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ABSTRACT
Bayesian inference often requires efficient numerical approximation algorithms such as sequential Monte Carlo (SMC) and
Markov chain Monte Carlo (MCMC) methods. The Gibbs sampler is a well-known MCMC technique widely applied in several
fields (e.g., machine learning, finance, etc.). In the application of the Gibbs sampler one needs to efficiently generate values from
univariate full-conditional distributions. In this work, we present a simple, self-tuned and extremely efficient MCMC algorithm
which produces virtually independent samples from univariate target densities. The proposal density used is self-tuned and
tailored to the specific target, but it is not adaptive. Indeed, the proposal is adjusted during an initialization stage following
a simple procedure. As a consequence, there is no “fuss” about convergence or tuning, and the execution of the algorithm is
remarkably sped up. Although it can be used as a stand-alone algorithm to sample from a generic univariate distribution, the
proposed approach is particularly suited for its use within a Gibbs sampler, especially when sampling from spiky multi-modal
distributions. Hence, we call it FUSS (Fast Universal Self-tuned Sampler). Numerical experiments on several data sets show
its good performance in terms of speed and estimation accuracy.
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1. INTRODUCTION

Bayesian methods and their implementations by means of sophisticated Monte Carlo techniques [18], [30] have become
very popular over the last two decades. Indeed, many practical problems demand procedures for drawing from probability
distributions with non-standard forms, such as Markov chain Monte Carlo (MCMC) methods [5] and particle filters [3].

MCMC techniques generate samples from a target probability density function (pdf) by drawing from a simpler proposal
pdf [17, 18], generating a Markov chain. The two most widely applied MCMC approaches are the Metropolis- Hastings (MH)
algorithm and the Gibbs sampler [18, 30]. The Gibbs sampling technique is extensively used in Bayesian inference [14, 31, 25],
to generate samples from multivariate target densities, drawing each component of the samples from univariate full-conditional
densities.

Therefore, when the multivariate target can be factorized into univariate conditional pdfs, the key point for successful
application of the Gibbs sampler is the ability to draw efficiently from these univariate pdfs [14, 18, 30]. The best scenario
for Gibbs sampling occurs when exact samplers for each full- conditional are available. Otherwise, sampling techniques
like rejection sampling (RS) or MH-type algorithms are used within the Gibbs sampler to draw from the complicated full-
conditionals. In the first case, samples generated from the RS algorithm are independent, but the acceptance rate can be very
low. In the second case, we have an approach where an MCMC, the MH method, is applied inside another MCMC, that is
the Gibbs samplers. Therefore, the typical problems of the external-MCMC (long “burn-in” period, large correlation, etc.)
could raise dramatically if the internal-MCMC is not extremely efficient. Although the Gibbs sampler needs only one sample
from each full-conditional, in this case several iterations are necessary to avoid the “burn-in” period of the internal-MCMC.
The length of the “burn-in” period is strictly related to the correlation among the samples. Higher correlation corresponds to a
slower convergence of the chain.

Thus, several automatic and self-tuning samplers, such as adaptive rejection sampling (ARS) [6, 9], Adaptive Rejection
Metropolis Sampling (ARMS) [7, 8, 24], Independent Doubly Adaptive Rejection Metropolis Sampling (IA2RMS) [23], and
Adaptive Sticky Metropolis [21] have been proposed. All of these methods build an adaptive sequence of proposal pdfs via
some interpolation procedure given a set of support points. The proposal is updated when a new support point is incorporated,
according to some statistical criterion. Although their performance can be extremely good, the results show a dependence



from the initial set of support points.Another drawback is to ensure the ergodicity especially in the applications within Gibbs
sampling [8, 30].

Other related works, where a non-adaptive proposal pdf is built via interpolation procedures can be found in literature [26],
[32]. Furthermore, owing to their good performance, different kind of adaptive MH methods based on an independent proposal
have been also studied [12, 13].

In this work, we present a novel algorithm that uses a different strategy: start with a huge number of support points and then
remove some of them after a pruning step, according to certain conditions. The resulting method is fast and extremely efficient
(it yields virtually independent samples), as shown in the numerical results, even with highly multimodal and complicated
targets. The dependence on the initial set of points is drastically reduced, since algorithm only requires a large interval where
it is considered that the main computational effort should be concentrated. Moreover, the proposal is self-tuned, during the
initialization stage, but non-adaptive afterwards. Hence, ergodicity is not an issue and the convergence of the chain to the target
distribution is always guaranteed. For these reasons, we call the new method as FUSS algorithm (“Fast Universal Self-tuned
Sampler”) since, with this sampler, there is no “fuss” about convergence or tuning. Furthermore, we introduce different pruning
procedures: we discuss and analyze them from the theoretical point of view and also test the performance in the numerical
simulations. We design an optimal pruning scheme based on the minimization of L1 distance between proposal and target
pdf. The FUSS algorithm is particularly advisable for multimodal spiky target densities, i.e., densities with several sharp and
tight modes, where virtually all of the existent MCMC techniques often fail. This kind of target pdfs often appears in several
applications, as in ecological and financial inference problems (see Section 6).

The rest of the paper is divided as follows. Sections 2-3 are devoted to recalling the general framework and describing the
structure of the novel technique. Details about the proposal construction and generation are given in Section 4. Then, different
pruning algorithms are introduced in Section 5. Section 6 provides numerical results on several different model types. Finally,
Section 7 contains some brief final remarks.

2. PROBLEM STATEMENT

Bayesian inference often requires drawing samples from complicated multivariate posterior pdfs, π(x|y) with x ∈ XD ⊆ RD.
A common approach, when direct sampling from π(x|y) is unfeasible, is using a Gibbs sampler [30]. At the i-th iteration, a
Gibbs sampler obtains the d-th component (d = 1, . . . , D) of x, xd, by drawing from the full conditional pdf of xd given all the
previous generated components [30, 4, 15], i.e.,

x
(i)
d ∼ π̄(xd|x(i)

1:d−1,x
(i−1)
d:D ) = π̄(xd) ∝ π(xd), (1)

with xd ∈ X , and the initial vector drawn from the prior, i.e., x(0) ∼ π̄0(x). However, even sampling from the univariate
pdf in Eq. (1) can often be complicated. In these cases, a common approach is to use another Monte Carlo technique (e.g.,
rejection sampling (RS) or the Metropolis-Hastings (MH) algorithms) within the Gibbs sampler, drawing candidates from a
simpler proposal pdf,

p̄(x) ∝ p(x) = eW (x), x ∈ R.

The best case is when an RS technique can be applied since it yields independent and identically distributed (i.i.d.) samples.
However, the RS technique requires that p(x) ≥ π(x) for all x ∈ X . In general, it is not straightforward to satisfy this
inequality. For instance, the adaptive rejection sampling (ARS) technique [9] can be applied only to log-concave target pdfs.
Thus, in general, the use of another MCMC method becomes almost mandatory. In this case, the performance of this approach
depends strictly on the choice of p̄(x). For sake of simplicity, in the sequel we denote the univariate target pdf (i.e., the full-
conditional proposal in Eq. (1)) as π̄(x). Our aim is designing an efficient fast sampler to draw from the univariate target
pdf,

π̄(x) ∝ π(x) = eV (x), x ∈ X ⊆ R, (2)

where π(x) is unnormalized and V (x) = log[π(x)] is a generic function, so that π(x) can be multimodal, with light or heavy
tails. For the sake of simplicity, here we consider bounded target density π(x), although the FUSS method, described in the
following, could be easily extended for dealing with unbounded target as well.

3. STRUCTURE OF THE ALGORITHM

The FUSS algorithm is an MCMC based on an independent proposal pdf built via a simple interpolation procedure, shown in
the next section. The general structure is given in Table 1. The first 3 steps form a pre-processing procedure, applied only once,



Table 1. General structure of the FUSS algorithm.

1. Initialization: Choose a set of support points SM = {s1, . . . , sM}, such that s1 < s2 < . . . < sM , and the total number of samples is K.

2. Pruning: Remove certain support points according to a certain criterion, providing a new set Sm with m < M .

3. Construction: Build adequately a proposal function p(x|Sm) given Sm.

4. MCMC algorithm: apply K steps of an MCMC method using p(x|Sm) as proposal pdf and yielding a set of samples {x1, . . . , xK}.

Table 2. The Metropolis-Hastings method

3.1 Set k = 0 and choose x0.

3.2 Draw x′ ∼ p̄(x) ∝ p(x|Sm) and u′ ∼ U([0, 1]).

3.4 Set xk+1 = x′ with probability

αMH = 1 ∧
π(x′)p(xk|Sm)

π(xk)p(x′|Sm)
, (3)

otherwise, with probability 1− αMH set xk+1 = xk .

3.5 If k ≤ K, set k = k + 1 and repeat from step 3.2. Otherwise, stop.

Table 3. The rejection chain method

3.1 Set k = 0 and choose x0.

3.2 Draw x′ ∼ p̄(x) ∝ p(x|Sm) and u′ ∼ U([0, 1]).

3.3 If u′ ≥ π(x′)
p(x′|Sm)

repeat from step 3.2.

3.4 If u′ ≤ π(x′)
p(x′|Sm)

, with probability

αRC = 1 ∧
π(x′) [π(xk) ∧ p(xk|Sm)]

π(xk) [π(x′) ∧ p(x′|Sm)]
, (4)

set xk+1 = x′, otherwise, with probability 1− αRC set xk+1 = xk .

3.5 If k ≤ K, set k = k + 1 and repeat from step 3.2. Otherwise, stop.

useful to obtain a good proposal density. The step 4 contains the MCMC iterations, repeatedK times. In this work, we consider
two possible techniques for the step 4 of FUSS. The first one is the Metropolis-Hastings (MH) algorithm [30], shown in Table
2. In this case, we denote the whole method as FUSS-MH. The second one is the rejection chain algorithm [33, 34]: it is shown
in Table 3. In this case, firstly a rejection sampling (RS) test is performed, and a MH step is applied only when a sample is
accepted, which ensures drawing from the target pdf. We denote the complete method as FUSS-RC.

FUSS-RC is slower than FUSS-MH since when a sample is rejected in the RS test the chain is not moved forward. On
the other hand, FUSS-RC yields samples with less correlation due to application of the RS test. We will test and compare the
performance in the numerical simulations. The notation a ∧ b denotes the minimum between two real values, i.e., min [a, b].

3.1. Important remarks

It is important to emphasize some aspects of our approach. First of all, we remark that steps from 1 to 3 of the general FUSS
algorithm in Table 1 are performed only once. The success of the FUSS algorithms lies on the speed in performing these steps



and the quality of the final proposal density. Indeed, since the shape of the proposal is tailored to π(x), the generated samples
will be virtually independent.

The initial support points in SM play the role of internal “tuning” parameters of the FUSS algorithm. After the pruning
step, the proposal p(x|Sm) is built according to the new set Sm with m < M . After that, the proposal p is kept fixed. Thus, the
FUSS techniques are standard non-adaptive MCMC, avoiding any issue about the ergodicity.

The possibility of applying FUSS directly for drawing from multidimensional distributions depends on the ability to
construct efficiently the proposal pdf via interpolation in dimensions higher than one (step 3 in the general structure of FUSS).
In this work, we consider the application of FUSS within Gibbs sampling, drawing from univariate full-conditional pdfs.
Furthemore, note also that all the operations in both algorithms, FUSS-MH and FUSS-RC, can be easily implemented in log-
domain evaluating only the functions V (x) = log[π(x)] and W (x) = log[p(x|Sm)].

If, in some case, we obtain p(x|Sm) ≥ π(x) for all x ∈ X , then the FUSS-RC algorithm becomes a standard rejection
sampler, providing independent identically distributed (i.i.d.) samples from π̄(x). Indeed, note that in this scenario the
probability αRC of accepting the new state is always 1, i.e., after passing the rejection test, the movement is automatically
accepted. The reason is that, in FUSS-RC after the rejection test, the proposed samples are distributed as

q̄(x) ∝ q(x) = π(x) ∧ p(x|Sm).

Thus, q(x) is used as proposal in the acceptance function αRC . Finally, note also that q(x) is closer, in terms of L1 distance, to
π(x) than p(x|Sm): this is the reason why FUSS-RC produces samples with less correlation than FUSS-MH.1

3.2. Initialization and general strategy for FUSS

The initial set SM should cover the regions of high probabilities described by the target π(x). In general, if no prior
information is available we suggest the following FUSS approach: choose a huge, dense, (uniform) initial grid of support
points, si+1 − si = ε, i.e.,

SM = {s1, s2 = s1 + ε, . . . , sM},
in order to capture all the main features of the target. The grid could be thicker in the regions where the user desires to focus the
computational effort. The number of support points is drastically reduced according to a certain criterion obtaining a new set
Sm (see Section 5 for some examples) and we build a stepwise approximation of the target pdf given the pruned support points
(see Section 4). The resulting proposal pdf is a self-tuned and tailored to the target but is non-adaptive, since it does not vary
during the run of the chain (it is “adapted” offline). In the next section, we describe in details the construction of the proposal.

4. CONSTRUCTION OF THE PROPOSAL DENSITY

In several applications, it is useful to evaluate the target pdf in the log-domain so that, here, we consider the construction of the
proposal function in the log-domain as well. Let us consider a set of support points after the pruning step (see Section 5),

Sm = {s1, s2, . . . , sm} ⊂ X ,

where s1 < . . . < sm, and the intervals I0 = (−∞, s1], Ij = (sj , sj+1] for j = 1, ...,m − 1 and Im = (sm,+∞). Then, let
us consider

p̄(x) ∝ p(x|Sm) = eW (x),

where W (x) is built as in Eq. (5) using a piecewise constant approximation, with the exception of the first and last intervals
corresponding to the tails. Mathematically,

W (x) = wi(x) = max [V (si), V (si+1)] IIi
(x), (5)

where 1 ≤ i ≤ m− 1 and

IIi
(x) =

{
1, x ∈ Ii = (si, si+1],
0, x 6= Ii = (si, si+1].

(6)

1In the extreme and trivial case when proposal and target are the same function, i.e. q(x) = π(x), the correlation is zero since we are drawing directly i.i.d.
samples from the target.



In the first and last interval, I0 and Im, we have

W (x) = wj(x), j = {0,m}, x ∈ Ij ,

where wj(x) represents a generic log-tail function. For instance, choosing light tails, wj(x), j = {0,m}, are linear functions.
Figures 1 and 6 provide some specific examples. For further details, see Appendix A. The choice of taking the maximum is in
order to satisfy the inequality W (x) ≥ V (x), in as many regions as possible. If this inequality is verified for all x ∈ X then
also p(x|Sm) ≥ π(x), and FUSS-RC becomes a standard rejection sampler providing independent samples.
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Fig. 1. Example of the proposal construction. (a) Construction procedure with m = 9 support points, in the log-domain. In this
case, we have two light tails (two straight lines in the log-domain). (b) The corresponding unnormalized densities p(x) = eW (x)

and π(x) = eV (x). (c) The corresponding normalized densities p̄(x) ∝ p(x) and π̄(x) ∝ π(x).

4.1. Variate generation from p̄(x)

The proposal p̄(x) ∝ p(x|Sm) is composed in general by m+ 1 pieces, including the two tails. Note that p̄(x) can be seen as a
finite mixture

p̄(x) ∝ p(x|Sm) =
m∑

i=0

ηiφi(x),

where
∑m
i=0 ηi = 1 and φi(x) ∝ exp (wi(x)), for all x ∈ Ii and φi(x) = 0 for x /∈ Ii. Hence, in order to draw adequately

from p̄(x), it is necessary:

1. Compute the area Ai below each piece, i = 0, . . . ,m. It can be done analytically easily for the rectangular pieces, and
for the tails considered here (exponential or Pareto, for instance) as well. Then, normalize them

ηi =
Ai∑m
j=1Aj

, for i = 0, . . . ,m.

2. Choose a piece, i.e., an index j∗ ∈ {0, . . . ,m} according to the weights ηi, i = 0, . . . ,m.

3. Given the index j∗, draw x′ ∼ φj∗(x) ∝ exp (wj∗(x)).

It is important to remark that the process of calculate the areas Ai and then the weights ηi is done once, before running the
Markov chain. The calculation of the areas Ai of the rectangular regions is straightforward and fast.

5. PRUNING ALGORITHMS

The computational cost of drawing from the proposal pdf p̄(x) (and, as a consequence, the speed of the algorithm) depends on
the number of used support points and on the complexity of generating each piece. Since we are considering simple uniform
pieces, the speed is mainly obstructed by the total number of points. The application of the pruning step has two advantages: it
speeds up the algorithm, and allows the use of a greater number of initial support points, capturing all the important features of
the target. In the following, we present some possible pruning criteria, sorted for increasing level of complexity. For the sake of



Table 4. Pruning algorithm P1

1. Given SM = {s1, . . . , sM}, decide the desired number m of final support points (or a rate of reduction m
M

).

2. Sort π(si), i = 1, . . . ,M , in a decreasing order

π(sr1 ) ≥ π(sr2 ) ≥ .... ≥ π(srM ).

3. Return Sm = {sr1 , sr2 , . . . , srm}.

Table 5. Pruning algorithm P2

1. Given SM = {s1, . . . , sM}, choose a value δ ∈ (0, 1).

2. Find all the support points skj
∈ SM such that

π(skj
) ≤ δ max

1≤i≤M
π(si). (7)

3. Return Sm = SM \ {sk1 , . . . , skG
}, where G is the number of points satisfying the inequality (7).

Table 6. Pruning algorithm P3

1. Given SM = {s1, . . . , sM}. Set S(0) = SM , r = 1 and L = max
1≤i≤M

|π(si+1)− π(si)| . Choose a value δ > 0.

2. While G 6= 0:

(a) Find all the support points skj
∈ S(n) such that ˛̨̨

π(skj+1)− π(skj
)
˛̨̨
≤ δL, (8)

(b) S(r) = S(r−1) \ {sk1 , . . . , skG
} where G = |{sk1 , . . . , skG

}|.
(c) Set r = r + 1.

3. Return Sm = S(n) \ {s1}.

simplicity, we assume a bounded target π(x). The first two procedures P1 and P2 are shown in Tables 5 and 5. They are based
on the simple idea of pruning all the points sr with “small” value π(sr). They are the simplest and fastest approaches but they
also present several limitations, so that P1 and P2 should be used carefully. For instance, they are not advisable for heavy tailed
distributions. Another drawback of the procedures P1 and P2 is that the performance is quite sensitive to the dispersion of the
target.

More refined pruning techniques can be easily provided. An example is the procedure P3 in Table 6. The underlying idea
is that we can remove support points where the target is virtually flat, i.e., |π(si+1) − π(si)| ≈ 0. Moreover, note that at the
first iteration, if a uniform grid is used, i.e., si+1 − si = ε, the ratio π(si+1)−π(si)

ε is an estimation of the first derivative, hence
a condition over |π(si+1) − π(si)| can be consider a condition over the first derivative of π. Clearly, this procedure could be
repeated until achieving the desired rate of reduction or simply iterated N times. In Table 6, the procedure is iterated until the
pruning condition is no longer verified. Below, we describe the theory for providing an optimal pruning procedure.



5.1. Optimal pruning strategy

The performance of a rejection sampler or an independent Metropolis algorithm is related to the L1 distance between the target
and the proposal [30],

Dp|π(R) =
∫ ∞

−∞
|p(x|SM )− π(x)|dx. (9)

With the proposal procedure considered here, we can write

Dp|π(R) =
M∑

j=0

Dp|π(Ij),

where Dp|π(Ij) denotes the local L1 distance within the i-th interval (0 ≤ j ≤M ), i.e.

Dp|π(Ij) =
∫

Ij

|p(x|SM )− π(x)|dx

=
∫ sj+1

sj

|p(x|SM )− π(x)|dx.
(10)

Here, for the sake of simplicity, we are considering the (non-rigorous) definition s0 = −∞ and sM+1 = +∞, since
I0 = (−∞, s1] and IM = [sM ,∞). Moreover, recall that s1 < s2 < . . . < sM .

The essential consideration is the following: when a support point is removed, the distance between the target and the
proposal generally will tend to increase, thus leading to a worse performance of the algorithm. Hence, an optimal criterion for
pruning support points is discarding those that lead to as small increase as possible in the L1 distance between p(x) and π(x).
Since the proposal p(x|SM ) is a piecewise constant function with values

exp(wi) = exp(max [V (si), V (si+1)]),

with the exception of the tails, and considering a continuous target pdf, it is apparent that

Dp|π(Ij) ≤ Bj,j+1 = (sj+1 − sj)|π(sj+1)− π(sj)|.

i.e., Bj,j+1 is an upper bound for the distance Dp|π(Ij). If the number m of used support points grows, then clearly
Bj,j+1 → Dp|π(Ij). Thus, the value Bj,j+1 can be considered as a rough approximation of Dp|π(Ij). This observation
is the theoretical basis of the pruning strategy detailed in Table 7, where a generic interval [sj , sj+2] is considered. Depending
on the approximation Bj,j+2 we decide if pruning sj+1 or not. Clearly, at each iteration at most R =

⌊
M−1

2

⌋
points can be

removed. The procedure is iterated until no more points are pruned, i.e., when all the upper bounds (br, in the notation of Table
7) are greater than the threshold δ.2 Clearly, the algorithm could also be stopped earlier.

6. NUMERICAL EXAMPLES

In this section, we provide numerical results for different types of target distributions. First of all in Section 6.1, we test the
performance of the FUSS algorithm comparing with other well-known MCMC methods, drawing from univariate (unimodal
and multimodal) densities. Then, we consider the application of the FUSS technique within the Gibbs sampling for drawing
from different types of multidimensional pdfs (Sections 6.2, 6.3 and 6.4).

6.1. Univariate densities

6.1.1. Unimodal target pdf: Nakami distribution

First of all we consider a Nakagami target distribution, i.e.,

π̄(x) ∝ π(x) = x2β−1 exp
(
− β

Ω
x2

)
, x > 0, (11)

2Note that also in P3 and P4, as in P2, there is a maximum allowed value δ∗. For δ > δ∗, all support points are removed.



Table 7. Pruning algorithm P4

1. Choose a value δ > 0. Given SM = {s1, ..., sM}, set S(0) = SM , m = M , n = 0 and

L = max
1≤j≤

j
m−1

2

k(s2j+1 − s2j−1)|π(s2j+1)− π(s2j−1)|.

2. For r = 1, . . . , R =
¨
m−1

2

˝
:

(a) Compute br = (s2r+1 − s2r−1)|π(s2r+1)− π(s2r−1)|.
(b) If br ≤ δL, set S(r) = S(r−1) \ {s2r} and n = n+ 1.

(c) Otherwise, if br > δL, set S(r) = S(r−1).

3. If n > 0 set n = 0, S(0) = S(R), m = |S(R)| and repeat from step 2.

4. Otherwise, if n = 0, return Sm = S(R).

with β ≥ 0.5 and Ω > 0. The Nakagami distribution is widely used for the simulation of fading channels in wireless
communications [1, 19, 29]. When β is an integer or half-integer (i.e., β = n

2 with n ∈ N), independent samples can be
directly generated through the square root of a sum of squares of n zero-mean i.i.d. Gaussian random variables. However, for
generic values of β there is not direct method to sample from it. Here, our goal is to estimate the expected value of X ∼ π̄(x),

µ = E[X] = Γ(β+ 1
2 )

Γ(β)

√
Ω
β , and the variance, σ2 = Ω

(
1− 1

β

(
Γ(β+ 1

2 )

Γ(β)

)2
)

, with Ω = 1 and β = 4.6.

We apply the FUSS methods using different pruning procedures P2, P3, P4 with different values of the threshold parameter
δ. We use an initial set SM = {0.01, 0.02, 0.03, . . . , 103} with M = 105 points. We also test a standard MH technique [30]
with a random walk proposal

p̄(xk|xk−1) ∝ exp
{−(xk − xk−1)2

2σ2
p

}
,

with different values of σp. Furthermore, we consider another well-known methodology, the slice sampling techniques [30,
Chapter 8]. For as fair as possible comparison of the required computational time, we use for both the corresponding Matlab
functions directly provided by MathWorks (mhsample.m and slicesample.m).

For all these techniques, we choose x0 ∈ U [0, 10], K = 5000, and we consider all the generated samples without removing
any burn-in period. We have performed 3·104 independent runs and the results are shown in Tables 8-9. These tables provide the
Mean Square Errors (MSE) in the estimation of µ and σ2, the linear correlation among the samples at lag-1, ρ(1), the acceptance
rate (0 ≤AR≤ 1) in the rejection sampling (RS) step, the number of points m after the pruning and the computational time.
The time values are normalized w.r.t. the time required by the MH method. Since only FUSS-RC has an RS step, in the other
algorithms AR is set to 1 since no proposed samples are discarded in a RS test.3 This means that the total number of iterations
of FUSS-RC is greater thanK = 5000 (depending on the acceptance rate), whereas for the other methods is exactlyK = 5000.

We can see that FUSS algorithms always outperform the standard MH and slice techniques. In all cases, the FUSS
algorithms are faster, with the exception of FUSS-RC with δ = 0.9 which is slightly slower than MH. Moreover, both FUSS-
MH and FUSS-RC are able to reach virtually the performance of an exact sampler in the estimation of µ drawing independent
samples, that is

MSE(µ) ≥ σ2

K
= 1.0560 10−5.

Clearly, FUSS-MH is always faster than FUSS-RC since the lack of rejection sampling test. On the other hand, for the same
reason FUSS-RC provides better results. Note that, in spite of the greater number of iterations owing to the rejected samples,
FUSS-RC is faster than the standard MH and the slice sampling. The time spent in FUSS-MH always increases withm, whereas
in FUSS-RC the computational cost can also decrease when m grows due to an improvement in the acceptance rate.

The pruning procedures P3 and P4 perform clearly better than P2. The best one is P4 as expected.4 This is owing to the fact
that P4 selects the final support points in a more desirable manner, which can be seen comparing the time values in FUSS-RC.

3We remark that we are not referring to the acceptance probability α in the FUSS-MH and MH methods. The AR value is the averaged number of samples
accepted in the rejection sampling step of FUSS-RC.

4The benefit of using P4 can be seen more clearly in the next example, where a multimodal target pdf and a smaller number of iterations K are considered.



FUSS-MH FUSS-RC
Pruning δ= 0.9 δ= 0.5 δ= 0.3 δ= 0.01 δ= 0.9 δ= 0.5 δ= 0.3 δ= 0.01

P2

MSE(µ) 3.13 10−5 2.15 10−5 1.68 10−5 1.10 10−5 1.12 10−5 1.09 10−5 1.06 10−5 1.05 10−5

MSE(σ2) 3.94 10−6 2.25 10−6 1.65 10−6 1.05 10−6 1.21 10−6 1.13 10−6 1.12 10−6 1.12 10−6

ρ(1) 0.4811 0.3288 0.2142 0.0087 -8.77 10−4 -2.26 10−4 -1.30 10−4 -1.05 10−4

AR 1 1 1 1 0.3926 0.6354 0.7677 0.9779
m 23 56 73 139 23 56 73 139

Time 0.6683 0.6742 0.6781 0.6875 1.3476 0.8263 0.7927 0.7328

P3

MSE(µ) 1.11 10−5 1.09 10−5 1.06 10−5 1.05 10−5 1.10 10−5 1.07 10−5 1.05 10−5 1.05 10−5

MSE(σ2) 1.20 10−6 1.16 10−6 1.15 10−6 1.13 10−6 1.14 10−6 1.11 10−6 1.11 10−5 1.10 10−6

ρ(1) 0.0200 0.0124 0.0077 0.0053 -2.35 10−4 -2.50 10−4 -2.80 10−4 -1.85 10−4

AR 1 1 1 1 0.9570 0.9630 0.9787 0.9830
m 50 88 106 166 50 88 106 166

Time 0.6712 0.6816 0.6859 0.7019 0.7676 0.7408 0.7424 0.7426

P4

MSE(µ) 1.10 10−5 1.09 10−5 1.06 10−5 1.05 10−5 1.10 10−5 1.07 10−5 1.05 10−5 1.05 10−5

MSE(σ2) 1.19 10−6 1.14 10−6 1.12 10−6 1.10 10−6 1.13 10−6 1.10 10−6 1.09 10−6 1.08 10−6

ρ(1) 0.0133 0.0096 0.0076 0.0053 1.27 10−4 -2.61 10−4 -2.45 10−4 -2.62 10−4

AR 1 1 1 1 0.9666 0.9769 0.9800 0.9832
m 71 109 121 177 71 109 121 177

Time 0.6849 0.6937 0.6957 0.7105 0.7339 0.7397 0.7380 0.7502

Table 8. Results of FUSS methods with different pruning procedures, K = 5000 and the Nakagami target with β = 4.6 and
Ω = 1.

σp= 0.2 σp= 0.5 σp= 0.8 σp= 1 σp= 2 σp= 3 σp= 4

MH

MSE(µ) 0.0021 3.95 10−4 1.98 10−4 1.52 10−4 1.43 10−4 1.90 10−4 2.52 10−4

MSE(σ2) 0.0513 0.0091 0.0039 0.0027 9.20 10−4 6.18 10−4 5.69 10−4

ρ(1) 0.8935 0.7495 0.7433 0.7611 0.8389 0.8808 0.9043
AR 1 1 1 1 1 1 1

Time 1 1 1 1 1 1 1
Slice sampling

MSE(µ)= 1.24 10−5 MSE(σ2)= 2.27 10−5 ρ(1)= 0.0229 AR=1 Time= 2.5037

Table 9. Results of the standard MH and slice sampling methods, K = 5000 and the Nakagami target with β = 4.6 and Ω = 1.

Indeed, FUSS-RC-P4 is always faster than FUSS-RC-P3, even if more points are used. The reason is that the points are better
located so that the L1 distance between target and proposal is smaller and the acceptance rate greater. It can be noted observing
also that FUSS-RC-P4 with δ = 0.9 uses only m = 71 points obtaining AR= 0.9666, whereas FUSS-RC-P3 with δ = 0.5 uses
m = 88 achieving AR= 0.9630. Namely, FUSS-RC-P3 even with more points can have an AR smaller than FUSS-RC-P4.
Thus, FUSS-RC-P4 is faster than FUSS-RC-P3.

6.1.2. Multimodal target pdf: mixture of Gaussians

Now we test the FUSS approach drawing from a multimodal target density. More specifically, we consider a mixture of 4
Gaussian pdfs,

π̄(x) =
4∑

i=1

N (x;µi, σ2
i ),

where µ1 = −7, σ1 = 0.1, µ2 = 0, σ2 = 1, µ3 = 8, σ3 = 0.2, and µ4 = 15, σ4 = 0.1. This choice leads to 4 modes as shown in
Figure 2(a). Three of them are notably tight, so that this target becomes even more challenging. We consider first onlyK = 200
as total number of iterations of the chain, taking into account all the generated samples to make the estimation (without removing
any burn-in period). We again test the performance of FUSS algorithm, the standard MH method with a Gaussian random walk
proposal pdf and the slice sampling, as in the previous example. For the sake of simplicity, we have only considered the
FUSS-MH, in this example.5 For all the different algorithms, the initial state x0 of the chain is chosen uniformly in [−10, 20],
i.e., x0 ∈ U([−10, 20]). As in the previous example, we have used the Matlab functions directly provided by MathWorks
(mhsample.m and slicesample.m). For FUSS-MH, we use an initial set SM = {−103,−103+0.01, . . . , 103−0.01, 103}
then M = 2 · 105 + 1 points.

5As shown in the previous numerical example, FUSS-RC provides in general better results wasting slightly more computational time.



All the results are averaged over 3 · 104 runs. The MSEs in the estimation of the mean (µ) and variance (σ2) of the target
are shown in Table 10 for FUSS-MH, whereas the results of the standard MH are provided in Table 11, using K = 200 samples
for both algorithms. We vary the values of the internal parameters as δ in FUSS-MH and σp in MH. We also provide the linear
correlation at lag-1 (denoted as ρ(1)), the number of points after pruning (m) and the spent time normalized w.r.t. the time
spent by MH using K = 200. Note that, in this case, the theoretical bound for the MSE(µ) ≥ σ2

K is σ2

K = 68.765
200 = 0.3438,

achievable via Monte Carlo using independent samples. Furthermore, in Table 12 we give the MSE obtained using MH and slice
sampling, increasing the total number K of iterations of the Markov chain. Figures 2(b)-(c) depict respectively the log-MSE
and log-time of MH and slice sampling as function of K. Observing the results, it is apparent that FUSS methodology speeds
up the convergence of the Markov chain. Indeed:

• FUSS-MH always outperforms MH and slice sampling, providing an improvement at least of 41% in the MSE, and
≈ 98% with the P4 pruning procedure.

• Table 11 also shows the importance of using an adaptive or self-tuned method: the results vary considerably with the
choice of σp and, even in the best case, the MSE is much higher than in the worst case of FUSS-MH. This is owing to
FUSS-MH is able to adapt the entire shape of the proposal pdf according to the target.

• FUSS-MH using the pruning P4 virtually reaches the theoretical bound for the MSE, i.e., 0.3438, obtainable using
independent samples. This remarkable result is also achieved with the different choices of the threshold δ.

• Observing Table 12 and Figures 2(b)-(c), we can see that in order to obtain the same performance of FUSS-MH using
a standard MH method, we need to use between K = 15000 and K = 20000 iterations, spending at least +50% more
of computational time, comparing with FUSS-MH-P4 with δ = 0.9. With the slice sampling we need to use between
K = 15000 and K = 20000 iterations as well, using at least +125% more of computational time.

FUSS-MH
Pruning δ= 0.9 δ= 0.5 δ= 0.3 δ= 0.01

P2

MSE(µ) 11.38 7.33 4.30 0.4680
MSE(σ2) 409.02 288.35 211.78 19.52
ρ(1) 0.9142 0.8917 0.8419 0.1468
m 18 46 103 662

Time 1.03 1.04 1.06 1.17

P3

MSE(µ) 1.7683 1.1368 0.8686 0.3679
MSE(σ2) 78.96 49.82 35.92 15.3513
ρ(1) 0.6693 0.5284 0.4224 0.0296
m 61 99 135 497

Time 1.20 1.27 1.31 1.35

P4

MSE(µ) 0.3786 0.3662 0.3638 0.3526
MSE(σ2) 15.53 15.31 15.10 14.53
ρ(1) 0.0446 0.0306 0.0247 0.0093
m 145 195 223 605

Time 1.23 1.26 1.28 1.40

Table 10. Results of FUSS-MH with different pruning procedures andK = 200, drawing from the mixture of Gaussians target.

σp= 2 σp= 8 σp= 14 σp= 20 σp= 25 σp= 30

MH

MSE(µ) 34.92 24.64 19.62 19.46 19.80 20.57
MSE(σ2) 4.43 103 1.36 103 1.13 103 1.09 103 1.37 103 1.51 103

ρ(1) 0.7481 0.9465 0.9425 0.9424 0.9445 0.9459
Time 1 1 1 1 1 1

Table 11. Results of the standard MH method with K = 200, drawing from the mixture of Gaussians target. The best results
are obtained with σp = 20, but the MSE is always greater than using FUSS-MH.



K = 200 K = 103 K = 2 · 103 K = 5 · 103 K = 104 K = 1.5 · 104 K = 2 · 104

MH MSE(µ) 19.46 6.16 3.16 1.35 0.6735 0.4540 0.3341
σp= 20 MSE(σ2) 1.09 103 263.36 123.37 44.69 22.48 14.45 10.79

Time 1 4.55 8.75 21.51 41.48 61.44 81.06

Slice
MSE(µ) 22.13 6.08 3.25 1.26 0.6136 0.4177 0.2911

MSE(σ2) 1.10 103 171.13 68.91 23.98 10.48 7.40 5.85
Time 2.37 11.04 21.62 52.66 103.78 154.38 204.57

Table 12. Results of the slice sampling and the standard MH method with σp = 20, varying the total number K of iterations of
the chain, drawing from the mixture of Gaussians target.
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Fig. 2. (a) The multimodal target pdf π(x). (b) Log-MSE as function of K
103 for the slice (triangles) and the MH (squares)

methods, with σp = 20. The solid line shows the log-MSE, log(0.3526) = −1.0424, of FUSS-MH-P4 with δ = 0.01, achieved
using only K = 200. (c) The spent log-time as function of K for the slice (triangles) and the MH (squares) methods. The solid
line corresponds to FUSS-MH-P4 with δ = 0.01 and K = 200.

6.2. FUSS within Gibbs: a toy example

In order to show how important it is to use an adequate MCMC technique within a Gibbs sampler, in this section we provide
a simple example using different methods for drawing from the full-conditional pdfs: the results obtained by the Gibbs
sampler can vary notably, depending on the technique used “within Gibbs”. Let us consider the bivariate target density
π̄(x1, x2) ∝ π(x1, x2) where

π(x1, x2) = exp
(
− (x2 −A+By)2

4
− x2

2σ2
1

− y2

2σ2
2

)
,

with A = 16, B = 10−2, and σ2
1 = σ2

2 = 104

2 . Densities with this analytic form have often been used in the
literature [22, 10] to evaluate the performance of different Monte Carlo algorithms. We apply a Gibbs sampler to draw
from π̄(x1, x2). To generate from the full conditional pdfs, we use FUSS-MH-P4 with δ = 0.9, starting with a uniform
grid SM = {−104,−104 + 0.01, . . . , 104 − 0.01, 104}, i.e., M = 2 · 105 + 1. In order to compare the performance, we
also apply the standard ARMS method [7]: this technique uses an interpolation procedure to build the proposal using a set
of support points, similarly to FUSS. However, unlike FUSS, the ARMS method starts with few support points and adds new
ones adaptively. We choose for ARMS the initial set {−10,−6,−4.3,−0.01, 3.2, 3.8, 4.3, 7, 10}. Finally, we also consider a
standard MH algorithm with a random walk proposal

p̄(xt|xt−1) ∝ exp
(
− (xt − xt−1)2

2σ2
p

)
,

with σp ∈ {1, 2, 10} (initial state x0 ∈ U([−5, 5])). We use NG = 2000 iterations of the Gibbs sampler, using all the samples
to estimate four statistics which involve the first four moments of the target: mean, variance, skewness and kurtosis. In each
iteration, we draw K samples from each full-conditionals, take the last one and continue in the Gibbs cycle.

Table 6.2 provides the numerical results (averaged over 1000 runs) for the Mean Absolute Error (MAE) and the time
required by the Gibbs sampler. The time is normalized by considering 1 to be the time elapsed by using ARMS within Gibbs



and K = 50. Figure 3(a) illustrates the target π̄(x) whereas Figures 3(b)-(c) depict the MAE and the spent time of ARMS and
FUSS-MH-P4 as function of K.

MAE
Technique K Mean Variance Skewness Kurtosis Time

3 0.0735 0.0365 0.0369 0.0022 0.343
FUSS-MH-P4 5 0.0735 0.0361 0.0367 0.0022 0.343
δ = 0.9 10 0.0724 0.0354 0.0365 0.0021 0.345

50 0.0721 0.0355 0.0364 0.0021 0.348

3 3.408 11.580 3.384 11.572 0.077
5 3.151 9.839 2.650 7.079 0.116

ARMS 10 2.798 7.665 2.024 4.124 0.223
50 1.918 3.407 1.134 1.292 1.000

MH

σp = 1 100 3.509 12.308 3.671 13.666 0.540
σp = 2 100 1.756 3.077 0.9782 0.9633 0.540
σp = 10 100 0.0756 0.0376 0.0368 0.0025 0.540
σp = 1 1000 3.508 12.302 3.665 13.624 3.229
σp = 2 1000 1.601 2.560 0.8741 0.7691 3.229
σp = 10 1000 0.0743 0.0360 0.0363 0.0021 3.229

Table 13. MAE in the estimation of four statistics (first component) of π̄(x1, x2) and normalized simulation time. All the
techniques are used within a Gibbs sampler (NG = 2000 total iterations), performing K iterations for each full-conditionals.

Observing Table 6.2 and Fig. 3(b), we notice that FUSS-MH-P4 outperforms ARMS for all values of K in the estimations
of the four central moments: FUSS-MH-P4 achieves always MAEs close to zero. As shown also in Fig. 3(c), due to the pruning
procedure, FUSS-MH-P4 is a slightly slower than ARMS for K = 3, 5, 10. However, the computational time FUSS-MH-P4
remains virtually constant with K whereas in ARMS it increases with K, since ARMS adds new support points for improving
the proposal pdf, hence becoming more costly. Regarding the use of the MH algorithm within Gibbs, the results depend largely
on the choice of the variance of the proposal, σ2

p, showing the needed of adaptive or self-tuned MCMC strategies. Indeed, for
an inadequate scale parameter (e.g., σp = 1 or σp = 2), even the use of K = 1000 provides bad results. On the other hand,
when a good σp is selected (i.e., σp = 10), MH with K = 100 and K = 1000 provides virtually the same performance of
FUSS-MH-P4 but obviously with increased computational cost.
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Fig. 3. (a) Contour plot of the target pdf π̄(x1, x2). (b) MAE in estimation of the kurtosis (first component) as function of K,
using ARMS-within-Gibbs (squares) and FUSS-within-Gibbs (circles). (c) Normalized spent time as function of K for ARMS
(squares) and FUSS (circles) within the Gibbs sampler.

6.3. Parameter estimation in a chaotic system

The FUSS algorithms are also able to overcome computational issues in certain statistical frameworks where other, even
sophisticated, MCMC techniques seem to fail [27, 28]. In order to show this capability, we consider the example of estimating
fixed parameters of a chaotic system, which is consider a challenging problem in literature [11, 27, 28]. This systems are often
utilized for modelling the evolution of population sizes, in ecology for instance [27]. We consider a logistic map [2] perturbed



by noise,
zt+1 = R

[
zt

(
1− zt

Ω

)]
exp(εt), εt ∼ N (0.λ2), (12)

R > 0, Ω > 0, z1 ∈ (0, 1), where R and Ω are unknown, whereas a sequence z1:T = [z1, . . . , zT ] is observed. For the sake of
simplicity, we consider λ known. Therefore, the likelihood function is given by

p(z1:T |R,Ω) =
T−1∏

t=1

p(zt+1|zt, R,Ω),

where, defining g(zt, R,Ω) = R
[
zt
(
1− zt

Ω

)]
, we have

p(zt+1|zt,K,Ω) ∝
˛̨̨̨
g(zt, R,Ω)

zt+1

˛̨̨̨
exp

0B@− log
“

zt+1
g(zt,R,Ω)

”2

2λ2

1CA ,

if g(zt, R,Ω) > 0, otherwise p(zt+1|zt,K,Ω) = 0, if g(zt, R,Ω) ≤ 0. Considering uniform priors overR, p(r) ∼ U([0, 104]),
and Ω, p(ω) ∼ U([0, 104])), we desire to compute efficiently the mean of the bivariate posterior pdf p(K,Ω|z1:T ) ∝
p(z1:T |R,Ω), as estimation of the parameters.

In the experiments, we set R = 3.7, Ω = 0.4 and T = 20. Furthermore, we take into account different values of λ
of the same order of magnitude as considered in [27]. We apply FUSS-MH-P2 with δ = 10−3, K = 10, within a Gibbs
sampler with only NG = 50 iterations (SM = {10−4, 2 · 10−4, . . . , 20}).6 We also consider a MH with random walk proposal,
p̄(xk|xk−1) ∝ exp

(
−(xk−xk−1)2

2σ2
p

)
, with two different values of σp ∈ {1, 2}. The initial states of the chains are chosen

randomly U([1, 5]) and U([0.38, 1.5]) for sampling from the full conditionals p(R|Ω, z1:T ) and p(Ω|R, z1:T ), respectively. In
order to test the performance, we also compute approximately the true value of the mean (of the corresponding posterior pdf) via
an expensive deterministic numerical integration, and so we are able to calculate the MSE obtained by FUSS-MH-P2 and MH.
The results, averaged 1000 over independent runs, are shown in Table 14. We can see clearly that, FUSS-MH-P2 achieves a
negligible MSE in the estimation of the expected value of the different posterior distributions, corresponding to different values
of λ. Comparing with the MSE of the MH, it is apparent the benefit of building a proposal tailored to the full-conditionals as in
FUSS. Figures 4(a)-(b) provide an example of conditional log-pdfs, whereas Figure 4(c) shows a “sharp” conditional density,
corresponding to Figure 4(b). This pdf resembles a delta function: even using sophisticated adaptive techniques, it is difficult
to recognize the mode of this kind of target pdf.

λ = 0.001 λ = 0.005 λ = 0.01 λ = 0.05 λ = 0.08 λ = 0.10

FUSS-MH-P2 MSE(R) 0.0071 0.0089 0.0093 0.0138 0.0150 0.0778
MSE(Ω) 5.01 10−5 6.15 10−5 6.15 10−5 5.26 10−5 7.33 10−5 1.78 10−4

MH (σp= 1) MSE(R) 0.6830 0.7264 0.7067 1.1631 1.3298 1.3293
MSE(Ω) 0.0373 0.0402 0.0423 0.0399 0.0471 0.0440

MH (σp= 2) MSE(R) 1.3566 1.4906 1.4247 2.0015 2.3042 2.2401
MSE(Ω) 0.0897 0.1117 0.1041 0.0989 0.1089 0.1125

Table 14. MSEs in estimation of R and Ω using FUSS-MH-P2 and MH inside a Gibbs sampler, with δ = 10−3, K = 10 and
NG = 50. The observed sequence z1:T is generated with R = 3.7, Ω = 0.4, T = 20 and different values of λ.

6.4. Jump diffusion model for stock market index

We consider the inference problem in a model which is combination of the stochastic volatility model and infinite-activity Lévy
jumps as in [16]. Specifically, suppose Yt is the daily log-return of some stock market index, i.e. Yt = log(St), where St is
the daily index value, and let vt be the instantaneous variance of return, t ∈ N. We assume that the joint dynamics of the index
return and variance can be described by the following stochastic equations,

Yt+1 − Yt =
(
r − 1

2
vt + φJ(−i) + ηsvt

)
∆+

+
√
vt∆εt+1,1 + Jt+1,

vt+1 − vt = k(θ − vt)∆ + σv
√
vt∆εt+1,2,

(13)

6We use the simplest pruning procedure (P2) in order to show that, even in this case, FUSS provides good performance.
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Fig. 4. (a)-(b) Examples of (unormalized) conditional log-pdfs with λ = 0.1 and considering T = 20 observations. (a) Fixing
Ω = 4. (b) Fixing R = 0.7. (c) The (unormalized) conditional pdf corresponding to Figure (b). Even advanced and adaptive
MCMC techniques often fail for drawing from this kind of sharp densities.

where r is the risk-free interest rate, ηsvt is the risk premium, and ∆ is the time interval of the discretization on the daily basis
(we set ∆ = 1

252 ). In the variance process, k measures the speed of mean reverting, θ is the long-term mean of variance vt,
and σv is the volatility of variance. εt,1 and εt,2 are two noise perturbations distributed according a bivariate Gaussian pdf,
specifically,

(εt,1, εt,2) ∼ N ([0, 0]>,Σ),

where Σ = [1, ρ; ρ, 1]>. We also consider a Lévy jump Jt in the process of Yt, and φJ(−i) is its jump compensator,
defined as EQ[eiuJt ] = e−tφJ (u) where Q is the so-called risk-neutral probability measure. In our model setting, we employ
the Variance Gamma process proposed by [20] as Jt, and for simplicity we assume the jump-relevant parameters γ, ν, and σ
remain unchanged under Q, i.e.,

Jt = γGt(1, ν) + σWGt(1,ν),

φJ(−i) =
log(1− γν − 1

2
νσ2)

ν
,

(14)

where Gt is an independent Gamma process that we consider known, and WGt(1,ν) is a Brownian motion subordinated by Gt.
In the market we observe the daily index return Yt, t = 1, . . . , T . To calibrate the model, we need to filter all the latent variables
vt, Jt, and the fixed parameters Θ = {k, θ, ρ, σv, ηs, γ, ν, σ}. In particular, since all the latent variables are varied from day to
day, for example v = [v1, . . . , vT ]> with T = 252 (in one year), the estimation of this model is very challenging owing to the
high dimension.

We apply a Gibbs sampler to draw from the complete posterior distribution. The full-conditional pdfs of several latent
variables and parameters have a standard form as Gaussian, inverse Gamma and Gamma densities so that direct sampling
methods are available. However, the conditional pdfs corresponding to vt, t = 1, ..., 252, and the parameter ν, have a complex
analytic form, thus we apply FUSS-RC-P4 for drawing from them. We also apply a standard MH algorithm, with a Gaussian
random walk proposal p̄(xt|xt−1) ∝ exp

(
− (xk−xk−1)2

2σ2
p

)
, to compare the performance. We set x0 = 0.02 (regarding v) or

x0 = 0.5 (regarding ν), K = 3 for both methods. We set σp = 0.01 for MH. We chose these values of x0 and σp after
several attempts, in order to provide the best results of the MH method. Furthermore, for FUSS-RC-P4, we chose s1 = 0.0001,
sM = 6, ∆si

= si+1 − si = 0.0001, δ = 0.01. In this example, we change the number of iterations of the Gibbs sampler,
Ng = {10, 100, 500, 5 · 103}. For the MH method, we also consider Ng = 104.

We simulate artificial data by the system using as true parameters k = 4, θ = 0.02, σv = 0.3, ρ = −0.8, ηs = 0.4, ν = 0.1,
γ = 0.1, σ = 0.1, Y0 = 7, v0 = 0.02, and r = 0.02 (we recall that the jump component Gt is assumed known). Then we
compute the MSEs in the estimation of ν and the entire vector v.

The results, averaged over 100 independent runs, are provided in Table 15. FUSS-RC-P4 always outperforms the standard
MH method. We can also observe that FUSS-RC-P4 with only Ng = 10 provides a smaller MSE(v) than the MH method with
Ng = 104.

Figure 5, which compares the filtered paths by FUSS-RC-P4 (dashed line) and MH (dotted-dashed line) with the simulated
true path (solid line) of vt, demonstrates that MH can yield quite poor results if there is no much prior information on vt. In
particular, given that it is a flat curve for initial variance with vt = 0.02 for all t = 1 . . . 252, MH did not achieve the true



Technique Ng MSE(v) MSE(ν)

10 3.989 10−5 1.460 10−2

FUSS-RC-P4 100 2.542 10−5 1.642 10−3

500 1.798 10−5 3.783 10−4

5000 1.138 10−5 9.119 10−5

10 3.330 10−4 1.289 10−1

MH 100 3.392 10−4 3.093 10−2

500 3.289 10−4 1.264 10−2

5000 2.754 10−4 7.514 10−3

105 7.660 10−5 1.368 10−3

Table 15. MSEs obtained by FUSS-RC-P4 and MH methods for different number of iterations Ng of the Gibbs sampler.

variance dynamics being sensitive to initial flat values whereas FUSS-RC-P4 captured the actual variance dynamics relatively
well.
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Fig. 5. Filtering of variance path vt, t = 1, . . . , 252, by FUSS-RC-P4 and Ng = 5000 and MH with Ng = 105. The path is the
average of the filtered paths in 100 different experiments.

7. CONCLUSIONS

In this work, we have introduced a novel, extremely efficient, MCMC sampler for drawing from univariate densities. We
have tested the new technique in several scenarios, with different target distributions. The performance achieved by the new
methodology are close to an exact sampler, yielding virtually i.i.d. samples. The novel technique outperforms other well-
known MCMC methods such as the Metropolis-Hastings (MH) method and the slice sampling in terms of accuracy and speed.
Furthermore, the dependence of the initial parameters is also drastically reduced with respect to other MCMC techniques.
Numerical simulations also show a clear benefit of using the FUSS schemes within a Gibbs sampler. Finally, although the
proposal is tailored to the target and the performance are remarkable, the new technique is not an adaptive MCMC, hence there
are not issues with the ergodicity.
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Fig. 6. Example of construction of heavy tails in the log-domain of the pdf. (a) Example with a specific choice of the parameters
µ0 > s2 and µm−1 < sm−1 (m = 10 in figure). (b)-(c) Alternative right log-tail constructions, decreasing the parameter µm−1.
For µm−1 → −∞, the log-tail tends to be a straight line passing through (sm−1, V (sm−1)), (sm, V (sm)). (d) Construction of
the right log-tail with µm−1 ≈ sm−1. In this case, µm−1 → sm−1, it tends to be a constant line.

A. TAILS

The choice of the tails is important for two reasons: (a) to accelerate the convergence of the chain to the target (in the case, for
instance, of heavy-tailed target distributions) and (b) to increase the robustness of the method w.r.t. the initial choice of the set



SM . Indeed, often the construction of tails with a bigger area below them can reduce the dependence on a specific choice of
the initial support points. When it is impossible, a good choice is to build tails such that p(x) ≥ π(x) for x ∈ I0 and x ∈ Im.
This is always possible when the target pdf has light tails (i.e., convex tails in the log-domain) as we have shown in Figure 1
and explained below.

A.1. Light Tails

In order to use light tails, we consider two exponential pieces

p(x|Sm) = eh0x+b0 , ∀x ∈ I0,

p(x|Sm) = ehmx+bm , ∀x ∈ Im.
(15)

The linear function, w0(x) = h0x + b0 is the straight line passing through the points (s1, V (s1)) and (s2, V (s2)), whereas
the second linear function wm(x) = hmx + bm is the straight line passing through (sm−1, V (sm−1)) and the last point
(sm, V (sm)). Note that we can easily compute analytically the area below each piece, and we can also easily draw from each
exponential tail by inversion method [30].

A.2. Heavy Tails

For heavy tail constructions, there are also several possibilities. For instance, here we propose to use Pareto pieces with the
analytic form

p(x|Sm) = eρ0
1

|x− µ0|γ0
, ∀x ∈ I0,

p(x|Sm) = eρm
1

|x− µm|γm
, ∀x ∈ Im,

(16)

directly in the pdf domain with γj > 1, j ∈ {0,m}. In the log-domain, this is equivalent to

w0(x) = ρ0 − γ0 log(|x− µ0|), for x ∈ I0,

wm(x) = ρm − γm log(|x− µm|), for x ∈ Im,

Fixed the parameters µj , j ∈ {0,m}, the remaining ρj and γj are set in order to satisfying the passing conditions through the
points (s1, V (s1)), (s2, V (s2)), and through the points (sm−1, V (sm−1)), (sm, V (sm)), respectively. The parameters µj can
be arbitrarily chosen by the user, fulfilling the inequalities

µ0 > s2, µm < sm−1.

Values of µj such that µ0 ≈ s2 and µm ≈ sm−1 yield small values of γj (close to 1) and, as a consequence, fatter tails. Greater
differences |µ0 − s2| and |µm − sm−1| yield γj → +∞, i.e., lighter tails. In the limit case, they coincide with the exponential
construction presented above. Different examples of construction are illustrated in Figure 6. As in the previous case, we can
compute analytically the integral of p(x|Sm) in I0 and Im. We can also easily draw from each Pareto tail by inversion method
[30].


