements of traditional quantum logic is iso-

morphic with the set of closed subspaces of a Hilbert 

space. The Hilbert space is a mathematical construct in 

which quantum physicists do their investigations and 

calculations.  

In this way fundamental physics can be constructed. 

Here holds very strongly that only relevant relations 

have significance. 

 Relational complexity 

We define relational complexity as the ratio of the number 
of actual relations divided by the number of potential rela-
tions. 



 Interfaces 

Modules connect via interfaces.  

Interfaces are used by interactions.  

Interactions run via (relevant) relations.  

 

Relations that act within modules are lost to the outside 

world of the module.  

 

Thus interfaces are collections of relations that are used 

by interactions.  

Inbound interactions come from the past.  

Outbound interactions go to the future.  

Two-sided interactions are cyclic. They are either oscil-

lations or rotations of the inter-actor. 

 

In physics interactions are implemented by potentials. 

The solutions in the Huygens principle cover both out-

going as well as incoming waves.  

The outbound waves implement outbound interfaces of 

elementary particles.  

The inbound waves implement inbound interfaces of 

elementary particles. 

 Interface types 

Apart from the fact that they are inbound, outbound or 

cyclic the interfaces can be categorized with respect to 

the type of relations that they represent.  



Each category corresponds to an interface type.  

 

An interface that possesses a type and that installs the 

possibility to couple the corresponding module to other 

modules is called a standard interface.  

 Modular subsystems 

Modular subsystems consist of connected modules. 

They need not be modules. They become modules when 

they are encapsulated and offer standard interfaces that 

makes the encapsulated system a reusable object. 

 

The cyclic interactions bind the corresponding modules 

together.  

 

Like the coupling factor of elementary particles charac-

terizes the binding of the pair of Qpatterns will a similar 

characteristic characterize the binding of modules. 

This binding characteristic directly relates to the total 

energy of the constituted sub-system.  

 

Let 𝜓 represent the renormalized superposition of the 

involved distributions. We treat the sources and drains 

separately. 

 

𝛻𝜓 = 𝜙 = 𝑚 𝜑 
 

(1) 



∫ |𝜓|2 𝑑𝑉 =
𝑉

∫ |𝜑|2 𝑑𝑉 = 1
𝑉

 

 

∫ |𝜙|2 𝑑𝑉 =
𝑉

𝑚2 

 

Here 𝜓 represents a superposition of local sources, 

while 𝜑 represents a superposition of drains that them-

selves might reside at distant locations.  

 

And for the anti-particles (that act as drains): 

 

𝛻∗𝜓𝑎
∗ = 𝑚 𝜑𝑎

∗  
 

Here 𝜓𝑎
∗  represents a superposition of local drains, while 

𝜑𝑎
∗  represents a superposition of sources that themselves 

might reside at distant locations. 

 

The whole composite contains both local sources and 

local drains that are neutralized by local and distant 

counterparts. 

The corresponding integral equations must define a 

closed system. 

 

The binding factor is the total energy of the sub-system 

minus the sum of the total energies of the separate con-

stituents. 

(2) 

(3) 

(4) 



 Quantum oscillations 

An interaction that runs via information transfer always 

runs from a previous instant to a later instant. Bidirec-

tional interactions must be cyclic. Thus, bidirectional in-

terfaces between system components are formed by ex-

changing messages into two directions or by actual 

oscillations. In case of an interface consisting of oscil-

lating elementary particles the micro-path of the particle 

is stretched along the oscillation path.  

 

For an elementary particle at rest, the singularities that 

are caused by the step stones dig a potential well. In this 

way a particle creates its own inertia. In case of an oscil-

lation, the singularities that accompany the step stones 

dig a potential ditch that stretches along the oscillation 

path. This ditch forms a geodesic path in which the par-

ticle can travel freely. These oscillations can be coupled 

to other potential wells or ditches. In this way the nu-

cleus and the electrons are coupled in atoms. 

 Relational complexity indicators 

The inner product of two Hilbert vectors is a measure of 

the relational complexity of the combination. 

A Hilbert vector represents a linear combination of 

atomic Hilbert  elements.  

 



When all coefficients are equal, then the vector repre-

sents an assembly of atoms.  

When the coefficients are not equal, then the vector rep-

resents a weighted assembly of atoms. 

 

For two normalized vectors |𝑎⟩ and |𝑏⟩: 
 

 〈𝑎|𝑎〉 = 1 
 

 〈𝑏|𝑏〉 = 1 
 

 〈𝑎|𝑏〉 = 0 means |𝑎⟩ 𝑎𝑛𝑑 |𝑏⟩ are not related. 
 
 〈𝑎|𝑏〉 ≠ 0 means |𝑎⟩ 𝑎𝑛𝑑 |𝑏⟩ are related. 
 
 |〈𝑎|𝑏〉| = 1 means |𝑎⟩ 𝑎𝑛𝑑 |𝑏⟩ are optimally related. 
 

 Modular actions 

Subsystems that have the ability to choose their activity 

can choose to organize their actions in a modular way.  

 

As with static relational modularization the modular ac-

tions reduce complexity and for the decision maker it 

eases control. 

(1) 

(2) 

(3) 

(4) 

(5) 



 Random design versus intelligent design 

At lower levels of modularization nature designs modu-

lar structures in a stochastic way. This renders the mod-

ularization process rather slow. This way of modulariza-

tion is called random design. 

 

It takes a huge amount of progression steps in order to 

achieve a relatively complicated structure.  

Still the complexity of that structure can be orders of 

magnitude less than the complexity of an equivalent 

monolith. 

 

As soon as more intelligent subsystems arrive, then 

these systems can design and construct modular systems 

in a more intelligent way. They use resources effi-

ciently.  

This speeds the modularization process in an enormous 

way. 

 Probability distributions 

Much in quantum physics has to do with the fact that the 

wave function has a direct relation to a probability den-

sity distribution and that the Fourier transform of this 

probability density distribution describes a probability 

distribution of momenta that describe the motion of the 

considered object. 



The HBM relates the wave function to a coherent dis-

crete distribution of step stones that form a stochastic 

micro-path. During movements or quantum oscillations 

the micro-path stretches along the oscillation or move-

ment path. This is done such that the above relation be-

tween locations and momenta is kept. With other words 

the mechanism that controls this, keeps Heisenberg's un-

certainty principle intact. 

 

The result of these measures is that under certain condi-

tions the step stones can form interference patterns. This 

leads to the particle-wave duality of quantum scale ob-

jects. 

 Cosmology 

Where quantum physics is ruled by the coupling equa-

tion, which is a special form of the differential continu-

ity equation is cosmology ruled by integral continuity 

equation. 

At large scale also the sharp allocation function and its 

differentials plays a role. The differential can be inter-

preted as a metric. 

 

The terms in the integral continuity equation  

 

𝛷 = ∫ ∇𝜓 𝑑𝑉

𝑉

= ∫ 𝜙 𝑑𝑉

𝑉

 
(1) 



 

can be interpreted as representing the influence of a lo-

cal object onto the rest of the universe or as the influ-

ence of the rest of the universe onto a local object. In the 

second case the influence diminishes with distance and 

the number of influencers increases such that the most 

distant contributors together poses the largest influence. 

These influencers sit at the information horizon. In the 

history of the model they are part of the birth state of the 

current episode of the universe. This was a state of dens-

est packaging. 

 

28.1 The differential and integral continuity 
equations 

Let us approach the balance equation from the integral 

variety of the balance equation. Balance equation is an-

other name for continuity equation. 

 

We replace 𝜓 by 𝜌, 𝜓0 by 𝜌0 and 𝝍 by 𝝆 =  𝜌0𝒗/𝑐. 

 

𝜌 ≝ 𝜌0 + 𝝆 

When 𝜌0 is interpreted as a charge density distribution, 

then the conservation of the corresponding charge22 is 

given by the continuity equation: 

 

                                                 
22 Also see Noether’s laws: http://en.wikipedia.org/wiki/Noether%27s_theorem 

(1) 

http://en.wikipedia.org/wiki/Noether%27s_theorem


Total change within V = flow into V + production in-

side V 

 

In formula this means: 

 
𝑑

𝑑𝜏
∫  𝜌0 𝑑𝑉

𝑉

= ∮ 𝒏̂𝜌0

𝒗

𝑐
 𝑑𝑆

𝑆

+ ∫ 𝑠0 𝑑𝑉

𝑉

 

 

∫ ∇0𝜌0 𝑑𝑉

𝑉

= ∫〈𝛁, 𝝆〉 𝑑𝑉

𝑉

+ ∫ 𝑠0 𝑑𝑉

𝑉

 

 

The conversion from formula (2) to formula (3) uses the 

Gauss theorem23.  

Here 𝒏̂ is the normal vector pointing outward the sur-

rounding surface S, 

 𝒗(𝜏, 𝒒) is the velocity at which the charge density 

𝜌0(𝜏, 𝒒) enters volume V and 𝑠0 is the source density in-

side V.  

 

In the above formula 𝝆 stands for 

 

𝝆 =  𝜌0𝒗/𝑐  
 

It is the flux (flow per unit area and unit time) of 𝜌0 . 

                                                 
23 http://en.wikipedia.org/wiki/Divergence_theorem  

(2) 

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Divergence_theorem


 

The combination of 𝜌0(𝑞) and 𝝆(𝑞) is a quaternionic 

skew field 𝜌(𝑞) and can be seen as a probability density 

distribution (QPDD).  

 

𝜌 is a function of 𝑞. 

 

𝑞 ≝ 𝑞0 + 𝒒; 𝑞0 =  𝜏 
 

𝜌(𝑞)𝜌∗(𝑞) can be seen as an overall probability density 

distribution of the presence of the carrier of the charge.  

𝜌0(𝑞) is a charge density distribution.  

𝝆(𝑞) is the current density distribution. 

This results in the law of charge conservation:  

 

𝑠0(𝑞) = ∇0𝜌0(𝑞)

∓ 〈𝛁, (𝜌0(𝑞)𝒗(𝑞) + 𝛁 × 𝒂(𝑞))〉 
 

= ∇0𝜌0(𝑞) ∓ 〈𝛁, 𝝆(𝑞) + 𝑨(𝑞)〉 
 

= ∇0𝜌0(𝑞) ∓ 〈𝒗(𝑞), 𝛁𝜌0(𝑞)〉
∓ 〈𝛁, 𝒗(𝑞)〉 𝜌0(𝑞) 

 

∓〈𝛁, 𝑨(𝑞)〉 
 

The blue colored ± indicates quaternionic sign selection 

through conjugation of the field 𝜌(𝑞).  

(6) 

(7) 



 

The field 𝒂(𝑞) is an arbitrary differentiable vector func-

tion. 

 

〈𝛁, 𝛁 × 𝒂(𝑞)〉 = 0 

 

𝑨(𝑞) ≝  𝛁 × 𝒂(𝑞) is always divergence free. In the fol-

lowing we will neglect 𝑨(𝑞). 

 

Equation (6) represents a balance equation for charge 

density. What this charge actually is, will be left in the 

middle. It can be one of the properties of the carrier or it 

can represent the full ensemble of the properties of the 

carrier. 

 

Up to this point the investigation only treats the real part 

of the full equation. The full continuity equation runs: 

 

𝑠(𝑞) = ∇𝜌(𝑞) = 𝑠0(𝑞) + 𝒔(𝑞) 
 

=  ∇0𝜌0(𝑞) ∓ 〈𝛁, 𝝆(𝑞)〉 ± ∇0𝝆(𝜏, 𝒒)
+  𝛁𝜌0(𝜏, 𝒒)

± (±𝛁 × 𝝆(𝜏, 𝒒)) 

 

= ∇0𝜌0(𝜏, 𝒒) ∓ 〈𝒗(𝑞), 𝛁𝜌0(𝑞)〉
∓ 〈𝛁, 𝒗𝒒〉 𝜌0(𝑞)   

 

(8) 

(9) 



±∇0𝒗(𝑞) + ∇0𝜌0(𝑞) +  𝛁𝜌0(𝑞) 
 

±(±(𝜌0(𝑞) 𝛁 × 𝒗(𝑞) − 𝒗(𝑞)

× 𝛁𝜌0(𝑞)) 

 

After splitting into real and imaginary equations, this 

leads to: 

 

𝑠0(𝑞) = 2∇0𝜌0(𝑞) ∓ 〈𝒗(𝑞), 𝛁𝜌0(𝑞)〉
∓ 〈𝛁, 𝒗(𝑞)〉 𝜌0(𝑞) 

 

𝒔(𝑞) = ±∇0𝒗(𝑞) ±  𝛁𝜌0(𝑞) 

± (±(𝜌0(𝑞) 𝛁 × 𝒗(𝑞) − 𝒗(𝑞)

× 𝛁𝜌0(𝑞))) 

 

The red sign selection indicates a change of handedness 

by changing the sign of one of the imaginary base vec-

tors. Conjugation also causes a switch of handedness. It 

changes the sign of all three imaginary base vectors. 

 

In its simplest form the full continuity equation runs: 

 

𝑠(𝑞) = ∇𝜌(𝑞) 
 

Thus the full continuity equation specifies a quaterni-

onic distribution 𝑠 as a flat differential ∇𝜌. 

(10) 

(11) 

(12) 



 

When we go back to the integral balance equation, then 

holds for the imaginary parts: 

 
𝑑

𝑑𝜏
∫ 𝝆 𝑑𝑉

𝑉

= − ∮𝒏̂𝜌0 𝑑𝑆
𝑆

− ∮𝒏̂ × 𝝆 𝑑𝑆
𝑆

+ ∫ 𝒔 𝑑𝑉

𝑉

 

 

∫ ∇0 𝝆 𝑑𝑉

𝑉

= − ∫ 𝛁𝜌0 𝑑𝑉

𝑉

− ∫ 𝛁 × 𝝆 𝑑𝑉

𝑉

+ ∫ 𝒔 𝑑𝑉

𝑉

 

 

For the full integral equation holds: 

 
𝑑

𝑑𝜏
∫  𝜌 𝑑𝑉

𝑉

+ ∮𝒏̂𝜌 𝑑𝑆
𝑆

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

∫ ∇ 𝜌 𝑑𝑉

𝑉

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

Here 𝒏̂ is the normal vector pointing outward the sur-

rounding surface S, 𝒗(𝑞) is the velocity at which the 

(13) 

(14) 

(15) 

(16) 



charge density 𝜌0(𝑞) enters volume V and 𝑠0 is the 

source density inside V. In the above formula 𝜌 stands 

for 

 

𝜌 =  𝜌0 + 𝝆 =  𝜌0 +
𝜌0𝒗

𝑐
 

 

It is the flux (flow per unit of area and per unit of pro-

gression) of 𝜌0 .  

𝜏 stands for progression (not observer’s time).  

(17) 



28.2 The cosmological equations 
The integral equations that describe cosmology are: 

 
𝑑

𝑑𝜏
∫  𝜌 𝑑𝑉

𝑉

+ ∮𝒏̂𝜌 𝑑𝑆
𝑆

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

∫ ∇ 𝜌 𝑑𝑉

𝑉

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

Here 𝒏̂ is the normal vector pointing outward the sur-

rounding surface S, 𝒗(𝜏, 𝒒) is the velocity at which the 

charge density 𝜌0(𝜏, 𝒒) enters volume V and 𝑠0 is the 

source density inside V. In the above formula 𝜌 stands 

for 

 

𝜌 =  𝜌0 + 𝝆 =  𝜌0 +
𝜌0𝒗

𝑐
 

 

It is the flux (flow per unit of area and per unit of pro-

gression) of 𝜌0 . 𝑡 stands for progression (not observer’s 

time). 

 

28.1 Space cavities 
A space cavity is characterized by: 

 

(1) 

(2) 

(3) 

(1) 



𝑑

𝑑𝜏
∫  𝜌 𝑑𝑉 = 0

𝑉

 

 

All properties of this object depend on the surrounding 

surface. 

These objects are known as black holes. 

28.2 Inversion surfaces 
An inversion surface 𝑆 is characterized by: 

 

∮𝒏̂𝜌 𝑑𝑆
𝑆

= 0 

 

Potentials and their constituting wave fronts can still 

pass this inversion surface. 

28.3 Compartments 
The inversion surfaces define compartments. Palestra is 

an affine space that is divided into compartments. 

(1) 



 
 

28.4 Cosmological history 
The inversion surfaces divide universe into compart-

ments. Think that these universe pockets contain matter 

that is on its way back to its natal state.  

 

If there is enough matter in the pocket this state forms a 

black region. The rest of the pocket is cleared from its 

mass content.  

 

Still the size of the pocket may increase. This corre-

sponds to the expansion of the universe.  

 

Inside the pocket the holographic principle governs. The 

black region represents the densest packaging mode of 

entropy. 



 

The pockets may merge. Thus finally a very large part 

of the universe may return to its birth state, which is a 

state of densest packaging of entropy. 

 

Then the resulting mass which is positioned at a huge 

distance will enforce a uniform attraction. This uniform 

attraction will install an isotropic extension of the cen-

tral package.  

 

This will disturb the densest packaging quality of that 

package. 

 

The motor behind this is formed by the combination of 

the attraction through distant massive particles, which 

installs an isotropic expansion and the influence of the 

small scale random localization which is present even in 

the state of densest packaging. 

 

This describes an eternal process that takes place in and 

between the pockets of an affine-like space. 
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