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Abstract 

The goal of this investigation was to overcome limitations of a persistency analysis, introduced 
by Benoit Mandelbrot for fractal Brownian processes: nondifferentiability, Brownian nature of 
process and a linear memory measure. We have extended a sense of a Hurst factor by 
consideration of a phase diffusion power law. It was shown that pre-catastrophic stabilization as 
an indicator of bifurcation leads to a new minimum of momentary phase diffusion, while 
bifurcation causes an increase of the momentary transport. Basic conclusions of a diffusive 
analysis have been compared to the Lyapunov stability model. An extended Reynolds parameter 
has been introduces as an indicator of phase transition. A combination of diffusive and Reynolds 
analysis has been applied for a description of a time series of Dow Jones Industrial weekly prices 
for a world financial crisis of 2007-2009. Diffusive and Reynolds parameters shown an extreme 
values in October 2008 when a mortgage crisis was fixed. A combined R/D description allowed 
distinguishing of short-memory and long memory shifts of a market evolution. It was stated that 
a systematic large scale failure of a financial system has begun in October 2008 and started 
fading in February 2009.  
 
Key words: diffusive analysis, fractal Brownian process, bifurcation, catastrophe theory, world financial 
crisis, time series.  
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1 Introduction  
 

In 1955 the American researcher Hassler Whitney has created a mathematical foundation of a 
modern catastrophe theory – the theory of mapping singularities [1]. It includes investigations of 
peculiarity classes, that appear for mapping of one two dimensional surface to another one. A 
mapping was suggested to be smooth. An application of this instrument to dynamical system 
allowed introducing a mapping of characteristic surface into the surface of control parameters. 
Then a peculiarity appearance corresponds to a change of a polysemy multiplicity for mapping

),(),( 2121 xxyy  , where ),( 21 xx  defines control parameters and  ),( 21 yy  is a characteristic 
surface. Whitney has found out two stable types of mappings – types that have not been 
destroyed after negligible deformations of surfaces or their projections. These types of mappings 
have been generalized for arbitrary manifolds with dimension up to 10 by Whitney’s followers 
[2]. One of them led to the discrete change of a system’s characteristic state – “cusp” 
catastrophe. It is represented for a one dimensional case at the Fig.1.  
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An evolution of mapping leads to an occurrence of the Whitney’s “cusp”. The multiplicity or 
uncertainty is maximal in the unstable area of C – vicinity. According to [3] the disruption 

ED   appears as a fusion of stable and unstable regimes, marked by ovals. The characteristic 
distance between two stable attractors is proportional to the supercriticality level dxxx cr  :

crxxH  .         
 

 
Fig.1. Appearance of Whitney’s “cusp” 

 
In terms of a bifurcation theory this one-dimensional evolution corresponds to the saddle-node 
fusion in a phase space. In the Fig.2 a fusion of one node and two saddles is represented. In fact 
this transformation is one dimensional as a node and a saddle has one dimensional peculiarity of 
trajectories direction change. In such a way, according to the Whitney’s theorem “cusp” 
disruption is a consequence of attractor-repeller “annihilation” and a preliminary stabilization is 
as a necessary condition of the possible bifurcation. Another type of destabilization is a self-
oscillating destabilization, considered by H. Poincare. In his revolutionary dissertation [4] he has 
shown that a birth of a new limited cycle in a phase space is realized by a transition through a 
stable equilibrium zone, i.e. the system should return to the stabilization before a new bifurcation 
occurs. A birth of a new cycle is preceded by the distortion and a death of a previous quasi stable 
regime.  In such a way we have come to the same conclusion regarding a necessary condition of 
a catastrophe.  

 
Fig.2. Fusion of one node and two saddles 
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A “calm before storm” or effect of small scale oscillations suppression before bifurcation has 
been noticed by M.M. Dubovikov and N.V. Starchenko in [5] as well. They have studied a 
behavior of financial time series by the use of Hurst fractal parameter of stability. Anatoly 
Neishtadt has shown that a delay of the dynamic bifurcation exists in case of all known 
analytical nonlinear systems [6] for adiabatic change of control parameter. It means that inertial 
properties resist a new synchronization – the system needs time for the restructuring as it 
happens in case of Ising model of magnetic domains. A delay depends on the clusters interaction 
and an intensity of the external “field”, i.e. macro scale influence. This model has been extended 
in the area of social complex systems by Callan E. and Shapiro O [7].  
A comfortable choice of a macroscopic control parameter has been suggested in [8] on basis of 
Reynolds parameter for turbulent streams: 
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Here )(tR is basic phase parameter and )(t


  is set of microscopic control parameters - 
parametric vector. Quantities q+ and q- correspond to power input and output per system unit. In 
given description bifurcation corresponds to the transition of an equilibrium state 1R  : 

1)()()(1)()()(1)( 10   tRtRtqtRtRtqtR                     (2) 
1)()()(1)()()(1)( 10   tRtRtqtRtRtqtR                  (3) 

Here   and  show a finite increase and decrease of corresponding parameter for 01 ttt  . The 
delay between a new cycle appearance and macro scale excitation is defined by inertial 
properties of system domains. We have to mark that a new bifurcation has to pass through an 
equilibrium quasi stable state of 1R : in terms of statistical thermodynamics it corresponds to a 
minimum of Gibbs free energy ),( TpG . If a velocity of a control parameter change is higher 
then a minimal velocity of inertial processes, then a delay of rearrangement exists and is 
preceded by the change of relative excitation power )(tR . 
 
2 Fractal analysis as an indicator of stability and its limitations 
 
Inability to define strictly a set of control parameters or a global excitation balance obliged 
researchers to look for statistical measures of the system stability. One of possible approaches is 
a fractal analysis, suggested by Benoit Mandelbrot. He used the Hausdorff dimension as a basis 
for introduction a fractal object such that TH DD  . Here TD  is a topological dimension of a 
manifold, defined by a number of independent variables necessary for its description. HD is 
Hausdorff dimension, determined by the relation (4): 
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Here  N  is a number of elements, covering the given manifold, where   is a characteristic 
size of an element. According to Mandelbrot [9] scale invariance is the necessary property of 
fractals. However we should note tha chaotic natural systems have scale characteristic limits. For 
example a turbulent flow has an internal micro scale, defined by inertial viscous forces and an 
external macro scale, defined by external hydrodynamic influence. Such type of system was 
denoted as quasi fractal by Mandelbrot, because they have a satisfactory fractal description only 
within given scale limits   0 .  
An application of a fractal description to the time series )( itf  meant an investigation of 
statistical properties in case of several time resolutions t .  
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Covering elements can be defined as rectangles with heights, defined by function range in a 
given interval [5]:    ttfttfh iii   ),(min),(max . Then a fractional dimension can be 
expressed in the following way: 
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According to this relation it is defined by the true range of its integral element )( thi  . It is 
important to underline that nondifferentiability as a necessary property of scale invariance is 
obligatory for a fractal time series but is impossible for natural time series. In fact it would 
mention an infinite energy of such range and a violation of energy conservation law.  
Another fractal characteristic, introduced by Mandelbrot for the description of stochastic time 
series is a fractal Hurst factor. It was induced through the relation of Fractional Brownian 
Motion (FBM). An idea of FBM introduction was inability to explain deviations from normal 
distributions in some natural systems, for example financial markets. Pareto – Levy distributions 
have been obtained as particular cases of such abnormal behavior.  Mandelbrot decided to make 
generalization.  
Let us consider a Standard Brownian Motion (SBM) time series )(tB , which satisfies a normal 
distribution. Then an FBM increment can be expressed in the following way [10]: 
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A given increment is expressed through the fractal derivatives of SBM with a factor  
 Hk  5.0 , 10  H . This factor defines a deviation from a standard markovian Brownian 

motion ( 5.0H ). FBH allows obtaining anomalous distributions with “thick tails”, and a 
flexible explaining of flights. According to [10] an expectation of FBM deviation is self-affine: 
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HHH TVtBTtBE 22)()(                                             (7a)
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This means that a probable amplitude of the deviation depends on a time scale and a Hurst factor
H of system’s memory. If 5.0H then relation (7a) corresponds to the Einstein’s law of 
Brownian walks: 

   TVtBTtBE  5.0
2)()(                                                   (8) 

If 5.0H we achieve an anomalous transport, that includes Levy flights and “thick tails” of 
distribution for 5.0H .  Despite a charm of this approach it has several limitations, enumerated 
below.  
a) FBM is achieved as weighted averaged Brownian motion. 
According to the original work of B. Mandelbrot [10] “FBM of the exponent H is a moving 
average of )(tdB in which past increments of )(tB are weighted by the kernel   2/1 Hst ”. The 
weights are defined on the basis of time distance between current moment and previous states

 jts  . The intensity of a history influence is determined by a memory factor 10  H . 
However FBM operator assumes SBM kernel for weighted average. It means that FBM is 
considered as dynamical moving weighted integration of standard Brownian process. If we 
calibrate FBM such that 0)( 0 tBH  then an absolute value can be expressed in the following 
way: 
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If we consider a motion only in negligible time range ( ), tdst  then this relation can be 
simplified: 
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Up to a constant factor this relation corresponds to the SBM increment. In such a way FBM 
assumes limitations of Markovian process that should be satisfied for small time deviations. It 
should be mentioned that small time deviations allow to state connection between fractal 
dimension of time series and memory factor: HDF  2 . However in many works, for example 
[5] and [11] this relation is applied for macroscopic time scales. This approach creates a logical 
conflict for FBM was initially introduced to explain a non Gaussian process. 
b) An increment of the FBM has an infinite exact energy. 
As it was stated by Mandelbrot [10] a first fractal derivative of FBM and consequently its energy 
diverges for the range 10  H . To overcome this obstacle he has introduced a smoothed 
derivative where a range of smoothing   is defined artificially:   
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However that is not the only procedure to introduce “physical” derivative (we may use a 
weighted derivative as well) and that’s why the universality of a dynamic description is lost;   
c) Hurst factor expresses a linear measure of memory and is not applicable for nonlinear cases. 
This remark needs a certain clarification. According to [10] a linear autocorrelation function of a 
first derivative can be expressed in the following way: 
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It is a quadratic function of Hurst factor and depends on the artificial smoothing parameter . 
Cases of 5.0H  and 5.0H correspond to the persistent and antipersistent trends 
correspondingly [5,10]. In case of markovian SBM 5.0H  and 0),( HС . However that 
does not mean an absence of system memory. For markovian process a probability connection is 
stated by Chapman - Kolmogorov equation which is not linear in general:    

),,(),,(),,( 1122223321133 txtxWtxtxWdxtxtxW                                (11) 
In fact a Hurst factor as a memory measure can be applied for the characterization of linear 
trends in regard to the function )(tBH , but according to a standard FBM model it can’t be used 
generally for the indication of pre-catastrophic stabilization, considered in the section 1.  
 
3 Extended interpretation of Hurst parameter 
 
In this section we shall consider a diffusive approach to the characterization of pre-catastrophic 
stabilization effect (PS-effect), noted in the Section 1. This description assumes an introduction 
of a second transport factor, used in a standard Fokker-Planck equation (12). This equation has 
been derived on a basis of Chapman - Kolmogorov equation (11) and thus is applied for 
markovian processes: 




















x

txPxD
xt

txP ),()(
2
1),(     

min

22

0
lim)(

t

x

t

x
xD

t




























                 (12)                                                               

Here double brackets designate an averaging of an initial coordinate:   
2
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It is significant to note that a factor ),( txb   is equal to the left part of an equation (7a) for the 
expectation of FBM shift. It has been shown in [12] that systems of phase mixing have second 
factor with explicit time dependence, expressed through the specific energy of characteristic 
vector (Fig.14, Fig.15). 
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Let’s introduce a variable time lag 0ttT  and a power regression of the transport factor that 
will be denoted as a dynamic diffusion below:  

TtDTtD  )(),( 000                                                          (16) 
Then an expectation of the stochastic shift can be represented in the following way: 
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A comparison of this relation with an equation (7a) allows expressing the Hurst factor through a 

stability coefficient :
2

1

H . Unlike FBM procedure we made no assumptions regarding a 

micro scale probability distribution function. That’s why a generalized Hurst parameter has no 
obligatory preliminary limitations in frame of this model   H . It doesn’t create an 
artificial energy divergence and may be applied to natural systems directly without smoothing. 
However an extended Hurst analysis still has a limitation of markovian processes (11). A critical 
value of 5.0crH  corresponds to the constant diffusion case and is a boundary of the diffusive 
expansion ( 5.0H ) and the diffusive contraction ( 5.0H ) of a characteristic area. Thus a 
generalized Hurst factor is a measure of the attractor stability. We may introduce a potential of 
attraction on the basis of a diffusive scale: 

H
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Then a diffusive acceleration can be represented in the following way: 
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Here effV  is an efficient volume potential of attraction of a given phase space. In regard to the 
time series analysis it characterizes a volatility of a considered time series: 

  eff
H VdxTHHtD  2

00 1)(                                                (20) 

It is an integral characteristic of a manifold internal interaction. According to the relation (20) 
the value of an efficient potential of attraction tends to zero for t  - a “deliquescence of the 
phase drop” in terms of G.M.Zaslavsky [13]. It means that a system may loose memory even for 

“persistent” case of 5.0H . This may happen if a characteristic time period 
dh

T 1
 , where dh is 

dynamic entropy of Kolmogorov [13]:   
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Here   lnS  expresses Gibbs entropy through a phase space area  . Dynamic entropy 
shows instability of phase trajectories and their exponential expansion intensity. That’s why, as it 
was mentioned in the Section 2 FBM Hurst factor can’t characterize a nonlinear system memory 
in general case.    
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A sense of a generalized Hurst factor can be clarified with a use of spectral description. If we 
introduce a characteristic frequency ft /1 , then according to the relation (16) a following 
formula may be represented for a dynamic diffusion spectrum:  

 ftDftD )(),( 000                                                         (22) 
We may note that the case of crHH  corresponds to the large scale transport, while if crHH  a 
micro scale energy absorption is more intense. A shift of a basic absorption band from micro 
scale range to macro scale range corresponds to catastrophic behavior, when a coherent motion 
and resonances appear. A most stable case of attractor corresponds to a Brownian transport law:

5.0 crHH , when domain shifts are assumed to be independent and normally distributed. An 
artificial Gaussian mixing, for example random permutations of financial time series have shown 
that a Hurst factor tends to a critical value [11]. However we should mention that relations (16) 
and (22) assume a reverse power law. This type of transport is typical for a uniform Kolmogorov 
turbulence [14] and flicker electrical noise [15], when large scale fluctuations are more intense 
and more weakly dissipated. An experimental research of ),( 0 TtD  allows finding out an 
evolution of a natural scale-law, corresponding to the investigated complex system.    
 

4 Diffusive analysis and R – bifurcations: equivalence of descriptions  
 
In Section 1 we have considered a pre-catastrophic stabilization effect (PS - effect) as a first 
necessary condition of the bifurcation. In regard to the diffusive analysis that means a 
preliminary intensification of small scale fluctuations with a following large scale catastrophe. If 
we consider f  systems like turbulent flow or a flicker noise, then according to (22) PS – effect 
corresponds to a formation of a   local minimum. Correspondingly an extended Hurst 

coefficient 
2

1

H forms a new minimal value. For an arbitrary system of undefined scale law 

an empirical dependence 
0

)(),( 0 t
fgftD   should be primarily stated.  

Generally it should be marked that a PS-effect leads to the small scale spectrum band 
intensification with a following transition to a large scale transport. One of possible ways, that 
can be used to compare macro/micro transport properties, is represented by the relation (23). 
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Here an integral stabilization factor I is expressed through the relation of small frequency and 
high frequency integrals. A total integration range  maxmin ,TT  is defined with an account of 
measurement resolution.  
Another alternative is a momentary transport analysis of the uniform markovian time series

)( ii txx  . It can be outlined on a basis of the expression (24). This relation allows defining an 
average transport for the period Nii ttT  . This factor reaches a new minimum during a pre-
catastrophic stabilization phase: 0),(  TxD i . A disruption leads to an increase of the 
momentary transport due to a large scale motion.   
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An alternative choice of a control parameter has been suggested in a Section 1 on the basis of an 
extended Reynolds factor. It may be denoted as a basic phase parameter )(tR .   According to 
mechanisms (2) and (3) a bifurcation corresponds to the state 1)( tR , and a following formation 
of a new quasi cycle such that 1)( tR . As it was shown in [8] two principle types of disruption 
are possible. Let’s use auxiliary dynamic entropy of Kolmogorov hd [13]: ))(( txhhd


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averaging in phase space is designated as and averaged quantity can be expressed as sum of 
positive Lyapunov factors 

ih  for each dimension of generalized phase space: 
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We may denote )(tx  is characteristic phase vector of system state. Factor 
i  shows distance 

growth )(txi  in i direction for two infinitely closely located points in phase space. Condition of 

stationary state then is equal to 0h or 1
i  ( KNi , ).  

Let’s introduce a relation for specific system power: 
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System stability condition leads to 0ih  and 1i  if we consider all Lyapunov factors. Given 

inequalities lead to expression (27) for velocity components iv  Ki ,1 .      
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Relation (27) in fact allows receiving components of acceleration )(tvi
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Indeed, consideration of specific power )(tq  can be reduced to two cases: a) 0)( txi and 
)()( txtx ii   ; b) 0)( txi and )()( txtx ii   . Signs of )(txi and 0

ix match - this condition 
is obligatory for definition of Lyapunov factors. Then )(t  doesn’t depend on initial sign of 
coordinate shift 0

ix .  

For cases a) and b) we then receive: a) 0


iv  and 0iv ; b) 0


iv  and 0iv . In both cases with 
use of relation (26) we receive that 0)( tq . According to definition (1) of basic phase parameter 
this means that 1)( tR  for 0dh . Condition of fR , i.e. 1)( tR  corresponds to a new stable 
regime. Thus use of )(tR  as control parameter must be delimited for two types of system [8]: a) 

accelerator - 0)( tv i


; b) decelerator - 0)( 


tv i . For first type of system motion stability loss 
and bifurcation are realized for 1)( tR , while decelerator comes to transition only for 1)( tR . 
In both cases a transition corresponds to the following requirement: 

1)(1)(  tRtR      0)(0)(   tt                                      (29) 
Let’s define a connection between a diffusive condition (23) and the relation (28) for a particular 
choice of a control parameter )(tR . A condition 0),(  TxD i  can be easily simplified for a time 
series in the following way:  



9 
 

   








1

1

2
1

2
i

Nik
ki

i

Nij
ji xxxx       

2

2
1
















ji

jij
i tt

xx
                                    (30) 

A reduced energy tensor of a characteristic vector is represented through the second part of a 
given expression. Then a diffusive equilibrium requirement can be represented in the following 
way: 
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j
i tttt                                                     (31) 

This requirement is equal to the relation (31): 
k
i

j
i 1     iNij ,      1 jk                                                       (32) 

For 0T  we come to the conditions (29), which means that for small time increments both 
descriptions of a PS – effect are equivalent. 
 
5 R/D analysis: application to financial markets 
 
In this section we shall consider several illustrations of diffusive and R-analysis applications to a 
financial market description. A deep trading history of basic stock indexes and an availability of 
data make financial time series comfortable examples for a nonlinear analysis.      
Let’s consider a time period of 16.07.2006-21.02.2010 which includes two significant phases – a 
beginning of the world financial crisis and a gradual recovering. According to the analysis of 
George Soros [16] a preliminary origin of the crisis corresponds to the falling of bank liquidity in 
August 2007. In September 2008 it caused a mortgage crisis and a failure of greatest American 
mortgage agencies: Lehman Brothers, Fannie Mae, Freddie Mac. All world stock indexes reacted 
sharply – speculators observed greatest indexes collapse since “Black Monday” of 1987. Dow 
Jones Industrial (DJI) Average was not an exception. This index is formed as an average price of 
30 industrial US stocks. During the period of August 2007 – January 2009 it has lost 51% of its 
initial price. We should mark that in January 2009 US Federal Reserve has started the fourth 
supporting program of financial stabilization (QE4) that led to a preliminary stabilization.              
Let’s analyze a time series of DJI weekly prices – an index price was defined at the trading end 
of each Friday (end of the trading week). In Fig.3 an upward trend, marked as rising corridor, has 
been broken in August 2007.  
 

 
Fig. 3. DJI weekly time series. Two stages of crisis – a failure of bank liquidity  
in August 2007 and the collapse of key mortgage agencies in September 2008. 
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However a total collapse of this index corresponds to the failure of mortgage agencies in October 
2008. Let’s demonstrate an application of two approaches that were considered above – analysis 
of a basic phase parameter )(tR , R - analysis and a diffusive analysis, D - analysis. Both will be 
applied for the discovering of new system disruptions, corresponding to macro scale shifts of 
price.  

2

1

2
1








 






i

ii
i t

xx    1  iii     consttti    Ni ,1                                 (33) 

The set of relations above (33) expresses a difference approximation of the parameter )( ii t . 
According to the conditions, considered above, an attraction sign should be defined 

simultaneously: 0)( tv i


 or 0)( tv i


 scenario must be chosen for a correct indication of the 

bifurcation: a) 0)( tv i


and 0)( ii t or b) 0)( tv i


and 0)( ii t . Let’s compose a time 

dependence of a product iii vB


   , where acceleration is expressed by formulas (34).  

i

ii
i t

xx




 1        

i

ii
i

t
v




 
 1        Ni ,1                                                  (34) 

An appearance of a disruption then corresponds to the transition 00 ii BB  . A graph of a 
normalized bifurcation indicator )(tB  is represented in Fig.4. Bifurcations are indicated at the 
points of OX intersection. A minimal value corresponds to the largest index fall of       
September-October 2008 - the failure of greatest American mortgage agencies and a mortgage 
crisis in US.     
 

 
Fig. 4. Bifurcation parameter time series: 16.07.2006-21.02.2010.  

 
Let’s mark the date points of a critical bifurcation parameter 0iB . They are denoted by red 
points of date axis in Fig.5. We have marked four clusters of critical points, corresponding to 
bifurcations: 14.10.07-24.02.2008, 04.05.2008-22.06.2008, 17.08.2008 – 05.10.2008 and 
11.01.2000 – 15.02.2009. First cluster defines a delay between a bank crisis and a market 
reaction – we may observe inertial properties of a market system. However R – analysis shows 
preliminary signals before a trend channel breakthrough. A third cluster corresponds to the 
mortgage crisis and a minimal iB  of Fig.4.   
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A second approach that should be considered is a diffusive markovian analysis, represented 
above. The transport factor approximation has been calculated on the basis of relations (24). Its 
normalized values are displayed in Fig.6. Highest amplitude of iD  fluctuation again corresponds 
to October 2008, the mortgage crisis. An each intersection of a date axis indicates a new 
markovian bifurcation. Points of intersections have been defined through the following 
condition: 

0),(),( 1 TxDTxD ii                                                                 (35)    
This relation allows determining of derivative sign change: 0),(0),( 1  TxDTxD ii    or

0),(0),( 1  TxDTxD ii   . In Fig, 7 principal clusters are marked in the OX axis as it has 
been done in Fig.5.  It should be marked that in both cases of R – analysis and D - analysis we 
have used a natural criterion of clustering indication: 5 consequent date points of switched 
bifurcation indicator.  
  

 
Fig. 5. Clusters of a critical bifurcation: R – analysis.  

 
A period of 5 weeks has been chosen for this statistical date is necessary for a correct definition 

of the iii vB


    series. However if one uses these types of analysis separately then a time 
period is introduces subjectively or in accordance with practical needs. It is significant to 
emphasize that an R – analysis has a wider area of application since it is not limited by 
markovian processes and may be applied to processes with long memory, like inertial trends. In 
Fig.7 areas of disruption, defined by both R – analysis and D – analysis, are marked by a blue 
color. Thus a diffusive analysis has demonstrated 50% efficiency in relation the R – description. 
Let’s designate a combination of R – analysis and D – analysis as R/D - analysis. 
This combined type of a description allows distinguishing of short-memory, markovian stages of 
a market evolution and long memory processes. Considered historical period of 2006-2010 
allowed finding out of two short memory periods – 14.10.07-24.02.2008, 04.05.2008-22.06.2008 
and two long memory stages – 17.08.2008 – 05.10.2008, 11.01.2009 – 15.02.2009. If we define 
a financial crisis as a systematic, inertial large scale failure of basic economic indexes, then, 
according to R/D – analysis, its beginning corresponds to October 2008. This is a date of 
propagation beginning through adjacent developed markets like markets of European Union.  
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Fig. 6. A transport increment time series: 16.07.2006-21.02.2010.  

 

 
Fig. 7. Clusters of a critical bifurcation: diffusive analysis.  

 
6 Conclusions 
 
In this paper a combined transport analysis has been considered for the description of a pre-
catastrophic stabilization. This effect has been stated as a fusion of stable and unstable 
parametric areas. A delay between a new cycle appearance and a macro scale excitation is 
defined by inertial properties of system domains. That’s why an indication of transport 
anomalies may help to forecast a catastrophe. We have shown that a standard fractal analysis 
introduce artificial properties into physical process: nondifferentiability, Brownian nature and 
linear memory measure. In this frame a Hurst factor can not be used for the indication of 
nonlinear pre-catastrophic stabilization. Additionally a self affinity of a fractal time series makes 
impossible a direct calculation of the process energy.  
A sense of a Hurst factor has been extended by the consideration of a phase diffusion power law. 
This relation characterizes a shift of a basic absorption band from a micro scale to a macro scale 
range when a coherent motion and resonances appear. However it was stated that such type of 
description assumes a power frequency spectrum. To overcome this limitation momentary phase 



13 
 

diffusion has been introduced. An experimental research of diffusion allows finding out the 
evolution of a natural scale-law, corresponding to the investigated complex system. This factor 
reaches a new minimum during a pre-catastrophic stabilization phase: 0),(  TxD i . A 
disruption leads to an increase of the momentary transport due to a large scale motion. In regard 
to the diffusive analysis that means a preliminary intensification of small scale fluctuations with 
a following large scale shift, i.e. catastrophe. We have applied a Lyapunov-Reynolds analysis for 
the verification of a diffusive description. It was found out that for an accelerated phase motion a 
stability loss and the bifurcation are realized for 1)( tR , while a decelerator comes to the 
transition only for 1)( tR . Basic conclusions of a diffusive analysis have been compared to the 
Lyapunov stability model and verification has been found for the small time increments. 
A combined diffusive and Reynolds analysis has been applied for a description of a time series 
of Dow Jones Industrial weekly prices during a world financial crisis of 2007-2009. Diffusive 
and Reynolds parameters shown extreme values in October 2008 - the failure of greatest 
American mortgage agencies. This combined type of a description has allowed distinguishing of 
short-memory markovian stages and long memory processes of a market evolution. The 
considered historical period of 2006-2010 allowed finding out of two short memory periods – 
14.10.07-24.02.2008, 04.05.2008-22.06.2008 and two long memory stages – 17.08.2008-
05.10.2008, 11.01.2009-15.02.2009. It was stated that a systematic large scale failure of a 
financial market began in October 2008 and started fading in February 2009.  
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