Further thoughts on, "On a general theory of gravity based on Quantum Interactions". Part One.

Mustafa A. Khan, M.D.

- 1) In this theory, the mass 'M' is strictly defined by the famous mass/ energy equation by Einstein, $M = E/c^2$. This is different from the definition of mass as defined by Newton's first law of motion.
- 2) A consequence of # 1 is that the inertial mass given by $\mathcal{M}_{\mathcal{I}} = \mathcal{F}_{\mathcal{A}}$, where F = force acting upon $\mathcal{M}_{\mathcal{I}}$ and 'a' is the acceleration of $\mathcal{M}_{\mathcal{I}}$ is equal to the gravitational mass given by $\mathcal{M}_{\mathcal{I}} = \mathcal{F}_{\mathcal{A}}$, where $\mathcal{F}_{\mathcal{A}}$ is the gravitational force acting on mass $\mathcal{M}_{\mathcal{I}}$ and 'g' is the gravitational acceleration. In short, $\mathcal{M}_{\mathcal{I}} = \mathcal{M}_{\mathcal{I}}$. This is also, of course, Galileo's Principle of Mass Equivalence ".
 - 3) Defining mass as E/c^* , automatically converts the "matter density" equation, $\ell_m(r) = \ell(m,r) = 1 \times M(1-e^{-K/r^2})$, with $K = (1-e^{-K/r^2})$ into an "energy density "equation given by, $\ell_E(r) = \ell(E,r) = 1 \times 2 \times E = (1-e^{-K/r^2})$ with $K = (1-e^{-K/r^2})$. This makes it quite easy to understand how the "matter density "equation is applicable to all objects, from the sub-atomic to the cosmic.

