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Abstract 

S.M.  Phillips  has  articulated  a  fairly  good  model  of  the  E8×E8 heterotic 
superstring,  yet  nevertheless  has  missed  a  few  key  aspects.  This  paper 
informs his model from the perspective of Vedic Nuclear Physics, as derived 
from  the  Rig  Veda  and  two  of  the  Upanishads.   In  addition,  the  author 
hypothesizes an extension of the Exceptional Lie Algebra Series beyond E8 to 
another 12 places or more. 
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Introduction

S.M. Phillips has done a great sleuthing job in exploring the Jewish Cabala 
along with the works of Basant and Leadbetter to formulate a model of the 
Exceptional Lie Algebra E8 to represent nuclear physics that comes near to 
the Super String model. The purpose of this paper is to offer minor corrections 
from the perspective of the science encoded in the Rig Veda and in a few of 
the Upanishads, to render a complete and perfect model. 

The reader might ask how the Jewish Cabala might offer insight into nuclear 
physics, since the Cabala is generally thought to date from Medieval Spain. 
The  simple  fact  is  that  the  Cabala  does  not  represent  medieval  Spanish 
thought, it  is a product of a much older and advanced society – Remotely 
Ancient Egypt from 15,000 years ago, before the last major flooding of the 
Earth and the Sphinx. 

The Jewish people may very well have left Ancient Egypt in the Exodus, led 
by Moses. Whatever may be the historical fact, the Jews certainly carried the 
secrets  of  remotely  Ancient  Egypt  with  them  in  their  sacred  books,  with 
nuclear physics (not merely sacred geometry) encoded within the Torah and 
the Talmud. Wherever Jews have traveled in the world, they have carried their 
sacred books, which contain nuclear secrets. 

This ancient Egyptian nuclear physics is either exactly the same as, or at least 
the equivalent of the nuclear physics encoded in Vedic literature. The proof of  
this is that this present paper introduces additional concepts that Phillips lacks 
in his rendition, yet which fit perfectly into the model he has described. 

Perhaps the difference between the models may be slight, such as what one 
might expect if one were to survey the 600 nuclear warheads presently held 
by  Israel  and  those  built  by  the  Russians  or  the  Americans.  At  root,  the 
mathematics and the physics must necessarily be the same, if some minor 
differences exist between them. 

The purpose of this paper is to introduce and add on the elements that S.M. 
Phillips missed, to prove the above points and to demonstrate to the world 
that the ancient world of the Vedas and of remotely ancient Egypt possessed 
this superior nuclear physics. Moreover, the paper offers proof that current 
academic timelines for Vedic Hindu culture and Ancient Egypt are far off the 
mark, perhaps by as much as ten thousand years or more. 
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Wikipedia

In mathematics, E8 is any of several closely related exceptional 

simple Lie groups, linear algebraic groups or Lie algebras of 

dimension 248; the same notation is used for the corresponding root 

lattice, which has rank 8. The designation E8 comes from the Cartan–

Killing classification of the complex simple Lie algebras, which fall 

into four infinite series labeled An, Bn, Cn, Dn, and five exceptional 

cases labeled E6, E7, E8, F4, and G2. The E8 algebra is the largest and 

most complicated of these exceptional cases.

Wilhelm Killing (1888a, 1888b, 1889, 1890) discovered the complex Lie 

algebra E8 during his classification of simple compact Lie algebras, 

though he did not prove its existence, which was first shown by Élie 

Cartan. Cartan determined that a complex simple Lie algebra of type 

E8 admits three real forms. Each of them gives rise to a simple Lie 

group of dimension 248, exactly one of which is compact. Chevalley 

(1955) introduced algebraic groups and Lie algebras of type E8 over 

other fields: for example, in the case of finite fields they lead to 

an infinite family of finite simple groups of Lie type.

The Lie group E8 has dimension 248. Its rank, which is the dimension 

of its maximal torus, is 8. Therefore the vectors of the root system 

are in eight-dimensional Euclidean space: they are described 

explicitly later in this article. The Weyl group of E8, which is the 

group of symmetries of the maximal torus which are induced by 

conjugations in the whole group, has order 214 3 5 5 2 7 = 696729600.

The compact group E8 is unique among simple compact Lie groups in 

that its non-trivial representation of smallest dimension is the 

adjoint representation (of dimension 248) acting on the Lie algebra 

E8 itself; it is also the unique one which has the following four 
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properties: trivial center, compact, simply connected, and simply 

laced (all roots have the same length).

There is a Lie algebra En for every integer n ≥ 3, which is infinite 

dimensional if n is greater than 8.

There is a unique complex Lie algebra of type E8, corresponding to a 

complex group of complex dimension 248. The complex Lie group E8 of 

complex dimension 248 can be considered as a simple real Lie group of 

real dimension 496. This is simply connected, has maximal compact 

subgroup the compact form (see below) of E8, and has an outer 

automorphism group of order 2 generated by complex conjugation.

As well as the complex Lie group of type E8, there are three real 

forms of the Lie algebra, three real forms of the group with trivial 

center (two of which have non-algebraic double covers, giving two 

further real forms), all of real dimension 248, as follows:

• The compact form (which is usually the one meant if no other 

information is given), which is simply connected and has 

trivial outer automorphism group.

• The split form, EVIII (or E8(8)), which has maximal compact 

subgroup Spin(16)/(Z/2Z), fundamental group of order 2 

(implying that it has a double cover, which is a simply 

connected Lie real group but is not algebraic, see below) and 

has trivial outer automorphism group.

• EIX (or E8(-24)), which has maximal compact subgroup E7×SU(2)/

(−1,−1), fundamental group of order 2 (again implying a double 
cover, which is not algebraic) and has trivial outer 

automorphism group.

For a complete list of real forms of simple Lie algebras, see the 

list of simple Lie groups.

By means of a Chevalley basis for the Lie algebra, one can define E8 

as a linear algebraic group over the integers and, consequently, over 

any commutative ring and in particular over any field: this defines 

the so-called split (sometimes also known as “untwisted”) form of 

E8. 

Over an algebraically closed field, this is the only form; however, 

over other fields, there are often many other forms, or “twists” of 

E8, which are classified in the general framework of Galois 

cohomology (over a perfect field k) by the set H1(k,Aut(E8)) which, 
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because the Dynkin diagram of E8 (see below) has no automorphisms, 

coincides with H1(k,E8).[1]

Over R, the real connected component of the identity of these 

algebraically twisted forms of E8 coincide with the three real Lie 

groups mentioned above, but with a subtlety concerning the 

fundamental group: 

all forms of E8 are simply connected in the sense of algebraic 

geometry, meaning that they admit no non-trivial algebraic coverings; 

the non-compact and simply connected real Lie group forms of E8 are 

therefore not algebraic and admit no faithful finite-dimensional 

representations.

Over finite fields, the Lang–Steinberg theorem implies that 

H1(k,E8)=0, meaning that E8 has no twisted forms: see below.

The 248-dimensional representation is the adjoint representation. 

There are two non-isomorphic irreducible representations of dimension 

8634368000 (it is not unique; however, the next integer with this 

property is 175898504162692612600853299200000 (sequence A181746 in 

OEIS)). 

The fundamental representations are those with dimensions 3875, 

6696000, 6899079264, 146325270, 2450240, 30380, 248 and 147250 

(corresponding to the eight nodes in the Dynkin diagram in the order 

chosen for the Cartan matrix below, i.e., the nodes are read in the 

seven-node chain first, with the last node being connected to the 

third).

The coefficients of the character formulas for infinite dimensional 

irreducible representations of E8 depend on some large square 

matrices consisting of polynomials, the Lusztig–Vogan polynomials, 

an analogue of Kazhdan–Lusztig polynomials introduced for reductive 

groups in general by George Lusztig and David Kazhdan (1983). 

The values at 1 of the Lusztig–Vogan polynomials give the 

coefficients of the matrices relating the standard representations 

(whose characters are easy to describe) with the irreducible 

representations.

These matrices were computed after four years of collaboration by a 

group of 18 mathematicians and computer scientists, led by Jeffrey 

Adams, with much of the programming done by Fokko du Cloux. The most 
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difficult case (for exceptional groups) is the split real form of E8 

(see above), where the largest matrix is of size 453060×453060. The 

Lusztig–Vogan polynomials for all other exceptional simple groups 

have been known for some time; the calculation for the split form of 

E8 is far longer than any other case. 

The announcement of the result in March 2007 received extraordinary 

attention from the media (see the external links), to the surprise of 

the mathematicians working on it.

The representations of the E8 groups over finite fields are given by 

Deligne–Lusztig theory.

One can construct the (compact form of the) E8 group as the 

automorphism group of the corresponding e8 Lie algebra. This algebra 

has a 120-dimensional subalgebra so(16) generated by Jij as well as 

128 new generators Qa that transform as a Weyl–Majorana spinor of 

spin(16). These statements determine the commutators

as well as

while the remaining commutator (not anti - commutator!) is defined as

It is then possible to check that the Jacobi identity is satisfied.

Geometry

The compact real form of E8 is the isometry group of the 128-

dimensional exceptional compact Riemannian symmetric space EVIII (in 

Cartan's classification). It is known informally as the 

"octooctonionic projective plane" because it can be built using an 

algebra that is the tensor product of the octonions with themselves, 

and is also known as a Rosenfeld projective plane, though it does not 

obey the usual axioms of a projective plane. This can be seen 
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systematically using a construction known as the magic square, due to 

Hans Freudenthal and Jacques Tits (Landsberg & Manivel 2001).

A root system of rank r is a particular finite configuration of 

vectors, called roots, which span an r-dimensional Euclidean space 

and satisfy certain geometrical properties. In particular, the root 

system must be invariant under reflection through the hyperplane 

perpendicular to any root.

The E8 root system is a rank 8 root system containing 240 root 

vectors spanning R8. It is irreducible in the sense that it cannot be 

built from root systems of smaller rank. All the root vectors in E8 

have the same length. It is convenient for a number of purposes to 

normalize them to have length √2. These 240 vectors are the vertices 

of a semi-regular polytope discovered by Thorold Gosset in 1900, 

sometimes known as the 421 polytope.

Construction

In the so-called even coordinate system E8 is given as the set of all 

vectors in R8 with length squared equal to 2 such that coordinates 

are either all integers or all half-integers and the sum of the 

coordinates is even.

Explicitly, there are 112 roots with integer entries obtained from

by taking an arbitrary combination of signs and an arbitrary 

permutation of coordinates, and 128 roots with half-integer entries 

obtained from

by taking an even number of minus signs (or, equivalently, requiring 

that the sum of all the eight coordinates be even). There are 240 

roots in all.
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E8 with thread made by hand

The 112 roots with integer entries form a D8 root system. The E8 root 

system also contains a copy of A8 (which has 72 roots) as well as E6 

and E7 (in fact, the latter two are usually defined as subsets of E8).

In the odd coordinate system E8 is given by taking the roots in the 

even coordinate system and changing the sign of any one coordinate. 

The roots with integer entries are the same while those with half-

integer entries have an odd number of minus signs rather than an even 

number.

Dynkin diagram

The Dynkin diagram for E8 is given by .

This diagram gives a concise visual summary of the root structure. 

Each node of this diagram represents a simple root. A line joining 

two simple roots indicates that they are at an angle of 120° to each 

other. Two simple roots which are not joined by a line are 

orthogonal.

Cartan matrix

The Cartan matrix of a rank r root system is an r × r matrix whose 

entries are derived from the simple roots. Specifically, the entries 

of the Cartan matrix are given by
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where (−,−) is the Euclidean inner product and αi are the simple 

roots. The entries are independent of the choice of simple roots (up 

to ordering).

The Cartan matrix for E8 is given by

The determinant of this matrix is equal to 1.
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Simple roots

Hasse diagram of E8 root poset with edge labels identifying added simple root position

A set of simple roots for a root system Φ is a set of roots that 

form a basis for the Euclidean space spanned by Φ with the special 

property that each root has components with respect to this basis 

that are either all nonnegative or all nonpositive.

Given the E8 Cartan matrix (above) and a Dynkin diagram node ordering 

of: 
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one choice of simple roots is given by the rows of the following matrix:

Weyl group

The Weyl group of E8 is of order 696729600, and can be described as 

O+

8(2): it is of the form 2.G.2 (that is, a stem extension by the 

cyclic group of order 2 of an extension of the cyclic group of order 

2 by a group G) where G is the unique simple group of order 174182400 

(which can be described as PSΩ8
+(2)).[2]

E8 root lattice

Main article: E8 lattice

The integral span of the E8 root system forms a lattice in R8 

naturally called the E8 root lattice. This lattice is rather 

remarkable in that it is the only (nontrivial) even, unimodular 

lattice with rank less than 16.
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Simple subalgebras of E8

An incomplete simple subgroup tree of E8

The Lie algebra E8 contains as subalgebras all the exceptional Lie 

algebras as well as many other important Lie algebras in mathematics 

and physics. The height of the Lie algebra on the diagram 

approximately corresponds to the rank of the algebra. A line from an 

algebra down to a lower algebra indicates that the lower algebra is a 

subalgebra of the higher algebra.

Chevalley groups of type E8

Chevalley (1955) showed that the points of the (split) algebraic 

group E8 (see above) over a finite field with q elements form a 

finite Chevalley group, generally written E8(q), which is simple for 

any q,[3][4] and constitutes one of the infinite families addressed by 

the classification of finite simple groups. Its number of elements is 

given by the formula (sequence A008868 in OEIS):

The first term in this sequence, the order of E8(2), namely 

337804753143634806261388190614085595079991692242467651576160 ≈ 

3.38×1074, is already larger than the size of the Monster group. This 
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group E8(2) is the last one described (but without its character 

table) in the ATLAS of Finite Groups.[5]

The Schur multiplier of E8(q) is trivial, and its outer automorphism 

group is that of field automorphisms (i.e., cyclic of order f if q=pf 

where p is prime).

Lusztig (1979) described the unipotent representations of finite 

groups of type E8.

Subgroups

The smaller exceptional groups E7 and E6 sit inside E8. In the compact 

group, both E7×SU(2)/(−1,−1) and E6×SU(3)/(Z/3Z) are maximal 

subgroups of E8.

The 248-dimensional adjoint representation of E8 may be considered in 

terms of its restricted representation to the first of these 

subgroups. It transforms under E7×SU(2) as a sum of tensor product 

representations, which may be labelled as a pair of dimensions as 

(3,1) + (1,133) + (2,56) (since there is a quotient in the product, 

these notations may strictly be taken as indicating the infinitesimal 

(Lie algebra) representations). 

Since the adjoint representation can be described by the roots 

together with the generators in the Cartan subalgebra, we may see 

that decomposition by looking at these. In this description:

• (3,1) consists of the roots (0,0,0,0,0,0,1,−1), (0,0,0,0,0,0,−1,1) and the Cartan 
generator corresponding to the last dimension.

• (1,133) consists of all roots with (1,1), (−1,−1), (0,0), (−½,−½) or (½,½) in the last 
two dimensions, together with the Cartan generators corresponding to the first 7 
dimensions.

• (2,56) consists of all roots with permutations of (1,0), (−1,0) or (½,−½) in the last 
two dimensions.

The 248-dimensional adjoint representation of E8, when similarly 

restricted, transforms under E6×SU(3) as: (8,1) + (1,78) + (3,27) + 

(3,27). We may again see the decomposition by looking at the roots 

together with the generators in the Cartan subalgebra. In this 

description:
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• (8,1) consists of the roots with permutations of (1,−1,0) in the last three dimensions, 
together with the Cartan generator corresponding to the last two dimensions.

• (1,78) consists of all roots with (0,0,0), (−½,−½,−½) or (½,½,½) in the last three 
dimensions, together with the Cartan generators corresponding to the first 6 dimensions.

• (3,27) consists of all roots with permutations of (1,0,0), (1,1,0) or (−½,½,½) in the 
last three dimensions.

• (3,27) consists of all roots with permutations of (−1,0,0), (−1,−1,0) or (½,−½,−½) 
in the last three dimensions.

The finite quasisimple groups that can embed in (the compact form of) 

E8 were found by Griess & Ryba (1999).

The Dempwolff group is a subgroup of (the compact form of) E8. It is 

contained in the Thompson sporadic group, which acts on the 

underlying vector space of the Lie group E8 but does not preserve the 

Lie bracket. The Thompson group fixes a lattice and does preserve the 

Lie bracket of this lattice mod 3, giving an embedding of the 

Thompson group into E8(F3).

Applications

The E8 Lie group has applications in theoretical physics, in 

particular in string theory and supergravity. E8×E8 is the gauge 

group of one of the two types of heterotic string and is one of two 

anomaly-free gauge groups that can be coupled to the N = 1 

supergravity in 10 dimensions. E8 is the U-duality group of 

supergravity on an eight-torus (in its split form).

One way to incorporate the standard model of particle physics into 

heterotic string theory is the symmetry breaking of E8 to its maximal 

subalgebra SU(3)×E6.

In 1982, Michael Freedman used the E8 lattice to construct an example 

of a topological 4-manifold, the E8 manifold, which has no smooth 

structure.

Antony Garrett Lisi's incomplete theory "An Exceptionally Simple 

Theory of Everything" attempts to describe all known fundamental 

interactions in physics as part of the E8 Lie algebra.[6][7]

R. Coldea, D. A. Tennant, and E. M. Wheeler et al. (2010) reported 

that in an experiment with a cobalt-niobium crystal, under certain 
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physical conditions the electron spins in it exhibited two of the 8 

peaks related to E8 predicted by Zamolodchikov (1989).[8][9]
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S.M. Phillips Model 

Five sacred geometries , — the inner form of the Tree of Life, the first three  
Platonic solids,  the 2-dimensional Sri  Yantra, the disdyakis triacontahedron  
and  the  1-tree  —  are  shown  to  possess  240  structural  components  or  
geometrical  elements. They correspond to the 240 roots of  the rank-8 Lie  
group E8. because in each case they divide into 72 components or elements  
of one kind and 168 of another kind, in analogy to the 72 roots of E6, the rank-
6 exceptional subgroup of E8, and to the remaining 168 roots of E8. 

Furthermore, the 72 components form three sets of 24 and the 168 components are  
shown to form seven sets of 24, so that all 240 components form ten sets of 24. 

This is one reason why the number 24 is important, but the rest of the explanation is that  
the 24 Hurwitz Quarternions (Hurwitz Integers or Hurwitz Numbers) provide this control 
mechanism over the development. The UPA that Phillips describes probably corresponds 
to the Hopf Fibration or S3. (John Sweeney). Fibres are known in Vedic Physics. 
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Each sacred geometry has a ten-fold division, indicating a similar division in the holistic  
systems that they represent. The best-known example is the Kabbalistic Tree of Life with  
ten Sephiroth that comprise the Supernal Triad and the seven Sephiroth of Construction.  
A less well-known example is the "ultimate physical atom," or  UPA, the basic unit  of  
matter paranormally described over a century ago by the Theosophists Annie Besant and  
C.W. Leadbeater. 

This has been identified by the author as the E8×E8 heterotic superstring constituent of  
up and down quarks. Its ten whorls (three major, seven minor) correspond to the ten sets 
of structural components of sacred geometry. The analogy suggests that 24 E8 gauge 
charges are spread along each whorl as the counterpart of each set of 24 components.  
The ten-fold composition of the E8×E8 heterotic superstring predicted by this analogy with  
sacred geometries is a consequence of the ten-fold nature of God, or Vishnu. 
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H series of Hypercircles 

Vedic Physics  posits  a  series of  hyper  –  circles or  specific  sizes in  Vedic 
Nuclear Physics: 

Isomorphic 
to

Exceptional Lie Algebra

H0 0 A1
H1 R Pi 3.1415927 A2
H2 R2 6.283185307 G2 + G2
H3 R3 12.56637061 D4 + D4
H4 R4 19.7392088 F4 + F4
H5 R5 26.318945 E6 + E6
H6 R6 31.00627668 E7 + E7
H7 R7 33.073362 Sapta E8 + E8
H8 R 32.469697 E8 - ?
H9 R 29.68658 E8 - ?
H10 R 25.50164 E8 - ?
H11 R 20.725143 E8 - ?
H12 R 16.023153 E8 - ?
H13 R 11.838174 E8 - ?
H14 R 8.3897034 E8 - ?
H15 R 5.7216492 E8 - ?
H16 R 3.765290 E8 - ?

H17 R 2.3966788 E8 - ?
H18 R 1.478626 E8 - ?
H19 R 0.44290823 E8 - ?
H20 R 0.258 E8 - ?
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Conclusion 

In a paper published on Vixra in 2013, the author wrote that the emergence of 
visible matter occurs at Pi. This is confirmed with the chart above. Prior to 
this, matter takes the form of Brahma or Dark Matter, invisible to humans. It 
does form part of functioning Brahma, as opposed to Thaamic matter, which 
lies without function, beyond detection.  

The author hypothesizes that the Hyper – Circles described in Vedic Nuclear 
Physics, the values for which are given above, prove isomorphic to the series 
of Exceptional Lie Algebras which formulate the Magic Square. 

Note that S.M. Phillips shows a multiplication sign in his formulation. Vedic 
Physics clearly states that one H7 hyper – circle is added to another H7, and 
the author hypothesizes that H7 has an isomorphic relationship to E8. 

The author hypothesizes that the series of hyper – circles forms isomorphic 
relationships with the series of Exceptional Lie Algebras which comprise the 
Freudenthal – Tits Magic Square. The author has here given values for the 
series of hyper – circles, yet the known series of Exceptional Lie Algebras 
reaches only to E8. 

For  this  reason,  the  author  suggests  that  the  series  of  Exceptional  Lie 
Algebras  extends  beyond  those  known  today,  and  enjoy  isomorphic 
relationships to the complete series of hyper – circles, the values of which are 
given in a chart within this paper on page 19. In other words, it makes little 
sense that E8 would correspond to two H7 hyper – circles while the remaining 
hyper – circles do not enjoy such isomorphic relationships. 
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Contact 
The author may be contacted at jaq2013 at outlook dot com 

Some men see things as they are and say why? I dream things that 
never were and say why not?

Let's dedicate ourselves to what the Greeks wrote so many years ago: 

to tame the savageness of man and make gentle the life of this world.

Robert Francis Kennedy
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