
May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

LEARNING MARKOV NETWORK STRUCTURES CONSTRAINED

BY CONTEXT-SPECIFIC INDEPENDENCES

ALEJANDRO EDERA

Departamento de Sistemas de Información, Universidad Tecnológica Nacional, Rodriguez 273

Mendoza, M5502, Argentina

aedera@frm.utn.edu.ar

FEDERICO SCHLÜTER

Departamento de Sistemas de Información, Universidad Tecnológica Nacional, Rodriguez 273

Mendoza, M5502, Argentina

federico.schluter@frm.utn.edu.ar

FACUNDO BROMBERG

Departamento de Sistemas de Información, Universidad Tecnológica Nacional, Rodriguez 273

Mendoza, M5502, Argentina
fbromberg@frm.utn.edu.ar

Received (Day Month Year)

Revised (Day Month Year)

Accepted (Day Month Year)

This work focuses on learning the structure of Markov networks. Markov networks are

parametric models for compactly representing complex probability distributions. These

models are composed by: a structure and numerical weights. The structure describes in-
dependences that hold in the distribution. Depending on the goal of learning intended by

the user, structure learning algorithms can be divided into: density estimation algorithms,

focusing on learning structures for answering inference queries; and knowledge discovery
algorithms, focusing on learning structures for describing independences qualitatively.

The latter algorithms present an important limitation for describing independences as

they use a single graph, a coarse grain representation of the structure. However, many
practical distributions present a flexible type of independences called context-specific

independences, which cannot be described by a single graph. This work presents an
approach for overcoming this limitation by proposing an alternative representation of

the structure that named canonical model ; and a novel knowledge discovery algorithm

called CSPC for learning canonical models by using as constraints context-specific in-
dependences present in data. On an extensive empirical evaluation, CSPC learns more
accurate structures than state-of-the-art density estimation and knowledge discovery al-

gorithms. Moreover, for answering inference queries, our approach obtains competitive
results against density estimation algorithms, significantly outperforming knowledge dis-

covery algorithms.

Keywords: Markov networks; structure learning; context-specific independences; CSI
models; knowledge discovery.

1

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

2 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

1. Introduction

Markov networks are parametric models for compactly representing complex prob-

ability distributions of a wide variety of domains. These models are composed by

two elements: a structure and a set of numerical weights. The structure describes a

set of independences that holds in the domain; playing an important role, because

it makes assumptions about the functional form of the distribution. One of the

most important theoretical results in Markov networks show that given a structure

whose independences hold in a distribution, then such distribution can be factorized

into a set of simpler lower-dimensional functions, parameterized by the weights 1.

The structure of a Markov network can be constructed either by hand from human

experts, or by learning algorithms from data sampled from the underlying distri-

bution. In many practical domains, the former is not always enough to design an

accurate structure, because human experts do not have sufficient understanding of

the domain. Thus, learning algorithms are the most suitable option as they can

automatically discovery knowledge unknown by human experts, that is, they can

reveal intricate patterns of statistical association among variables. In practice, as

insights about patterns in a domain permit us to predict observations, since the

structure of a distribution is considered such an important source of knowledge

discovery. For instance, the structures learned in Ref. 2 are used to study the co-

occurrence between diseases; another example are the structures learned in Ref. 3,

called cellular signaling networks, which encode causal influences in cell signaling.

For all of these reasons, in the last years, the problem of learning a structure from

data has received increasing attention in machine learning 4,5,6,7,8,9. However, the

Markov network structure learning from data is still challenging. One of the most

important problems is that it requires weight learning that cannot be solved in

closed-form, requirying to perform a convex optimization with inference as a sub-

rutine. Unfortunately, inference in Markov networks is #P-complete 10.

As a result, in practice, structure learning algorithms can only learn structures

that approximately captures the underlying structure of a distribution. The qual-

ity of the approximation is evaluated differently for the different goals of learning

(Chapter 16 Ref. 8). In generative learning, we can find two goals of learning: den-

sity estimation, where a structure is “best” when the resulting Markov network is

accurate for answering inference queries; and knowledge discovery, where a structure

is “best” when this structure is accurate for describing qualitatively the indepen-

dences that hold in the underlying distribution. In this work, we use the previous

fact to categorize structure learning algorithms according to the goal of learning:

density estimation algorithms 11,12,13,14,15,16; and knowledge discovery algorithms
17,18,19.

In general, for any learning algorithm, the success of its goal of learning is

strongly intertwined with the representation of the structure chosen. The reason for

this is because learning algorithms search the best structure from a space of candi-

date structures, where the definition of this space depends on the particular repre-

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 3

sentation chosen. A flexible representation can describe a wider space of candidate

structures. In contrast, some representations are more restrictive, describing limited

spaces. However, restrictive representations are more interpretable, since it is sim-

pler to retrieve independences from them. Moreover, according to the bias-variance

trade-off, wider spaces of candidate structures tend to introduce variance errors

in learning, in contrast to limited spaces which tend to introduce bias errors. In

general, as the flexibility of a representation increases, its interpretability decreases
20. In practice, density estimation and knowledge discovery algorithms use different

representations for the structure. Commonly, density estimation algorithms use a

set of features, and knowledge discovery algorithms use an undirected graph. The

space defined by features is much broader than that defined by graphs. Therefore,

density estimation algorithms suffer problems due to variance errors. In contrast,

knowledge discovery algorithms suffer problems due to bias errors. For instance,

density estimation algorithms tend to overfit the learned structures, requiring to

add regularization terms in learning which are tuned by expensive cross-validations
21. On the other hand, knowledge discovery algorithms can be inhibited to find

accurate structures because the bias can exclude such structures from the space of

candidates, introducing incorrect structural assumptions. In such situations, for the

goal of knowledge discovery, the chosen representation can introduce incorrect as-

sumptions, leading to obscure knowledge discovery and resulting in a contradiction

with the goal of learning.

In practice, for knowledge discovery algorithms, the bias errors arises when the

structure of the underlying distribution presents a type of independences known as

context-specific independences 22,23,24,25,26,8. These independences cannot be cap-

tured by a single graph, because they only hold for specific values of the variables

of a distribution. In contrast, a set of features is sufficiently flexible to capture

them. Therefore, in distributions that present such independences, density estima-

tion algorithms can only learn structures that capture context-specific indepen-

dences, but knowledge discovery algorithms cannot learn accurate structures. On

the other hand, knowledge discovery algorithms learn graphs that cannot capture

context-specific independences, resulting in excessively dense graphs that obscure

such independences 27. This shows a limitation of knowledge discovery algorithms

which arises from the contradiction between its goal of learning and the represen-

tation chosen for encoding the structure.

The thesis of this work consists in relaxing this contradiction between the cho-

sen representation and the goal of knowledge discovery by proposing: i) the use

of an alternative representation and ii) a new knowledge discovery algorithm that

uses such representation. This alternative representation is called canonical models,

which are a particular class of Context Specific Interaction models (CSI models)
26. Canonical models offer a balance between flexibility and interpretability, that

is, this representation can capture context-specific independences guaranteeing high

interpretability. These aspects permit us to adapt well-known ideas used by knowl-

edge discovery algorithms for learning canonical models in a straightforward way.

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

4 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

In this work, we present the CSPC algorithm, a knowledge discovery algorithm

that learns canonical models. We note that the proposed algorithm is unlikely to

be practical in high-dimensional domains due to its time complexity. However, this

algorithm has been designed for providing insight to open new addresses towards

the use of alternative representations focused on the goal of knowledge discovery.

In an extensive empirical experimentation, our approach is evaluated against den-

sity estimation and knowledge discovery state-of-the-art algorithms on synthetic

and real-world datasets. The results show that the structures learned by CSPC are

more accurate for both goals of learning. First, for the goal of knowledge discovery,

the structures learned by CSPC are more accurate for describing context-specific

independences than those learned by knowledge discovery algorithms. Second, for

the goal of density estimation, the strutures learned by CSPC are significantly more

accurate for answering inference queries than those learned by knowledge discov-

ery algorithms; achieving competitive accuracies compared to density estimation

algorithms.

The rest of this work is organized as follows: Section 2 introduces an overview

of background concepts. Section 3 presents CSI and canonical models as alterna-

tive representations for capturing context-specific independences. Section 4 presents

CSPC, a simple knowledge discovery algorithm that learns canonical models from

data. Next, Section 5 presents our empirical evaluation. This work concludes with a

discussion about several open problems and directions for future work. Finally, the

Appendices review: basic assumptions about independences (Appendix A); a de-

tailed explanation on how we constructed synthetic datasets used in the evaluation

section (Appendix B); and a brief description of AD-Tree, a cache used by CSPC

for speeding up its execution (Appendix C).

2. Background

This section reviews the basics, describing probabilistic independences (Section 2.1)

and Markov networks by remarking its three most important components: repre-

sentation (Section 2.2), inference (Section 2.3), weight learning (Section 2.4), and

structure learning (Section 2.5). We take special attention in describing the concept

of independences and the components of representation and structure learning, be-

cause our contribution mainly lies in them. In contrast, for the remaining compo-

nents (Section 2.3 and 2.4), we offer a brief description in order to facilitate the

understanding of our empirical evaluation.

Before starting, we introduce our general notation. Hereon, we use the symbol

V to denote a finite set of indexes. Lowercase subscripts denote particular indexes,

for instance a, b ∈ V ; in contrast, uppercase subscripts denote subsets of indexes,

for instance W ⊆ V . Let XV be a set of random variables of a domain, where

single variables are denoted by single indexes in V , for instance Xa, Xb ∈ XV where

a, b ∈ V . We simply use X instead of XV when V is clear from the context. We

focus on the case where X takes discrete values x ∈ Val(V), that is, the values for

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 5

any Xa ∈ X are discrete: Val(a) = {x0a, x1a, . . .}. For instance, for boolean-valued

variables, that is |Val(a)| = 2, the symbols x0a and x1a denote the assignments

Xa = 0 and Xa = 1, respectively. Moreover, we overload the symbol V to also

denote the set of nodes of a graph G. Finally, we use X ⊆ Val(V) for denoting

an arbitrary set of complete or canonical assignments. A canonical assignment is

an assignment where all the variables in a domain take a fixed value. For instance,

xiV ≡ xi ∈ Val(V).

2.1. Conditional and context-specific independences

Independences are patterns between random variables that define the functional

form of a probability distribution, exploiting the form may drastically reduce the

space complexity. Context-specific independences only hold when some conditioning

variables are assigned to a particular value, called the context. In contrast, when

conditioning variables are not assigned, the independence holds for all the values. In

this case, we are in the presence of a conditional independence. Formally, context-

specific independences are defined as follows:

Definition 2.1. Let A,B,U,W ⊆ V be disjoint subsets of indexes, and let xW
be some assignment in Val(W). Let p(X) be a probability distribution. We say

that variables XA and XB are contextually independent given XU and the context

XW = xW , denoted by I(XA, XB | XU , xW), iff it holds in the distribution p(X)

that:

p(xA|xB , xU , xW) = p(xA|xU , xW),

for all assignments xA, xB , and xU ; whenever p(xB , xU , xW) > 0.

From the previous definition, it is worth noting two important facts. First, if

I(XA, XB | XU , xW) holds in a distribution, then I(xA, xB | xU , xW) also holds in

the distribution for any value xA, xB , xU . Second, if I(XA, XB | XU , xW) holds in

a distribution for all xW ∈ Val(W), then we say that the variables are conditionally

independent. Formally,

Definition 2.2. Let A,B,U,W ⊆ V be disjoint subsets of indexes, and let p(X)

be a probability distribution. We say that variables XA and XB are conditionally

independent given XU and XW , denoted by I(Xa, Xb | XU , XW), iff it holds in the

distribution p(X) that:

p(xA|xB , xU , xW) = p(xA|xU , xW),

for all assignments xA, xB , xU , and xW ; whenever p(xB , xU , xW) > 0.

Thus, a conditional independence I(XA, XB | XU , XW) that holds in p(X) can

be seen as a conjunction of context-specific independences of the form I(XA, XB |
XU , xW) that holds in p(X), for all xW ∈ Val(W) 43. Moreover, a context-specific

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

6 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

independence I(XA, XB | XU , xW) that holds in p(X) can be seen as a condi-

tional independence I(XA, XB | XU) that holds in the conditional distribution

p(XV \W |xW)43. As is usual, we assume that the independence relation I(·, · | ·)
follows the properties shown in Appendix A 5, and also that the probability distri-

butions are positivea. Under this last assumption, the independence relation satisfies

the propositions in Appendix A.5, then independence relations are monotone. For

instance, if I(Xa, Xb | XU) is true, then I(Xa, Xb | XW) is true for all W ⊇ U ,

W ⊆ V .

Example 2.1. Consider a probability distribution p(X) with boolean-valued vari-

ables that holds independence assertions of the form: I(Xi, Xj | x1w), for all pairs

i, j ∈ V \ {w} where V = {a, b, c, d, w}. For factorizing p(X) by using these inde-

pendences, we use the chain rule to express the joint probability as a product of

conditional distributions, as follows:

p(X) = p(Xw)p(XV \{w}|Xw).

Using Definition 2.1, we can factorize the conditional distribution p(XV \{w} | Xw)

based on the value of the conditioning variable Xw. For instance, for the value x1w,

the conditional probability factorizes as follows:

p(XV \{w} | x1w) =
∏

i:V \{w}

p(Xi | x1w).

However, the previous factorization is not valid for the value x0w, formally:

p(XV \{w} | x0w) 6=
∏

i:V \{w}

p(Xi | x0w).

A set of independences is commonly called the structure of a distribution because

these independences determine its factorization, or functional form, of a distribution.

In this sense, we say that a structure is more general than another structure when

the former makes less independence assumptions than the other. So, the latter is

more specific than the former. Therefore, the most general structure is the one that

does not make assumptions, namely, all the variables are mutually dependent. In

contrast, the most specific structure is one that makes all the possible assumptions,

namely, all the variables are mutually independent. When a structure assumes a

true independence as a false dependence, it is called a type I error and a true

dependence as false independence, it is called a type II error. In this work, we

are interested in structures that only makes correct assumptions over the functional

form of a distribution p(X). These structures are called an I-map for p(X). Formally,

a structure is an I-map for p(X) if every independence described by the structure

holds in p(X). In other words, a structure is an I-map if it has no type II errors.

aA distribution p(X) is positive if p(x) > 0, for all x ∈ Val(V).

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 7

2.2. Markov networks

A Markov network is a parametric model for representing probability distributions

in a compact way. This model is defined by a structure and a set of potential func-

tions {φk(XDk
)}k, where XDk

⊆ X is the scope of the potential function. Formally,

a potential function φ(·) is a mapping from Val(D) to R+. A usual representation

of a structure is an undirected graph G, whose nodes V represent random variables,

and the edges encode conditional independences between the variables. For discrete

domains, a usual representation of the potential functions is a table-based function.

Markov networks represent an important class of probability distributions called

Gibbs distributions. These distributions have the following general functional form:

Definition 2.3. A Gibbs distribution is a distribution parameterized by a set of

potential functions as follows:

p(X = x) =
1

Z

∏
k

φk(xDk
),

where Z is a global constant that guarantees the normalization of the product.

In the general case, the constant Z couples all the potential functions, preventing

to perform weight learning in a decomposable way.

For representing a distribution p(X), a Markov network factorizes a Gibbs distri-

bution according to the independences encoded in the graph G. A Gibbs distribution

factorizes over the graph G, if any scope XDk
corresponds to a complete subgraph

(a.k.a. clique) of the graph G. Without loss of generality, the Gibbs distribution is

often factorized by using the maximum cliques of the graph G. For positive distri-

butions, one important theoretical result states the converse 1, that is, p(X) can

be represented as a Gibbs distribution that factorizes over G if G is an I-map of

p(X). As a result, it can be shown that every influence on any variable Xa can be

blocked by conditioning on its adjacencies in the graph G, denoted by adj(a) ⊆ V , a

set also known as the Markov blanket. Formally, let p(X) be a distribution over X,

then for any variable Xa ∈ X it can be shown that: p(Xa|XV \{a}) = p(Xa|XMB(a)),

where MB(a) ≡ adj(a) stands for the Markov blanket of a. Moreover, for positive

distributions, it can be shown that p(Xa, Xb|XV \{a,b}) = p(Xa, Xb|XMB(a)), for any

pair a, b ∈ V (Section 3.2.1 Ref. 5).

For factorizing a distribution over a graph G, we must retrieve the independences

encoded by G. This is performed by using the graph-theoretic notion of reachability
7. Let A,B,U be arbitrary disjoint subsets of V , variables XA and XB are condi-

tionally independent given XU , if there is no path between nodes A and B when

nodes U are removed from G. Thus, from a graph G, we can only retrieve/encode

conditional independences. Therefore, when a distribution holds context-specific

independences, encoding them by using a single graph leads to excessively dense

graphs 22,28,27.

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

8 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

Example 2.2. Let us conclude with an illustrating example how to encode the

structure for the distribution of Example 2.1. Figure 1 shows a graph constructed

by using reachability. Given that any pair of variables are only independent given

the value x1w, a graph cannot encode independences over specific values, leading to

an excessively dense graph which obscures such independences.

Fig. 1. Graph representation that encodes the independence assertions described in Example 2.1.

An alternative representation of a Markov network that can capture context-

specific independences is the log-linear model. A log-linear model can be constructed

from a Gibbs distribution as follows: for the ith row of the table-based potential

function φk is defined an indicator function f ik(·) associated to a weight wi,k =

log φk(xiDk
). From the Gibbs distribution shown in Eq. 2.3, a log-linear model is

formally defined as:

p(x) =
1

Z
exp

{ ∑
k

∑
i

wi,kf
i
k(xDk

)

}
,

where each feature f ik(·) is commonly represented as an indicator function, that

is, a conjunction of single assignment tests. For instance, given an arbitrary as-

signment x and a feature f ik, f ik(xDk
) returns 1 if xa = xia for all a ∈ Dk; and 0

otherwise.

In a log-linear model, the structure is represented by the set of features, denoted

by F . Moreover, from a set F of features, we can induce a graph by adding an edge

between every pair of nodes whose variables appear together in some feature f ∈ F
29. Therefore, a conditional independence I(Xa, Xb | XW) is encoded in F , when

for any feature f ∈ F the variables Xa and Xb do not appear in its scope, that is,

either a /∈ Dk or b /∈ Dk when W ⊂ Dk.

Example 2.3. Let us now illustrate how a set of features F can capture the context-

specific independences shown in Example 2.1, resulting in a more flexible represen-

tation than the graph shown in Example 2.2. A simple way to define the set F in

order to capture such independences is by generating an initial set of features using

all the 2|V | complete assignments of the variables. Then, for encoding each inde-

pendence of the form I(Xi, Xj | x1w), the subset of features whose scopes contain

the assignment x1w must be modified as follows: removing all the variables from the

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 9

scopes except the variables Xi and Xw. The complete list of resulting features is

the following:

(1) (x0a ∧ x0b ∧ x0c ∧ x0d ∧ x0w)

(2) (x1a ∧ x0b ∧ x0c ∧ x0d ∧ x0w)

(3) (x0a ∧ x1b ∧ x0c ∧ x0d ∧ x0w)

(4) (x1a ∧ x1b ∧ x0c ∧ x0d ∧ x0w)

(5) (x0a ∧ x0b ∧ x1c ∧ x0d ∧ x0w)

(6) (x1a ∧ x0b ∧ x1c ∧ x0d ∧ x0w)

(7) (x0a ∧ x1b ∧ x1c ∧ x0d ∧ x0w)

(8) (x1a ∧ x1b ∧ x1c ∧ x0d ∧ x0w)

(9) (x0a ∧ x0b ∧ x0c ∧ x1d ∧ x0w)

(10) (x1a ∧ x0b ∧ x0c ∧ x1d ∧ x0w)

(11) (x0a ∧ x1b ∧ x0c ∧ x1d ∧ x0w)

(12) (x1a ∧ x1b ∧ x0c ∧ x1d ∧ x0w)

(13) (x0a ∧ x0b ∧ x1c ∧ x1d ∧ x0w)

(14) (x1a ∧ x0b ∧ x1c ∧ x1d ∧ x0w)

(15) (x0a ∧ x1b ∧ x1c ∧ x1d ∧ x0w)

(16) (x1a ∧ x1b ∧ x1c ∧ x1d ∧ x0w)

(17) (x0a ∧ x1w)

(18) (x1a ∧ x1w)

(19) (x0b ∧ x1w)

(20) (x1b ∧ x1w)

(21) (x0c ∧ x1w)

(22) (x1c ∧ x1w)

(23) (x0d ∧ x1w)

(24) (x1d ∧ x1w)

The two previous representations of a structure, a single graph and a set of

features, highlight the trade-off between interpretability and flexibility. On the one

hand, a single undirected graph is more interpretable than a set of features because a

graph make conditional independences clearly visible, that is, these independencies

can be retrieved by rechability. For instance, any conditional independence can be

efficiently read off from a graph by using reachability, in contrast from a set of

features, this requires to check if such independence is hold in every feature in the

set. On the other hand, a set of features is more flexible than a single graph because it

describes the structure as combinations between variables and their values. Instead,

graphs only describe combinations between variables. This flexibility permits a set

of features to capture a wider range of structures. For instance, a set of features can

be much more convenient when a distribution holds context-specific independences;

or when the table-based potential functions shown in Eq. 2.3 have repeated values
30.

2.3. Inference

Markov networks are mainly used to answer a broad range of inference questions

that are of interest. For this task, the structure of a Markov network is critial to

perform inference effectively, because the independences assertions can be exploted

for reducing the computational complexity (Part II Ref. 8). The most common

query is the conditional probability query, that is, the conditional probability of

some query variables XQ given the values of the evidence variables XE . This query

is computed by summing out all the remaining variables XW , W = V \Q∪E, that

is:

p(XQ|XE) =
∑

xW∈Val(W)

p(XQ|XE , xW).

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

10 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

In the general case, inference in Markov networks is #P-complete 10; requir-

ing approximate inference techniques. These techniques exploit the structure of a

Markov network in order to improve substantially the efficiency of inference. For

instance, inference in Sum-product networks, a class of Markov networks that as-

sumes a very rigid structure, results in tractable inferences 31. Moreover, inference

techniques can exploit context-specific independences in order to reduce expensive

inferences 22,28,32. One widely used approximate technique for inference is Gibbs

sampling, a special case of Markov-chain Monte Carlo (MCMC) 33. Gibbs sampling

answers inference queries taking a sample from a Markov network by sampling each

variable Xa in turn given its Markov blanket MB(a) (Chapter 12.3 Ref. 8).

2.4. Weight learning

Given the structure of a distribution, the task of constructing a Markov network

consists in learning its weights. The weight learning automatically estimates the

weights from data by optimizing an objective function of the weights. When data is

fully observed, the log-likelihood is an often used convex objective function. Unfor-

tunately, the log-likelihood cannot be solved in closed-form to obtain the optimal

weights, thus requiring to perform convex optimization. At each iteration of this con-

vex optimization, it is needed to compute inference queries to estimate the partition

function Z. In the general case, these queries must be computed by using approxi-

mate inference techniques, producing inaccurate results 34. In practice, an efficient

alternative objective function is the pseudo-likelihood 35. The pseudo-likelihood

is defined so as to avoid the computation of the partition function. Formally, let

D = {x0, x1, . . .} be a discrete set of examples in a domain, the pseudo-loglikelihood

is defined as follows:

log p(x) =
∑
a∈V

∑
xi∈D

log p(xa|xiMB(a)),

which uses the independence assumptions encoded by the structure, namely, the

independence of each variable conditioned by its Markov blanket. However, inference

in Markov networks trained by using pseudo-likelihood tend to be only accurate on

queries with large amounts of evidence 36.

Finally, both objective functions are prone to overfit data. This can be reduced

by adding regularization terms. In practice, the most common regularation terms

are L1 or L2 norms, which assume a Laplacian or Gaussian prior on the weights,

respectively. These priors are parameterized by additional weights known as hyper-

parameters. L1 prior tends to select models that are much sparser than L2, thus L1

is increasingly used by feature selection algorithms to reduce variance errors. For

instance, L1 has been shown to be used for selecting relevant features of a log-linear

model 29,14,37,2,16. However, L1 is very sensitive to the choice of its hyperparameters,

requiring expensive cross-validations to find them 21.

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 11

2.5. Structure learning

The aim of structure learning is to elicit the structure of a Markov network from

data. This subsection is not meant to be a compendium of every structure learn-

ing algorithm, but rather a comprehensive and representative selection in order to

describe general approaches for searching a structure through a space of candidate

structures. We review two categories of approaches: general approaches that search

the structure regardless of the representation of the structure chosen; and specific

approaches that are intertwined with the chosen representation, taking advantage of

the topology of the specific search space. In practice, structure learning algorithms

can be seen as an instantiation that combines both approaches.

In practice, the most common general approaches are: top-down and bottom-

up approaches. The top-down approach consists in starting from a very general

structure, i.e. the fully connected structure, which is specified through independence

assumptions, resulting at the end in a more specific structure 17,15. Alternatively, the

bottom-up approach consists in starting from a very specific structure, i.e. the empty

structure, which is generalized by removing independence assumptions, resulting at

the end in a more general structure 11,13,37,18,19. Roughly speaking, the top-down

approach is more prone to make type I errors than the bottom-up approach; in

contrast, the bottom-up approach is more prone to make type II errors than the

top-down approach. Therefore, some structure learning algorithms may use both

approaches. For instance, the GSMN algorithm starts the search from a very specific

structure which is generalized and specialized in two phases respectively: the grow

phase that follows the bottom-up approach, and the shrink phase that follows the

top-down approach 18.

The previous approaches can use two strategies for searching the structure. The

global strategy consists in directly searching a structure defined over all the vari-

ables 11,12,17,19. On the other hand, the local strategy consists in searching a local

structure for each variable in turn, and then combining them into a unique structure
18,13,37,16.

In practice, several specific approaches can be found, one for each different learn-

ing algorithm, but they can be analized in a general way according to the goal of

learning. As previously discussed, the goal of learning is interwined by the represen-

tation of the structure. Density estimation algorithms use a set of features for its

flexibility, in contrast, knowledge discovery use a single graph for its interpretability.

For the search, a set of features defines a more large space of candidate structure

than a single graph. For this reason, density estimation algorithms search the struc-

ture in two phases: a feature generation phase, and a feature selection phase. The

generation phase consists in a cheap way to generate many candidate features that

have high support in data; leading to many irrelevant features as well as inconsis-

tent independence assumptions. The selection phase consists in removing irrelevant

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

12 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

features by using a bias. Two common bias applied are: positive featuresb and regu-

larization terms. In the search, the former reduces the space of candidate structures

because there are fewer possible features, as discussed in (Section 5 Ref.13), and

(Section IV.C Ref. 38). In the weight learning, the latter removes features that

have low support in data, in other words, these features have weights equal to zero.

To avoid discarding of relevant features by using regularization terms, their hy-

perparameters must be tuned by cross-validation. In contrast to density estimation

algorithms, knowledge discovery algorithms search the structure as constraint-based

search, that is, they limit the space of candidate structure by using independence

assumptions as constraints. So, under this approach, any candidate structure must

satisfy the constraints. Moreover, independence properties, as those in Appendix A,

can be used to infer new independence assumptions that further reduce the search

space. However, if the independence assumptions are incorrect, the inference of new

assumptions produces cascading errors, leading to incorrect structures 39,19. For

determining the truth value of an independence assumption, it is not required to

perform weight learning. A common method for determining the truth value is by

using statistical independence tests. However, statistical independence tests can be

incorrect due to sample size problems 40. This problem is exhacerbated by the fact

that common statistical independence tests, such as χ2, requires a sample size that

increases exponentially with the number of variables 41.

3. Towards a more flexible representation

As discussed before, the aim of this work is to propose a new knowledge discovery

algorithm that learns structures that can capture context-specific independences of

the form I(XA, XB | XU , xW), that is, conditional independences I(XA, XB | XU)

that only hold in the context xW . However, current knowledge discovery algorithms

use a single graph as the representation of the structure which cannot capture such

independences. For overcoming this limitation, we present an alternative representa-

tion of the structure based on CSI models, first introduced in two works 25,26, which

can capture such independences. Roughly speaking, a CSI model is a collection G of

pairs defined by a graph G and an assignment xiW , denoted by (G, xiW). Given a pair

(G, xiW) ∈ G, the graph G captures conditional independences in the context xiW
allowing the representation of context-specific independences. Unfortunately, the

use of CSI models as representation presents some issues for learning them because

CSI models are too flexible. The flexibility of CSI models arises from the fact that

each of its graphs can be associated to any possible context, resulting in an enor-

mous space of candidate structures (Section 9 Ref. 26). In other words, the space of

candidate CSI models can be seen as a combination of two exponential spaces: the

space of candidate graphs and the space of candidate contexts. In this manner, for

bFeatures whose scopes are not for false values, formally, a feature fj is positive if xj
a 6= 0 for all

a ∈ Dj .

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 13

each possible context xiW in the space of candidate contexts, the context xiW can

be associated to any graph G in the space of candidate graphs. For overcoming this

problem, we propose a more rigid class of CSI models whose graphs can be only

associated to very rigid contexts. These models, that we name as canonical models,

lead to a substantial simplification of the space of candidate structures, but keeping

the flexibility to encode context-specific independences qualitatively. Moreover, we

show that canonical models permit us to design new learning algorithms as simple

adaptations of current knowledge discovery algorithms.

Following the previous discussion, the aim of this section is to describe the CSI

models and, particularly, the canonical models, highlighting how CSI and canonical

models can capture context-specific independences. This section concludes showing

how canonical models permit us to learn them by using simple adaptations of current

knowledge discovery algorithms. Next, Section 4 presents a learning algorithm that

learns canonical models from data. The rest of this section is divided into two

parts: Section 3.1, where the CSI models are presented; and Section 3.2, where the

canonical models are presented.

3.1. CSI models

As shown in 26, a CSI model is a hierarchical log-affine model. These models present

an interesting property: they can be represented by using graphs 5. A graphical rep-

resentation of a CSI model G is a collection of instantiated graphs G(xiW), one for

each pair (G, xiW). A graph G is instantiated by a context xiW when its nodes W

are associated to an assignment xiW , and its remaining nodes V \W are associated

to the variables XV \W . Then, the edges of the instantiated graph G(xiW) can cap-

ture statistical associations among xiW and XV \W . Therefore, by a straightforward

adaptation of the concept of reachability, context-specific independences that hold

in the context xiW can be retrieved from an instantiated graph G(xiW). As a result,

a CSI model G can capture the context-specific independences present in a joint

distribution p(X) by using a set of instantiated graphs G(xiW) ∈ G, each one cap-

turing independences present in a conditional distribution of the form p(XV \W |xiW).

In contrast, a single graph G can only capture conditional independences that hold

in the joint distribution p(X).

Example 3.1. Figure 2 shows a CSI model G that represents the structure for the

distribution of Example 2.1. This model is composed by two instantiated graphs

G(x0w) and G(x1w), shown in Figure 2(a) and Figure 2(b) respectively. In these

graphs, gray nodes indicate assigned variables. The context-specific independences

can be read off from each instantiated graph by using reachability. The graph G(x0w)

encodes no independences, but the graph G(x1w) encodes that each pair of variables

Xa, Xb ∈ XV \{w} are mutually independent given the context x1w.

The use of CSI models as the representation of the structure offers flexibility and

interpretability, that is, they are sufficiently flexible for capturing context-specific

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

14 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

(a) The graph G(x0
w) is instan-

tiated by the context x0
w.

(b) The graph G(x1
w) is instan-

tiated by the context x1
w.

Fig. 2. a CSI model G composed of two instantiated graphs: the graph G(x0
w) shown in figure 2(a),

and the graph G(x1
w) shown in Figure 2(b).

independences which can read off from the model by using reachability. However,

this model is too flexible due to the fact that a graph can be associated to any pos-

sible context, resulting in an enormous space of candidate CSI models. For instance,

the definition of a CSI model consists in defining a set of instantiated graphs, where

the definition of each instantiated graph requires to decide which nodes will be in-

stantiated, and which edges will be present. For limiting the space of candidates,

we propose the canonical models, a more inflexible class of CSI models that avoids

the need of deciding which nodes to assign.

3.2. Canonical models

We introduce in this section a subclass of CSI models that we named canonical

models. A canonical model, denoted by Ḡ, is a CSI model that is only composed by

canonical graphs. A canonical graph is an instantiated graph where all their nodes

are instantiated by using a canonical assignment. Formally, an instantiated graph

G(xi) is canonical if the assignment xi is canonical, that is, xi ∈ Val(V). As a result,

for defining a canonical graph G(xi), it is not necessary to decide which nodes would

be assigned, because all the nodes V are instantiated. Therefore, the definition of

canonical models avoids the need of deciding which nodes to assign, leading to a

substantial simplification of the space of candidate models. In other words, the space

of canonical models is a proper subset of the space of candidate CSI models. From

this fact, the definition of a canonical model Ḡ can be realized in a simple way:

defining a set of canonical assignments X and then associating a canonical graph

to each assignment xi ∈ X , formally Ḡ = {G(xi):xi ∈ X}. Given a particular set

of canonical assignments X , the size of the space of candidate canonical models

depends on the number |X | of contexts. A possible definition for the set X is to use

all the possible canonical assignments of the domain variables, that is, X = Val(V).

Despite of the simplification of the space of candidates, canonical models still

capture context-specific independences. In contrast to general CSI models, a canon-

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 15

ical model requires several canonical graphs for capturing a context-specific inde-

pendence. For instance, let us suppose that we want to encode a context-specific

independence I(Xa, Xb | xw) in a canonical model Ḡ. From Definition 2.1, this in-

dependence implies a set of independences of the form I(xa, xb | xw), for all the

assignments xa and xb in Val(a) and Val(b), respectively. Then, each independence

I(xa, xb | xw) is captured by a particular G(xi) ∈ Ḡ, one whose context xi satisfies:

xia = xa, xib = xb, and xiw = xw. In this manner, the independence I(Xa, Xb | xw)

is captured by using several canonical graphs.

Example 3.2. Let us illustrate how the structure of the distribution of Example 2.1

is captured by a canonical model Ḡ. A trivial way to define Ḡ is using the set of all

the canonical assignments X = Val(V), defining 2|V | = 32 canonical graphs, that is,

a graph G(xi) per canonical assignment xi ∈ Val(V). According to the value of Xw

in the canonical assignments, the canonical graphs have two different structures: a

fully connected structure when Xw = x0w, and the star structure when Xw = x1w.

For this reason, Figure 3 only shows four canonical graphs in Ḡ. The figures 3(a),

3(b), 3(b), 3(d) show, in order, the following canonical graphs: G(x0a, x
0
b , x

0
c , x

0
d, x

0
w),

G(x1a, x
1
b , x

1
c , x

1
d, x

0
w), G(x0a, x

0
b , x

0
c , x

0
d, x

1
w), and G(x1a, x

1
b , x

1
c , x

1
d, x

1
w). Similary to Ex-

ample 3.1, the context-specific independences can be read off from each canonical

graph by using reachability. For instance, the graph G(x0a, x
0
b , x

0
c , x

0
d, x

1
w) encodes

that any pair of values between x0a, x
0
b , x

0
c , x

0
d are mutually independent given the

context x1w; in contrast, the graph G(x1a, x
1
b , x

1
c , x

1
d, x

0
w) encodes no independences

between any pair of values x1a, x
1
b , x

1
c , x

0
d.

An interesting property of using canonical models for representing the structure

is that a canonical model is defined from the set X , that is, a set of mutually

independent canonical assignment xi ∈ Val(V). This follows from the fact that

each canonical assignment can be seen as a row in the table-based representation

of the joint distribution. Thus, the learning of canonical models from data can be

decomposed into a set of independent subproblems, that is, the learning of each

single canonical graph G(xi), xi ∈ X . In a general perpective, knowledge discovery

algorithms are designed to learn a single graph. Hence, each canonical graph can be

learned by using basic ideas of knowledge discovery algorithms. The next section

presents a simple learning algorithm that learns canonical models by learning each

canonical graph in turn by using basic concepts of knowledge discovery algorithms.

4. Learning canonical models

This section presents the CSPCc algorithm for learning structures represented as

canonical models. In a general perspective, CSPC uses a top-down approach for

learning the structure, that is, CSPC defines an initial general canonical model and

cCSPC is the acronym of Context-Specific Parent and Children algorithm, because its design was
inspired by the well-known Parent and Children algorithm 17.

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

16 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

(a) The graph

G(x0
a, x

0
b , x

0
c , x

0
d, x

0
w) is instan-

tiated by the canonical assign-

ment x0
a, x

0
b , x

0
c , x

0
d, x

0
w.

(b) The graph

G(x1
a, x

1
b , x

1
c , x

1
d, x

0
w) is instan-

tiated by the canonical assign-

ment x1
a, x

1
b , x

1
c , x

1
d, x

0
w.

(c) The graph

G(x0
a, x

0
b , x

0
c , x

0
d, x

1
w) is instan-

tiated by the canonical assign-

ment x0
a, x

0
b , x

0
c , x

0
d, x

1
w.

(d) The graph

G(x1
a, x

1
b , x

1
c , x

1
d, x

1
w) is instan-

tiated by the canonical assign-

ment x1
a, x

1
b , x

1
c , x

1
d, x

1
w.

Fig. 3. Several canonical graphs that compose a canonical model Ḡ.

then this model is specified by using context-specific independences elicited from

data. The specification of the initial canonical model Ḡ consists in specifying each

canonical graph G(xi) ∈ Ḡ, where xi ∈ X . A graph G(xi) is specified by removing

edges according to a well-known criterion often used by knowledge discovery algo-

rithms 17,18,42,19. For determining whether the criterion is satisfied, it is required to

elicit context-specific independences from data. Finally, once the canonical model

has been specified, CSPC uses the canonical graphs for generating a set of features.

Instead of a canonical model, a set of features is a more common representation

which permits us to use standard software packages available for weight learning

and inference. For instance, the set of features generated can be taken together in a

log-linear model, whose weights can be obtained by performing any standard weight

learning package.

The key elements of CSPC are: i) the definition of the initial canonical model;

ii) the specialization of each canonical graph; iii) the elicitation of context-specific

independeces from data; and iv) the feature generation from the learned canonical

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 17

model. Algorithm 1 shows the pseudo-code of CSPC, offering an overview of how

these key elements are related. Moreover, the rest of this section is organized ac-

cording to these key elements. Section 4.1 describes lines 1 and 2, which define the

initial canonical model. Section 4.2 describes lines 3 and 4, which specify the initial

canonical graphs. Section 4.3 describes how to elicit context-specific independences,

which are used to specify a canonical graph. Section 4.4 describes line 5, which

generates a set of features from the specified canonical model. Finally, Section 4.5

describes several tips for speeding up the execution of CSPC.

Algorithm 1: Overview of CSPC

Input: domain V , dataset D
1 X ← Define the set of canonical assignments

2 Ḡ ← Define a set of initial graphs {G(xi):xi ∈ X}
3 foreach G(xi) ∈ Ḡ do

4 G(xi)← Specialize(G(xi), V , D)

5 F ← Feature generation from each G(xi) ∈ Ḡ

4.1. The initial canonical model

CSPC starts the top-down approach from an initial canonical model Ḡ. For defining

the initial Ḡ, CSPC define an initial set of canonical assignments X , where each

canonical assignment xi ∈ X is used to instantiate an initial graph. A näıve defini-

tion of the set of canonical assignments is X = Val(V). However, in this case, the

size of X is exponential with respect to the number of variables. A more practical

alternative is to use a data-driven approach for defining it, that is, adding a context

xi per unique training example in D. This alternative is often used as a starting

point in the search for density estimation algorithms 13,15. This initial model guar-

antees that any feature obtained at the end matches at least one training example.

Once defined the set X , CSPC constructs the initial canonical model Ḡ as a col-

lection of fully connected graphs, that is, a fully connected graph G(xi) for each

xi ∈ X . We note that this approximation may be drastic for dense distributions

and large datasets, but the approximation permits us to drastically reduce the time

complexity of the algorithm. For evaluating the impact of this approximation in the

quality of the learned structures, we performed an offline empirical evaluation over

synthetic data, confirming that both ways of defining X result in equivalent learned

structures.

4.2. Specialization of a canonical graph

For encoding the context-specific independences present in data, CSPC specifies

each canonical graph by using a combination of two criteria: the local Markov prop-

erty and the pairwise Markov property (Chapter 3.2.1 Ref. 5). This criterion says

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

18 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

that each variable Xa is conditionally independent of the variable Xb ∈ XV \MB(a)

given its Markov blanket variables XMB(a). Therefore, given an initial canonical

graph G(xi), any edge (a, b) can be removed if I(Xa, Xb | xiMB(a)) is present in

data. This criterion allows to use a local strategy for specifying a graph: specifying

the adjacencies of each node a ∈ V in turn. This local strategy is the same used

by the PC algorithm 17. Algorithm 2 shows how this local strategy is performed.

Roughly speaking, the algorithm iterates over each node a ∈ V in line 4. Then, each

node b ∈ adj(a) is iterated in line 5 in order to remove the edge (a, b) if this satisfies

the criterion. For that, line 6 searches the Markov blanket MB(a), denoted by W ,

from the remaining nodes adj(a)\{b}. For determining whether an edge satisfies the

criterion, line 7 elicits the independence I(Xa, Xb | xiW) from data. If it is satisfied,

then the edge (a, b) is removed from G(xi), as shown in line 8. In such case, the

node b is removed from the set adj(a), specifying in this way the graph. When all

the edges from the node a have been checked, the search proceeds by taking some

next node, repeating the previous process.

Algorithm 2: Specialization of G(xi)

Input: graph G(xi), domain V , dataset D
1 k ← 0
2 repeat
3 foreach node a ∈ V do

4 adj(a) ← adjacencies of a obtained from G(xi)
5 foreach b ∈ adj(a) do
6 foreach W ⊆ adj(a) \ {b} s.t. |W | = k do

7 if I(Xa, Xb | xiW) is true in D then

8 G(xi)← remove the edge (a, b) in G(xi)
9 break // go to line 5

10 k ← k + 1

11 until | adj(a)| < k, for all a ∈ V ;

12 return G(xi)

Then, before removing an edge (a, b), it is required to find the Markov blanket

MB(a), that is, the conditioning nodes W . This nodes are found by using an incre-

mental search in line 6. This incremental search uses an integer-valued threshold k

which is initialized with zero in line 1. This threshold fixes the maximum number of

conditioning nodes in W , that is, any independence assertion I(Xa, Xb | xiW) has up

to k = |W | conditioning variables. When all the adjacencies have been specialized,

this threshold is increased in line 10. Therefore, the termination condition of the

local search is reached when | adj(a)| < k for all a ∈ V , in other words, when the

size of each adjacency is smaller than the threshold.

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 19

4.3. Elicitation of context-specific independences

For eliciting the independences present in data, several statistical methods can

be used (Section 3.A Ref. 38), (Section 4.3 Ref. 13), (Section 4.1 Ref. 51), and

(Section 3 Ref.14). However, CSPC uses a very common method used by knowl-

edge discovery algorithms called statistical independence tests 17,52,42,19. A sta-

tistical independence test determines the truth value of an independence asser-

tion I(Xa, Xb | XW) by using statistics computed from a contingency table con-

structed from data. This can be seen as a typical problem of hypothesis testing.

In our case, for determining the truth value of a context-specific independence

I(Xa, Xb | xW), CSPC uses a straightforward adaptation of a statistical indepen-

dence test. As discussed in Section 2.1, this adaptation is based on the follow-

ing fact: any arbitrary context-specific independence I(Xa, Xb | xW) that holds in

p(X) is a conditional independence, I(Xa, Xb | ∅), in the conditional distribution

p(X \ {XW } | xW) 43. Moreover, given that D is a representative sample of p(X), a

partition D[xiW] = {x ∈ D:xW = xiW } is a representative sample of p(XV \W |xiW).

Using D[xiW], CSPC obtains the truth value for any assertion I(xia, x
i
b | xiW) by

performing a statistical test for the assertion I(Xa, Xb | ∅). If I(Xa, Xb | ∅) is true

in D[xiW], then the Xa and Xb are conditionally independent. This fact implies that

xia and xib are conditionally independent in p(XV \W |xiW), and they are contextually

independent given the context xiW in p(X).

4.4. Feature generation from a canonical model

When the specialization of each canonical graph is finished, the resulting structure is

a canonical model Ḡ. This structure is converted into an equivalent representation

in the form of a set of features F . Algorithm 3 shows how the set of features is

generated from a canonical model Ḡ. For each canonical graph G(xi) ∈ Ḡ, a feature

xiC is generated for each maximum cliques C ∈ G(xi). In this way, the resulting set

of features guarantees that the context-specific independences captured by Ḡ are

correctly encoded. In our implementation, we use the Bron-Kerbosch algorithm for

obtaining the maximum cliques of a graph 44. For ensuring the positiveness of the

distribution, a simple way is to generate a unitary feature for each xi ∈ Val(a) and

for all a ∈ V .

Example 4.1. Let us now illustrate how a set of features F is generated from the

canonical graphs shown in Example 3.2. The set of features is generated in two

steps. First, we search the maximum cliques in each canonical graph. Second, for

each maximum clique, the context of the canonical graph is used for constructing

a feature. For instance, the canonical graphs shown in Figure 3(a) and 3(b) have

the same maximum clique: {a, b, c, d, w}. Using this clique and the two canonical

assignments, the following features can be constructed:

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

20 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

Algorithm 3: Feature Generation

Input: Canonical model Ḡ
1 F ← ∅
2 foreach G(xi) ∈ Ḡ do

3 foreach maximum clique C ∈ G(xi) do

4 F ← F ∪ {xiC}
5 F ← Add unit feature xia for each variable Xa ∈ X
6 return F

(1) (x0a ∧ x0b ∧ x0c ∧ x0d ∧ x0w) (2) (x1a ∧ x1b ∧ x1c ∧ x1d ∧ x0w)

On the other hand, the canonical graphs shown in Figure 3(c) and 3(d) have the

same maximum cliques: {a,w}, {b, w}, {c, w}, {d,w}. Using these cliques and the

two canonical assignments, the following features can be constructed:

(1) (x0a ∧ x1w)

(2) (x1a ∧ x1w)

(3) (x0b ∧ x1w)

(4) (x1b ∧ x1w)

(5) (x0c ∧ x1w)

(6) (x1c ∧ x1w)

(7) (x0d ∧ x1w)

(8) (x1d ∧ x1w)

4.5. Implementation details for speeding up computation

CSPC naively implemented is computationally infeasible, because it must perform

|X | mutual independent structure learning steps for each canonical graph G(xi); as

shown in line 4 of Algorithm 1. For obtaining a graph G(xi), it is required to decide

the presence of
(|V |

2

)
edges by performing independence tests. This is discussed in

Section 4.2, for determining the presence of an edge (a, b), it is required to per-

form several independence tests, due to the incremental strategy used for finding

the Markov blanket (the conditioning nodes W). To perform an independence test

implies the counting of sufficient statistics for constructing contingency tables from

the dataset D. Therefore, this subsection describes some tips for speeding up the

execution of CSPC in order to reduce the execution time: i) the use of AD-Tree
45, a cache for sufficient statistics to fast constructing contingency tables (a brief

description in Appendix C); ii) an approximate strategy for finding Markov blan-

kets, reducing the amount of independence tests performed; and iii) a näıve way to

parallelize the learning of a canonical model for reducing the execution time.

CSPC uses AD-Tree for fast construction of contingency tables. However, in

high-dimensional domains, AD-Tree can incurre in intractable memory require-

ments. Thus, CSPC takes advantage of Leaf-Lists for not incurring in intractable

memory, as follows. Given a graph G(xi) in Algorithm 2, the presence of any

edge (a, b) requires to perform incremental independence assertions with the form

I(Xa, Xb | xiW), that is, for incremental contexts xiW where W ⊆ V and |W | = k.

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 21

Therefore, Algorithm 2 only requires sufficient statistics from specific subtress of the

AD-Tree, that is, those that satisfy the contexts xiW ⊆ xi. For this reason, Algo-

rithm 2 starts with a very sparse AD-Tree by using a very large pruning threshold.

Then, for each increment of k, the AD-Tree is expanded on demand, that is, the

depths of the subtrees that satisfy xiW increase, reusing all the computations per-

formed in the previous iterations due to the Leaf-Lists.

The use of AD-Tree reduces the time complexity of constructing contingency

tables. However, CSPC must still perform a large amount of statistical tests, because

|X | canonical graphs must be specified. This is exacerbated by the incremental way

used for obtaining the conditioning set W . When the underlying structure is very

dense, the amount of tests for obtaining G(xi) grows exponentially because all the

subsets W must be checked before finishing (line 6 in Algorithm 4), that is, the

power set of each set of adjacencies. One simple strategy to overcome this is to use

a maximum size Kmax for conditioning sets. This threshold changes the termination

condition of line 2 in Algorithm 2 as follows: (| adj(a)| < k or | adj(a)| = Kmax),

for all a ∈ V . Given a fixed maximum degreed of the underlying structure, three

situations are present for using Kmax: (i) if the maximum degree is greater than

Kmax, the resulting structure is more dense than the underlying structure; (ii)

if the maximum degree equals Kmax, then the resulting structure is correct; and

(iii) if the maximum degree is smaller than Kmax, then the termination condition

| adj(a)| < k is reached first, and thus the correct structure is found. Therefore, for

any case, the resulting structure is an I-map. However, for the situation (iii), the

resulting structures are approximations because these structures do not encode all

the independences.

Finally, it is worth noting that Algorithm 1 can be performed in a parallel

way due to the definition of canonical model. A canonical model is a collection

of mutually independent canonical graphs, in other words, the definition of each

canonical graph does not dependent of the remaining canonical graphs. As a result,

the set of canonical assigments X can be splitted into any set of partitions, that is,

X =
⋃

j Xj where Xj is a partition.

5. Empirical evaluation

This section shows the improvements that can be reached in the accuracy of the

learned structures when context-specific independences are explicitly learned; high-

lighting the direct correlation between the correctness of the structure and the

accuracy of the distribution. These improvements cannot be obtained by exist-

ing knowledge discovery and density estimation algorithms. Knowledge discovery

algorithms focus on learning accurate structures but they use an inflexible repre-

sentation that cannot encode context-specific independences. On the other hand,

density estimation algorithms do not focus on learning accurate structures but they

dThe maximum degree of a graph structure is the maximum number of edges incident to a node.

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

22 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

use a flexible representation that can encode context-specific independences. This

trade-off is mitigated by our approach allowing it to reach more accurate struc-

tures. Our approach is evaluated on two empirical scenarios: synthetic datasets, and

real-world datasets. The former offers well-understood conditions which permit us

to obtain precise measures to show the potential improvements that can be reached

in a single application domain. On the other hand, the latter shows the improve-

ments on multiple application domains. The evaluation consists in comparing the

structures learned by CSPC and several knowledge discovery and density estima-

tion state-of-the-art algorithms. This evaluation is conducted under the following

performance measures: accuracy for encoding qualitatively independences that hold

in the underlying structures; accuracy for answering inference queries; and general

statistics over the learned structures and the underlying structures. The synthetic

data used in our experiment, together with an open source implementation of CSPC

algorithm, and the learned models are publicly availablee.

5.1. Datasets

The synthetic datasets were generated through Gibbs sampling on synthetic binary

Markov networks (more details in Appendix B). The underlying structure of these

models is similar to those shown in Example 3.1. This structure encodes indepen-

dence assertions of the form I(Xa, Xb | x1w) for all pairs a, b ∈ V \ {w}, but these

assertions are not valid when Xw = x0w. In this way, the underlying structure can be

seen as two instantiated graphs depending on the context: a fully connected graph

G(x0w), and a star graph G(x1w) where the central node is x1w and the remaining

nodes V \ {w} are leaves. Despite of the simplicity of this structure, this cannot

be correctly captured by using a single graph, while it can be captured by a set

of features or CSI models; as is shown in Example 2.2, Example 2.3 and Exam-

ple 3.1. The number of variables in the synthetic models ranges from 6 to 9. The

maximum degree of these underlying structures is equal to the number of variables

n, resulting in a challenging problem for structure learning algorithms, which are

usually tested on synthetic models with maximum degree at most 6 to 8 14,29,19.

The generated datasets are partitioned into: a training set (70%) and a validation

set (30%). The reason of this partition is due to the fact that density estimation

algorithms use the validation set to tune their parameters for learning the models:

they learn several models from the training set by using different parameters, and

then they pick the best one using the validation set. On the other hand, CSPC and

knowledge discovery algorithms do not use tunning parameters, they therefore use

the whole dataset, i.e. the union of both sets, to learn the models.

The real-world datasets used here have been used by several recent works on

structure learning 36,30,31,2. Their characteristics are described in Table 1. These

datasets are samples coming from multiple application domains, for instance: click

ehttp://dharma.frm.utn.edu.ar/papers/ijait14

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 23

logs, nucleic acid sequences, collaborative filtering, and etcetera. The number of

variables ranges from 16 to 1556, and the amount of datapoints varies from 2k to

291k. For a more detailed description of those datasets, see 13,15,16. These datasets

are partitioned in three parts: a training set, a validation set, and a test set ; where

the latter is denoted by Dtest. The validation set is used to tune parameters hy-

perparameters as well as input parameters of the density estimation algorithms. In

contrast to synthetic datasets, we use the test set in real-world datasets for evalua-

tion.

Table 1. Characteristics of all real-world datasets used in our experiments. The first col-
umn shows the number of variables. The three following columns show the sizes of each

partitions: train set, validation set and test set. The last column |X | shows the num-

ber of canonical contexts obtained from the unique training examples in the training set.

Dataset |X| Size of train set Size of tune set Size of test set |X |
NLTCS 16 16181 2157 3236 2671

MSNBC 17 291326 38843 58265 9228
Abalone 31 3134 417 626 648

Wine 48 4874 650 975 3898

KDDCup 2000 65 180092 19907 34955 6864
Plants 69 17412 2321 3482 8258

Covertype 84 30000 4000 6000 22679

Audio 100 15000 2000 3000 14969
Netflix 100 15000 2000 3000 14998

Accidents 111 12758 1700 2551 12756

Adult 125 36631 4884 7327 25060
Retail 135 22041 2938 4408 10510

Pumsb Star 163 12262 1635 2452 12037

DNA 180 1600 400 1186 1545
MSWeb 294 29441 3270 5000 10294

WebKB 839 2803 558 838 2754

BBC 1058 1670 225 330 1585
Ad 1556 2461 327 491 1573

5.2. Methodology

In this subsection we explain the methodology used for evaluating our approach

against several structure learning algorithms. First, we describe the two methods

used for measuring the accuracies of the structures learned by the algorithms; and,

second, we explain which structure learning algorithms are used in our experimen-

tation and their configuration settings.

We use different evaluation methods for each empirical scenary. In synthetic

datasets, the underlying distributions are known, in contrast, in the real-world

datasets they are not. Therefore, for synthetic datasets, we use the Kullback-Leibler

divergence (KL), a method that evaluates how similar are the learned distribu-

tions against the underlying distributions 46,47. On the other hand, for real-world

datasets, we use the conditional marginal log-likelihood (CMLL), a method that

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

24 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

evaluates the accuracy of the learned distributions for answering inference queries
29,13,16,15,31.

The KL is a “distance measure” widely used to compare two distributions, p(X)

and q(X), by measuring the information lost between them, as follows:

KL(p || q) =
∑

x∈Val(V)

p(x) log
p(x)

q(x)
,

where KL is zero if p(X) = q(X), and positive otherwise. KL is not symmetric,

but it satisfies the basic property of an error measure 47. Therefore, let p(x) be the

underlying distribution, and let q1(x) and q2(x) be two learned distributions; then

the learned distribution with the smallest KL divergence with respect to p(X) is

considered to be the most accurate. On the other hand, given a learned distribution

q(X) and a test set Dtest, the CMLL is computed by summing the conditional

marginals of each variable in a query set Q, conditioned on the remaining variables

corresponding to an evidence set E = V \Q, as follows:

CMLL(q,Dtest) =
∑

x∈Dtest

∑
a∈Q

log q(xa|xE).

The query and evidence variables are defined by dividing the variables into four

disjoint subsets, taking one subset as query variables, and the remaining as evidence

variables. Then, this procedure was repeated such that each subset is at least once

in the query variables. The conditional marginals can be computed by performing a

Gibbs sampling on the learned model. In our experiment, Gibbs sampling was run

with 100 burn-in and 1000 sampling iterations, as commonly used in other works.

CSPC is compared against 8 state-of-the-art structure learning algorithms, four

for knowledge discovery, and four for density estimation. The knowledge discovery

algorithms are two for Markov networks: GSMN 18, and IBMAP-HC 19; and two

for Bayesian networks: HHC 42, and PC 17. The Bayesian networks structure learn-

ing algorithms were selected for the following reasons: HHC has shown competitive

results against IBMAP-HC 19; and against PC 17, because it is similar to the special-

ization of a canonical graph in CSPC, shown in Algorithm 2. PC offers a baseline to

highlight the improvements resulting from learning context-specific independences.

The previous two algorithms were modified for learning the structure of a Markov

network by omitting the step of edges orientation 48,19. For a fair comparison, we

use the Pearson’s χ2 as the statistical independent test with a significance level of

0.05 for all algorithms, except IBMAP-HC that only works with the Bayesian sta-

tistical test of independence 49, using a threshold of 0.5. The knowledge discovery

algorithms learn the structure as a graph, thus a set of features was generated from

its maximum cliques in a similar fashion than Algorithm 3. On the other hand, the

density estimation algorithms are GSSL 15, L1 37, DTSL 16, and BLM 13. For a fair

comparison, we replicate the recommended tunning parameters for all the density

estimation algorithms. For GSSL, we generated 0.5, 1, 2, and 5 million features;

with pruning thresholds of 1, 5, and 10; Gaussian standard deviations of 0.1, 0.5,

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 25

and 1, combined with L1 priors of 1, 5, and 10; giving a total of 108 configurations.

For L1, we employed the same procedure used in 30, with L1 priors of 0.1, 0.5, 1,

2, 5 ,10 15, and 20, giving a total of 8 configurations. For DTSL, we used the κ

values of 1.0, 0.1, 0.01, 0.001, 0.0001 to obtain an initial model, and then 4 feature

generation methods for positive features (nonzero, prune-nonzero, prune-5-

nonzero, prune-10-nonzero); and Gaussian standard deviations combined to

L1 priors similar to GSSL; giving a total of 50 configurations. For BLM, we use 1,

2, 5, 10, 20, 25, 50, 100, 200 nearest examples; frequency of accepted features of

1, 5, 10, and 25; and Gaussian standard deviation of 0.1, 0.5, and 1; given a to-

tal of 108 configurations. The objective function used by knowledge discovery and

density estimation algorithms is pseudo-likelihoodf . For all the density estimation

algorithms, the best learned model was that with the maximum pseudo-likelihood

on the validation set. Finally, for all baseline algorithms, we used publicly available

code g.

5.3. Results for synthetic datasets

The evaluation on synthetic datasets consists in varying the available data from 20

to 10k datapoints, comparing at each case the KL divergences of the Markov net-

works learned by each algorithm. The Markov networks are obtained by performing

weight learning from the learned structures. As density estimation algorithms de-

pend on the regularization, weight learning is performed with regularization. In

contrast, for knowledge discovery algorithms, weight learning is performed without

regularization in order to avoid unnecessary changes in the learned structures. Be-

fore evaluating the KL divergences obtained by the algorithms, we show the KL

divergences obtained by using hand-coded structures in order to show insights on

the behaviour of KL divergence. These structures are representative results of learn-

ing: structures that are an I-map for the underlying distribution, and structures that

are not an I-map. The I-map structures show us the impact in KL divergence of

encoding correct independences. In contrast, the non-I-map structures show us the

impact of encoding incorrect independences. For each type, we propose two partic-

ular structures: the fully connected and underlying structures for the I-map case,

and the empty and star structures for the non-I-map case. The empty structure en-

codes the maximum number of incorrect independences. The star structure encodes

context-specific independences as conditional independences. This kind of structures

are usually learned when data is scarce. The fully connected structure encodes in-

correct dependences which obscures the context-specific independences. It is worth

noting that the fully connected structure would be learned by knowledge discovery

algorithms under the assumption that the statistical tests are correct, for instance,

fWeight learning was performed by using the version 0.5.0 of the Libra toolkit

(http://libra.cs.uoregon.edu/)
ghttps://dharma.frm.utn.edu.ar/papers/ijait14

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

26 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

for large datasets. The underlying structure encodes the correct independences, that

is, models with this structure should have the best KL divergences.

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

K
L

 d
iv

er
g
en

ce

Amount of data

n=6

empty
fully
stars

underlying
 0.001

 0.01

 0.1

 1

 10 100 1000 10000

K
L

 d
iv

er
g
en

ce

Amount of data

n=7

empty
fully
stars

underlying

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

K
L

 d
iv

er
g

en
ce

Amount of data

n=8

empty
fully
stars

underlying
 0.001

 0.01

 0.1

 1

 10 100 1000 10000

K
L

 d
iv

er
g

en
ce

Amount of data

n=9

empty
fully
stars

underlying

Fig. 4. KL divergences over increasing amounts of data for four different structures: the empty
structure, the star structure, the fully structure, and the underlying structure. Every point rep-

resents the average and standard deviation over ten datasets with a fixed size. Each figure shows
the KL divergences for different domain sizes: 6 (top left), 7 (top right), 8 (bottom left), and 9

(bottom right) variables. Lower values of KL divergence are better.

Figure 4 shows the KL divergence for the four proposed structures, each point

showing the average and standard deviation for 10 random datasets obtained from

the synthetic Markov networks. In these results, we can see that the KL divergences

of each structure tend to zero while the amount of data increases. This is because

the weight learning is more accurate for large data (Theorem 20.3 Ref. 8), improving

the divergences for a fixed structure. However, the quality of these improvements

depends on the structure used. As shown in Figure 4, the I-map structures (fully

and underlying curves) reduce the KL divergence more quickly than the non-I-map

structures (empty and star curves). This is due to the fact that the weight learning

cannot learn accurate weights when the structure is not an I-map, resulting in im-

precise distributions. Moreover, the quality of the KL divergences of the I-map struc-

tures are different. As shown in Figure 4, the underlying structures obtain better

divergences than the fully structures. This fact highlights that the weight learning is

more accurate when the structure used captures the context-specific independences.

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 27

Moreover, star structures obtain better divergences than empty structures, show-

ing that encoding more incorrect independences (empty structures) produces worst

divergences. This very simple experiment shows the strong correlation between the

KL divergence measure and structural correctness.

Table 2. Average feature length (AFL) in the structures learned by structure learning algorithms. Every

cell represents the average over ten datasets with a fixed size.

Datasets Knowledge discovery algorithms Density estimation algorithms

n |D| Underlying CSPC GSMN IBMAP PC HHC GSSL DTSL BLM L1

6

20

2.80±0.4

1.363 1.890 2.342 1.457 1.888 2.973 1.000 1.750 0.516

50 1.625 2.057 2.309 1.796 2.028 3.000 1.301 1.221 0.311
70 1.659 2.210 2.595 1.930 2.120 3.023 1.389 1.564 1.095
100 1.722 2.579 2.610 2.148 2.270 3.033 1.529 1.883 1.050

500 2.048 3.733 3.222 2.829 3.640 3.023 1.964 2.097 1.317
1k 2.242 4.333 3.933 3.501 4.366 3.033 2.342 2.350 1.321

5k 3.027 6.000 6.000 6.000 6.000 3.023 2.817 2.350 1.321

10k 3.486 6.000 1.000 6.000 6.000 3.014 2.884 2.443 1.321

7

20

2.83±0.37

1.310 1.804 2.525 1.417 1.804 2.677 1.000 1.191 0.524
50 1.558 2.114 2.606 1.650 2.046 3.365 1.170 1.582 0.832
70 1.644 2.209 2.475 1.986 2.157 3.464 1.337 1.724 1.032

100 1.724 2.349 2.730 1.905 2.130 3.475 1.393 1.678 1.064
500 1.946 3.611 3.402 2.708 3.141 3.516 1.961 2.142 1.317
1k 2.215 4.243 3.676 3.303 3.460 3.516 2.244 2.047 1.322

5k 2.811 5.666 5.633 5.848 5.600 3.513 2.952 2.366 1.324
10k 3.195 5.933 1.000 5.840 5.933 3.513 3.258 2.426 1.324

8

20

2.85±0.34

1.392 1.815 2.617 1.341 1.821 3.440 1.000 1.011 0.399
50 1.606 1.994 2.673 1.672 2.022 3.564 1.000 1.342 1.031

70 1.588 1.991 2.854 1.689 1.989 3.688 1.091 1.442 1.030
100 1.667 2.003 2.802 1.725 1.983 3.872 1.224 1.722 1.000
500 1.894 3.133 3.288 2.167 2.807 4.009 1.891 2.091 1.277

1k 2.092 3.528 3.665 2.495 3.356 4.004 2.051 2.199 1.321
5k 2.557 5.276 4.998 4.662 4.424 4.004 2.826 2.313 1.323

10k 2.865 6.640 1.000 6.907 6.371 4.007 3.071 2.248 1.323

9

20

2.87±0.37

1.206 1.447 2.597 1.200 1.448 2.845 0.900 1.080 0.238

50 1.314 1.608 2.944 1.322 1.632 3.556 1.000 1.170 1.091
70 1.553 1.914 2.974 1.490 1.921 3.936 1.000 1.338 1.032

100 1.563 1.911 2.992 1.645 1.987 4.151 1.040 1.697 1.064
500 1.816 2.534 2.943 1.961 2.460 4.449 1.702 1.997 1.000
1k 1.911 3.175 3.032 2.234 2.863 4.450 1.939 2.090 1.305

5k 2.368 3.639 3.579 3.039 3.766 4.498 2.458 2.454 1.324
10k 2.596 4.835 4.514 3.724 4.822 4.501 2.851 2.407 1.325

We show now the KL divergences obtained for the structures learned by the

competitor algorithms. The learning was performed by using the same datasets

previously used in order to contrast the results. Since the KL divergence clearly

depends on the structure, first we analyze qualitatively the learned structures, and

later their divergences. Given that the learned structures are more complex than the

undirected graph, at least those learned by CSPC and density estimation algorithms,

we do not use standard metrics such as the Hamming distance and F-measure

for measuring the correctness of learned structures. Instead, we use a simple but

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

28 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

effective measure used by several recent works on density estimation algorithms: the

average of feature lengths and the number of features 38,15,30. These measures are

statistics that permit us to determine, in an approximated way, qualitative aspects

of the learned structures. For instance, for n = 6 variables, if the learned structure

is the empty structure, the average feature length should be equal to 1 and the

number of features should be equal to 2×6 = 12, namely, one feature per each single

assigment. In contrast, if the learned structure is the fully structure, the average

feature length should be equal to 6 and the number of features should be equal

to 26 = 64, namely, one feature per each complete assigment. Table 2 and 3 show

the average feature lengths, and the number of features for the learned structures,

respectively. In Table 2, the column named Underlying shows the average feature

lengths of the underlying structure, which are: 2.80±0.4 for 6 variables, 2.83±0.37

for 7 variables, 2.85± 0.34 for 8 variables, and 2.87± 0.37 for 9 variables. Using the

previous averages, we can approximately determine whether a learned structure is

accurate, that is, when its average feature lengths is close to the average feature

length of the underlying structure. In this manner, according to Table 2, we can

see that the average feature lengths of CSPC and density estimation algorithms

are more accurate than those obtained by knowledge discovery algorithms for large

data (|D| ≥ 500), showing that a more flexible representation can capture better

structures against a single graph. The best feature lengths for density estimation

algorithms is obtained by GSSL and DTSL. The structures found by GSSL are more

accurate than those obtained by CSPC when data is scarce (|D| < 500). However,

the performance of GSSL is degraded while the number of variables increases. This

is due to the randomized approach used by GSSL which tends to increase the

number of selected features in large domains, as shown in Table 3. For instance,

the average number of features learned by GSSL ranges from 59.900 to 62.300 for 6

variables, increasing up to 508.900 for 9 variables, resulting in the biggest number

of features. On the other hand, DTSL presents more accurate feature lengths than

CSPC, especially for |D| ≥ 500, but for the remaining cases, |D| < 500, CSPC is

more accurate. Finally, L1 has similar average feature lengths across all the cases,

this is because L1 only learns pairwise features.

As shown in Table 2, one important trend followed by CSPC and knowledge dis-

covery algorithms is the difference between them in average feature lengths when

the amount of data increases, starting from |D| ≥ 500. In these situations, CSPC

obtains average feature lengths that are more similar to the underlying ones. In

contrast, knowledge discovery algorithms only tend to obtain larger features which

correspond to fully connected structures. For instance, in n = 6 and |D| ≥ 5k,

GSMN learns fully connected structures because the feature lengths are equal to 6

and the numbers of features are 26 = 64. This trend is because the independence

tests are more reliable when data is sufficient, reducing statistical errors. However,

this reliability in tests results in very different structural qualities due to the lim-

itation of undirected graphs to encode context-specific independences, resulting in

highly connected structures.

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 29

Table 3. Number of features in the structures learned by structure learning algorithms. Every cell represents
the average over ten datasets with a fixed size.

Datasets Knowledge discovery algorithms Density estimation algorithms

n |D| CSPC GSMN IBMAP PC HHC GSSL DTSL BLM L1

6

20 19.800 17.400 22.400 12.200 17.800 59.500 5.900 6.600 31.400
50 31.800 21.800 25.600 14.400 19.800 61.100 9.000 9.000 2.200

70 35.100 23.200 28.000 16.000 20.000 62.500 10.100 9.100 52.600

100 42.100 26.400 30.800 17.400 24.000 62.700 11.900 11.800 13.400
500 70.900 46.000 44.800 29.200 44.800 62.500 20.900 19.800 147.000

1000 90.200 51.200 59.200 39.800 52.800 62.700 32.500 24.100 186.000
5000 111.500 64.000 64.000 64.000 64.000 62.500 51.300 29.000 192.000

10000 78.200 64.000 12.000 64.000 64.000 62.300 54.700 32.600 192.000

7

20 22.000 19.000 28.200 14.200 19.400 62.300 6.100 7.500 44.000
50 32.500 24.000 33.800 16.600 23.200 109.300 8.900 9.600 23.800

70 40.600 29.200 37.200 18.200 25.600 121.700 10.900 10.500 31.600
100 48.600 28.800 38.800 20.600 24.800 123.800 11.600 11.300 57.200

500 78.400 55.200 64.400 31.200 44.800 126.600 23.300 21.800 152.000
1000 115.200 76.000 62.000 41.000 53.600 126.600 35.600 27.100 219.200
5000 203.000 96.000 121.600 66.000 96.000 126.500 70.300 34.800 264.800

10000 229.200 121.600 14.000 66.200 121.600 126.500 89.100 36.900 266.000

8

20 27.400 23.200 35.000 16.200 24.800 120.667 6.700 8.100 40.200

50 41.200 27.400 44.400 16.600 27.000 170.200 7.400 9.300 22.000
70 39.300 27.800 44.000 17.800 25.800 178.800 8.700 10.000 23.800
100 48.000 30.000 46.800 19.800 29.200 222.600 10.600 11.500 16.000
500 82.500 51.200 75.200 31.800 45.200 254.600 24.900 21.700 90.400

1000 111.700 77.600 103.200 38.800 63.600 254.200 31.200 28.400 243.400
5000 228.600 140.800 164.800 105.200 132.000 254.300 78.500 39.900 309.400
10000 336.600 150.400 16.000 130.000 145.600 254.500 99.100 42.300 311.800

9

20 23.900 22.000 41.600 18.000 22.400 112.333 4.400 9.200 28.800
50 28.800 23.800 50.600 18.400 24.600 236.167 6.600 9.300 47.600
70 40.400 26.600 52.000 18.600 28.600 250.400 8.000 10.000 35.400
100 45.500 28.800 55.200 21.400 28.000 347.778 9.000 11.300 53.400

500 77.300 47.400 75.200 31.200 47.800 478.900 21.800 19.200 18.000

1000 93.600 61.800 91.200 35.600 58.600 482.300 28.700 25.000 173.400
5000 211.700 134.000 150.000 67.600 127.200 507.200 63.700 46.500 358.800

10000 310.300 184.800 294.400 110.800 188.000 508.900 101.700 47.500 396.000

It is worth noting that IBMAP-HC is the only algorithm that obtains the best

feature lengths when data is scarce. In this situation, independence tests are not

reliable, producing statistical errors. When many statistical tests are performed

in an independent way, it is produced cascading errors. IBMAP-HC was designed

for avoiding cascading errors, combining the outcomes of all the performed tests.

Therefore, IBMAP-HC can obtain highly accurate structures when data is scarce.

However, for |D| = 10k in all the domains except with n = 9, IBMAP-HC obtains

strange results that does no follow the expected tendency of the remaining knowl-

edge discovery algorithms. As shown in Table 2 and 3, IBMAP-HC obtains empty

structures because the features lengths are equal to 1 and the numbers of features

correspond to the number of single values of the variables. This is due to arithmetic

underflow errors when large amounts of data are used in the current implementa-

tion of the algorithm, that were not detected by the authors, when large amounts of

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

30 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

data are used. For this reason, IBMAP-HC is not included in the experimentation

of the next subsection, because the most of the datasets used are very large.

Table 4. Average lengths for the features that satisfy either the context x0
w or x1

w in the struc-

tures learned by all the algorithms. Only the features obtained by CSPC can satisfy both contexts.

Datasets Underlying CSPC Knowledge discovery algorithms Density estimation algorithms

n |D| x0
w x1

w x0
w x1

w GSMN IBMAP PC HHC GSSL DTSL BLM L1

6

20

6 2

1.383 1.375 1.800 2.133 1.600 1.800 3.225 0.900 1.450 0.539

50 1.629 1.751 1.900 2.266 1.700 1.900 3.425 1.300 2.216 0.300
70 1.839 1.856 2.000 2.646 1.500 2.000 3.459 1.366 1.500 1.144
100 1.708 1.880 2.100 2.566 1.300 2.200 3.475 1.500 2.483 1.000

500 2.108 1.966 3.766 3.133 2.166 3.500 3.459 2.233 2.745 1.462
1k 2.396 1.909 4.000 4.000 2.333 4.100 3.475 2.669 2.924 1.484

5k 3.158 1.945 6.000 6.000 6.000 6.000 3.459 3.245 2.866 1.486
10k 3.866 1.909 6.000 1.000 6.000 6.000 3.443 3.345 2.991 1.486

7

20

7 2

1.158 1.240 1.300 2.680 1.300 1.300 1.890 0.300 1.300 0.447

50 1.553 1.557 1.800 2.856 1.500 1.900 3.340 0.950 1.300 0.848
70 1.582 1.742 2.000 2.656 1.600 2.066 3.876 1.200 1.500 1.048
100 1.521 1.863 2.000 2.863 1.100 2.000 3.911 1.150 1.500 1.096
500 1.800 1.914 2.700 3.266 1.100 2.766 3.980 1.903 3.150 1.000

1k 1.955 2.009 3.100 3.200 1.200 2.766 3.980 2.525 2.741 1.471
5k 2.450 2.015 5.000 5.500 1.000 5.000 3.976 3.536 3.424 1.489
10k 2.905 1.953 5.800 1.000 1.100 5.800 3.976 3.900 3.474 1.489

8

20

8 2

1.087 1.083 1.100 2.743 1.100 1.100 1.277 0.100 1.000 0.300
50 1.373 1.418 1.500 2.886 1.400 1.500 2.686 0.500 1.000 1.047
70 1.251 1.494 1.600 3.121 1.400 1.600 2.947 0.600 1.000 1.000
100 1.283 1.684 1.800 2.968 1.100 1.800 3.739 0.850 1.000 1.000

500 1.224 1.893 2.000 3.183 1.000 2.100 4.488 1.550 2.000 1.000
1k 1.255 1.914 2.700 3.516 1.000 2.400 4.481 1.850 3.566 1.000
5k 1.746 2.096 3.800 4.400 1.000 3.400 4.480 3.151 3.626 1.481

10k 2.009 2.066 4.400 1.000 1.000 3.900 4.486 3.541 3.264 1.482

9

20

9 2

1.000 1.000 1.000 2.483 1.000 1.000 1.000 0.000 1.000 0.200

50 1.000 1.088 1.100 3.076 1.100 1.100 1.664 0.100 1.000 1.000
70 1.090 1.088 1.100 3.269 1.100 1.100 1.395 0.100 1.000 1.000
100 1.317 1.350 1.400 3.220 1.200 1.500 2.720 0.400 1.000 1.048

500 1.100 1.805 1.900 3.163 1.000 1.900 4.595 1.150 1.000 1.000
1k 1.166 1.806 1.900 3.155 1.000 1.900 4.590 1.250 1.000 1.048

50k 1.050 1.928 2.900 3.487 1.000 2.700 4.987 2.050 5.800 1.096

10k 1.000 1.942 3.000 4.280 1.000 2.700 4.988 2.350 5.780 1.482

We present an additional result for measuring the quality of the learned struc-

tures. We measure the average feature length for two important subset of features:

the features that satisfy the context x0w, and the features that satisfy the con-

text x1w. These averages permit us to evalute if the context-specific independencies

have been correctly encoded. Ideally, both averages would be different because the

context-specific independences are only present on the context x1w. In this manner,

the feature length for x1w should be equal to 2; in contrast, the features length for

x0w should be equal to the number of variables. For instance, this trend can be seen

in the set of features shown in Example 2.3. Table 4 shows the average feature

lengths for all the algorithms. This table only shows the two average feature lengths

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 31

for CSPC because, for the remaining algorithms, both averages are the same. On

the one hand, for knowledge discovery algorithms, the features generated from the

learned graphs results in feature lengths that are the same for both contexts. On

the other hand, for density estimations algorithms, the learned features are positive,

resulting in an unique feature length for x1w. As a result, the structures learned by

knowledge discovery and density estimation algorithms cannot capture the context-

specific independences. On the other hand, as shown in Table 4, the average feature

lengths for CSPC relatively follow the expected trend, obtaining feature lengths

closed in 2 for x1w, and feature lengths greater than 2 for x0w. Moreover, for the

most reliable situation, namely n = 6 for |D| = 10k, CSPC obtains very accurate

averages, that is average feature length equals 3.866 for x0w and 1.909 for x1w. On

the other hand, this trend cannot be seen in the remaining algorithms, resulting

in structures that do not encode correctly the context-specific independences. Ad-

ditionally, it is important to remark the trend that presents CSPC for the feature

lengths for x0w, which tend to decrease for increasing number of variables, resulting

in less accurate structures. This trend shows the problems caused by the sample

size when using independence tests for determining the independences. As discussed

in Section 4.3, this problem is exacerbated because CSPC performs independence

tests by using partitions of data. However, it is worth remarking the improvements

that CSPC obtains against PC, for instance, the average feature lengths for CSPC

in n ∈ {7, 8} are more accurate than those obtained by PC.

So far, we have been discussing some characteristics present in the structures

learned by the different algorithms. In an approximate way, these characteristics

permit us to analyze qualitatively the learned structures. For instance, using the

average feature lengths shown in Table 4, one can approximately determine which

learned structures can capture the context-specific independences. As we saw in the

beginning of this section, KL divergences depend on the quality of the structures,

permitting us to determine if a structure is accurate in a more precise way. In this

manner, in the following we present the KL divergences computed from the struc-

tures learned by the algorithms. For clarity, the computed divergences are divided

into two figures: Figure 5 shows the KL divergences for the knowledge discovery al-

gorithms; and Figure 6 shows the KL divergences for density estimation algorithms.

The KL divergences for CSPC are added in both figures to facilitate comparisons.

Additionally, the KL divergences of the underlying structures are drawn in both fig-

ures for indicating the best KL divergence obtained in Figure 4. In Figure 5 and 6,

the structures learned by CSPC reach the lowest divergences in most cases, showing

the impact of encoding context-specific independences in the structure. For instance,

for |D| = 10k in n = 6, the divergence obtained by CSPC is remarkably similar to

the KL divergence of the underlying structure. As shown in Figure 5, knowledge

discovery algorithms obtain the better divergences for |D| < 500, but the quality of

their learned models start to decline for large datasets just when the learned struc-

tures tend to be very connected. Moreover, as shown in Figure 6, density estimation

algorithms obtain competitive divergences for large datasets, but these divergences

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

32 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

K
L

 d
iv

er
g
en

ce

Amount of data

n=6

CSPC
GSMN

 IBMAP-HC
PC

HHC
Underlying

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

K
L

 d
iv

er
g
en

ce

Amount of data

n=7

CSPC
GSMN

 IBMAP-HC
PC

HHC
Underlying

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

K
L

 d
iv

er
g

en
ce

Amount of data

n=8

CSPC
GSMN

 IBMAP-HC
PC

HHC
Underlying

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

K
L

 d
iv

er
g

en
ce

Amount of data

n=9

CSPC
GSMN

 IBMAP-HC
PC

HHC
Underlying

Fig. 5. KL divergences over increasing amounts of data for structures learned by: CSPC, GSMN,

IBMAP-HC, PC, and HHC. For comparison reasons, the KL divergence of the underlying structure

is shown. Every point represents the average and standard deviation over ten datasets with a fixed
size. Each figure shows the KL divergences for different domain sizes: 6 (top left), 7 (top right), 8

(bottom left), and 9 (bottom right) variables. Lower values of KL divergence are better.

are not better than those obtained by CSPC. The improvements obtained by CSPC

remark the balance between flexibility and interpretability offered by the structures

learned by CSPC. On the one hand, the structures learned by CSPC are more

flexible than the undirected graph learned by knowledge discovery, capturing the

context-specific independences. On the other hand, the structures learned by CSPC

are more interpretable than the set of features learned by density estimation, per-

mitting CSPC to focus on the goal of knowledge discovery. The most competitive

knowledge discovery algorithm is IBMAP-HC that obtains the better divergences

when data is scarce; but as discussed previously, the divergences of IBMAP-HC

are poor, closed in 1, for |D| = 10k due to the fact that empty structures are

learned. The most competitive density estimation algorithm is GSSL that obtains

competitive divergences but these are worst while the dimensionality of the domain

increases. The worst divergences are obtained by L1 which range from 1.85 to 1.65

for 6 variables; 2.86 to 3.35 for 7 variables; 4.65 to 5.61 for 8 variables; and 4.98 to

7.58 for 9 variables.

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 33

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

K
L

 d
iv

er
g
en

ce

Amount of data

n=6

CSPC
GSSL
DTSL
BLM

L1
Underlying

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

K
L

 d
iv

er
g
en

ce

Amount of data

n=7

CSPC
GSSL
DTSL
BLM

L1
Underlying

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

K
L

 d
iv

er
g

en
ce

Amount of data

n=8

CSPC
GSSL
DTSL
BLM

L1
Underlying

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

K
L

 d
iv

er
g

en
ce

Amount of data

n=9

CSPC
GSSL
DTSL
BLM

L1
Underlying

Fig. 6. KL divergences over increasing amounts of data for structures learned by: CSPC, GSSL,

DTSL, BLM, and L1. For comparison reasons, the KL divergence of the underlying structure is

shown. Every point represents the average and standard deviation over ten datasets with a fixed
size. Each figure shows the KL divergences for different domain sizes: 6 (top left), 7 (top right), 8

(bottom left), and 9 (bottom right) variables. Lower values of KL divergence are better.

5.4. Results for real-world datasets

The evaluation on 18 real-world datasets consists in computing the CMLL over the

test sets, using the learned Markov networks. The Markov networks are obtained

by performing a weight learning from the learned structures. All the algorithms use

the same regularization: Gaussian standard deviations of 0.1, 0.5, and 1, combined

with L1 priors of 1, 5, and 10. The best of these learned models is selected as

the one that maximizes the pseudo-log-likelihood over the validation set. Table 5

shows the CMLL scores for all the algorithms on all 18 datasets. We use the CMLL

scores presented in (Table 2 Ref. 15) and (Table 2 Ref. 13) in order to avoid the

recomputation of the results of density estimation algorithms (GSSL, L1, DTSL, and

BLM); but the CMLL scores of GSMN, HHC, PC and CSPC were computed. The

blank cells in Table 5 represent CMLL scores that cannot be computed because

the implementation of PC never finished, with waiting times of at least 3 weeks

per dataset. As shown in Table 5, for learning the structure for several datasets,

CSPC required to use the threshold Kmax in order to reduce the time complexity;

obtaining worst structures as cost. Using the CMLL scores in Table 5, Figure 7

shows how the CMLL scores obtained by the competitor algorithms are compared

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

34 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

in terms of CSPC, that is, the scores of CSPC are subtracted from the scores

of each competitor algorithm. In this manner, for each dataset, a positive value

represents that a competitor algorithm performs worse than CSPC, and a negative

value represents that a competitor algorithm performs better than CSPC.

Table 5. Test set CMLL score summary. Lower scores represent better accuracy. The best CMLL score for each dataset

is shown in bold.

Dataset GSSL L1 DTSL BLM GSMN HHC PC CSPC Kmax

NLTCS -5.050 -5.232 -5.025 -5.248 -5.012 -5.033 -5.028 -4.975 -
MSNBC -5.947 -6.281 -5.727 -5.815 -5.777 -5.908 -5.991 -
Abalone -7.440 -7.780 -2.603 -8.075 -5.766 -5.373 -10.245 -2.734 -

Wine -22.846 -50.615 -7.626 -24.559 -14.298 -14.365 -15.819 -7.832 -
KDDCup -2.071 -2.108 -2.046 -2.077 -2.102 -2.107 -2.068 4

Plants -9.854 -10.739 -10.709 -10.445 -9.935 -10.381 -10.257 -9.875 6

Covertype -18.942 -24.527 -8.641 -19.464 -31.692 -30.127 -34.194 -12.164 4
Audio -36.803 -36.878 -37.484 -37.452 -37.872 -38.044 -37.320 3

Netflix -52.339 -52.401 -53.342 -56.521 -53.890 -53.953 -52.703 5
Accidents -18.180 -16.543 -16.957 -37.558 -22.974 -26.073 -22.730 -

Adult -16.714 -48.982 -10.315 -28.673 -22.825 -22.972 -16.573 4

Retail -10.547 -10.534 -10.447 -10.620 -10.477 -10.513 -10.560 -10.428 6
Pumsb Star -17.245 -13.905 -19.508 -133.155 -19.087 -21.439 -14.279 4

DNA -81.034 -69.035 -69.197 -99.560 -69.340 -69.629 -69.928 -69.475 -

MSWeb -8.819 -8.959 -16.201 -8.848 -9.276 -9.318 -9.230 4
WebKB -144.206 -143.290 -148.234 -164.844 -147.570 -148.528 -142.470 3

BBC -242.424 -239.642 -251.036 -265.486 -247.697 -249.763 -257.497 -239.319 2

Ad -14.848 -15.393 -16.751 -45.638 -12.908 -20.865 -40.122 -14.837 4

As shown in Table 5, CSPC achieves the best overall performance on 4 of the

18 datasets, being the only algorithm focused on knowledge discovery that achieves

this performance. For instance GSMN only achieves the best overall performance on

the Ad domain. Comparing CSPC against all the knowledge discovery algorithms,

it beats them on 15/18 datasets. As shown in Figure 7, the CMLL scores obtained

by CSPC are substantially better than those obtained by knowledge discovery algo-

rithms on the Wine, Covertype, Adult, and BBC domains. Furthermore, the CMLL

values of CSPC outperforms PC on 9 of the 9 datasets succesfully computed. On

the other hand, comparing CSPC against all the density estimation algorithms, it

cannot beat them; CSPC only beats them on 5/18 datasets. The best density es-

timation algorithm is DTSL that produces the best overall performance on 6/18

datasets, following by GSSL on 4/18 datasets. Comparing the CMLL scores ob-

tained by CSPC against each density estimation algorithm, CSPC achieve better

score on 6/18 datasets against GSSL, on 6/18 datasets against L1, on 8/18 datasets

against DTSL, and on 16/18 datasets against BLM.

Using the CMLL values, we compare CSPC against the competitor algorithms by

using a Wilcoxon signed-rank test with continuity correction in the normal approx-

imation for the p-value. For computing the Wilcoxon signed-rank test, we defined

18 paired samples by using the CMLL value of CSPC and every algorithm, for each

dataset. Using the Wilcoxon signed-rank test, CSPC significantly outperforms all

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 35

-5

 0

 5

 10

 15

 20

 25

 30

N
L
T
C
S

M
S
N
B
C

A
b
a
l
o
n
e

W
i
n
e

K
D
D
C
u
p

P
l
a
n
t
s

C
o
v
e
r
t
y
p
e

A
u
d
i
o

N
e
t
f
l
i
x

A
c
c
i
d
e
n
t
s

A
d
u
l
t

R
e
t
a
i
l

P
u
m
s
b
S
t
a
r

D
N
A

M
S
W
e
b

W
e
b
K
B

B
B
C

A
d

GSSL L1 DTSL BLM GSMN HHC PC

Fig. 7. CMLL scores relative to CSPC. Positive values represent that the CMLL of a competitor

algorithm is worse than the CMLL of CSPC. Negative values represent that the CMLL of a

competitor algorithm is better than the CMLL of CSPC.

the knowledge discovery algorithms: GSMN at the 0.002 significance level, HHC at

the 0.00001 significance level, and PC at the 0.001 significance level. On the other

hand, comparing with density estimation algorithms, CSPC only outperforms BLM

at the 0.0001 significant level. CSPC obtains equivalently accuracy to GSSL and

does not present significant differences with respect to DTSL and L1.

6. Conclusions and future work

In this work, we have been discussing an approach to overcome the limitation of

knowledge discovery algorithms for learning Markov network structures that can

capture context-specific independences. This limitation mainly arises from the rep-

resentation of the structure used. Knowledge discovery algorithms use a single graph

for representing the structure, which is a rigid representation that cannot capture

context-specific independences. Thus, our approach proposes an alternative repre-

sentation called canonical models, a particular class of CSI models. Canonical models

are flexible, permiting us to encode context-specific independences; and are also in-

terpretable, permiting us to represent a canonical model as a collection of graphs.

These aspects allow the straightforward adaptation of well-known ideas used by

knowledge discovery algorithms for learning canonical models. In this manner, we

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

36 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

present the CSPC algorithm, a simple knowledge discovery algorithm that learns

structures by using canonical models as the representation. CSPC uses a combina-

tion between the pairwise and local Markov properties as a criterion for encoding

context-specific independences in each canonical graph of the canonical model. The

context-specific independences are elicited from data by using independence statis-

tical tests. We evaluated our approach against several state-of-the-art learning algo-

rithms on synthetic and real-world datasets. On synthetic datasets, CSPC learned

the most accurate structures when data is large. On real-world datasets, CSPC

learned structures that were competitive for inference tasks against density estima-

tion algorithms, showing high performances against traditional knowledge discovery

algorithms. However, CSPC presents two important downsides: first, it has a high

computational complexity because it performs a structure learning over a collection

of graphs; second, the elicitation of independences has lack of robustness because

independent statistical tests are performed on partitions of data.

The directions of future work are focused on improving the downsides of CSPC,

mainly reducing the time complexity and improving the quality of the learned struc-

tures. For reducing the time complexity, we discuss two stategies that basically

consist in reducing the number of test performed. The first strategy is to define

an alternative set of canonical assignments. In this work, we suggested a very sim-

ple set of canonical assignments based on the data-driven approach. As a future

work, we investigate alternative sets of canonical assignments. For instance, a set

could be obtained by clustering data into the most likely canonical assigments by

using the generalized Hamming distance or the generalized value different metric

(Section 4.3 Ref.13) as a way of measuring the distances between canonical assign-

ment and then using the EM algorithm 50 or K-means to obtain the clusters. The

second strategy is to explote common structures between canonical graphs in or-

der to avoid the computation of redundant statistical tests that could be inferred

from other canonical graphs previously learned. On the other hand, we investi-

gate alternative methods for eliciting independences from data, in order to evaluate

its impacts in the quality of the learned structures. For instance, some interesting

methods include: logistic regression 37 and conditional entropy 51. Finally, an inter-

esting future work includes the exploration of other strategies for learning canonical

graphs. In a general perspective, CSPC can be seen as an adaptation of the PC al-

gorithm. In our experimentation, PC was the knowledge discovery algorithm with

worst performance. However, CSPC, an adaptation of PC, obtained improvements

against all the remaining competitor algorithms. For this fact, we investigate al-

ternatives adaptations and strategies: the GSMN and IBMAP-HC on the side of

knowledge discovery algorithms 52,19, and the L1 and GSSL on the side of density

estimation algorithms 37,15.

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 37

Appendix A. Properties of independences

The independence relation I(·, · | ·) has the following properties, where h denotes

an arbitrary function on the variables XA (Chapter 3.1 Ref. 5):

Proposition Appendix A.1. if I(XA, XB | XU), then I(XB , XA | XU);

Proposition Appendix A.2. if I(XA, YB | XU) and XW = h(XA), then

I(XW , XB | XU);

Proposition Appendix A.3. if I(XA, XB | XU) and XW = h(XA), then

I(XA, XB | XU , XW);

Proposition Appendix A.4. if I(XA, XB | XU) and I(XA, XW | XB , XU) then

I(XA, XW,B | XU).

The following property only holds for positive distributions:

Proposition Appendix A.5. if I(XA, XB | XU) and I(XA, XU | XB), then

I(XA, XB,U | ∅).

Graphs are an algebraic structure called graphoid. This structure satisfies all the

properties where A,B,U and W are disjoint subsets, and XW = h(XU) is defined

as W ⊆ U 53,5.

Appendix B. Synthetic datasets

This section presents a detailed explaination of how to generate the synthetic

datasets used in our empirical evaluation in Section 5.3. The synthetic Markov

networks are defined over n = |X| binary-valued random variables. The underlying

structure of these models consists in two instantiated graphs, one for each possible

value of the “flag” variable Xw: a star graph G(x1w) whose center is x1w, and a fully

connected graph G(x0w). This underlying structure encodes the context-specific in-

dependences shown in Example 3.1. In this way, the underlying structure encodes
(n−1)(n−2)

2 context-specific independences of the form I(Xa, Xb | x1w), for all pairs

a, b ∈ V \ {w}. From both instantiated graphs and all value x ∈ Val(V), a set of

features is generated as shown in Algorithm 3. This set of features are divided into

two subsets: i) the set of pairwise features which are obtained from G(x1w) whose

form is f(xa, x
1
w) for all a ∈ V \ {w}; and ii) the set of triplet features which are

obtained from G(x0w) whose form is f(xa, xb, x
0
w) for all pair a, b ∈ V \ {w}. One

example of these set of features is shown in Example 2.3. From these features, we

generated 10 different Markov networks, varying their weights. The weights were

selected to satisfy the log-odds ratio in order to force strong dependencies 56,57,19.

Therefore, the weights of the pairwise features were forced to satisfy the log-odds

ratio as follows:

ε = log

(
w00f(x0a, x

0
w)w11f(x1a, x

1
w)

w01f(x0a, x
1
w)w10f(x1a, x

0
w)

)
,

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

38 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

where w00 = w11 and w01 = w10. In our experiments we set ε = 1.0 which guarantees

strong dependencies. Since this ratio has 2 unknowns, we choose w01 sampled from

N (0.5; 0.001), and solving for w00. On the other hand, the weights of the triplet

features were obtained from the weight of the pairwise features as follows: w000 =

w00×w00 = w110, and w010 = w00×w10 = w100, and w010 = w00×w10. The datasets

were generated by sampling from the log-linear models using Rao-Blackwellized

Gibbs sampler h with 10 chains, 100 burn-in and 1000 sampling.

Appendix C. AD-Tree

This section gives a brief description of AD-Tree. We refer the interested reader to
45. The AD-Tree is an efficient representation for caching sufficient statistics from

data. The use of AD-Tree for constructing contingency tables has shown dramat-

ical improvements in time complexity for structure learning and feature induction

algorithms 54,55. Roughly speaking, AD-Tree is a sparse tree structure whose nodes

represent assignments of a single variable xia ∈ Val(a), and branches represent com-

plete assignments xi ∈ Val(V). A node saves the sufficient statistic for the partial

assignment that results of picking all the nodes towards the root. For instance, the

root saves |D|, and each one of its children, that is xia, saves |D[xia]| for all a ∈ V .

Therefore, a contingency table can be constructed by using the sufficient statistics

of a subtree. For not incurring in an intractable memory demand, 45 presents several

cache reductions. One of them, called Leaf-Lists (Section 5 Ref. 45), prunes any sub-

tree when the number of datapoints used for counting is fewer than a given pruning

threshold. In these cases, a Leaf-List is used to save the indexes of such datapoints

to quickly access them for computing on demand these sufficient statistics at some

later time.

References

1. J. M. Hammersley and P. Clifford. Markov fields on finite graphs and lattices. 1971.
2. J Van Haaren, J Davis, GAM Lappenschaar, and AJ Hommersom. Exploring disease

interactions using Markov networks. 2013.
3. Karen Sachs, Omar Perez, Dana Pe’er, Douglas A Lauffenburger, and Garry P Nolan.

Causal protein-signaling networks derived from multiparameter single-cell data. Sci-
ence, 308(5721):523–529, 2005.

4. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann Publishers, Inc., 1re edition, 1988.

5. Steffen L Lauritzen. Graphical models. Oxford University Press, 1996.
6. Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine

learning, volume 1. springer New York, 2006.
7. Martin J Wainwright and Michael I Jordan. Graphical models, exponential families,

and variational inference. Foundations and Trends R© in Machine Learning, 1(1-2):
1–305, 2008.

hThis version of Gibbs sampler is available in the open-source Libra toolkit
http://libra.cs.uoregon.edu/

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 39

8. D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press, Cambridge, 2009.

9. Kevin P Murphy. Machine learning: a probabilistic perspective. MIT Press, 2012.
10. Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1):

273–302, 1996.
11. S. Della Pietra, V. J. Della Pietra, and J. D. Lafferty. Inducing Features of Random

Fields. IEEE Trans. PAMI., 19(4):380–393, 1997.
12. Andrew McCallum. Efficiently inducing features of conditional random fields. In Pro-

ceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence, pages
403–410. Morgan Kaufmann Publishers Inc., 2002.

13. Jesse Davis and Pedro Domingos. Bottom-up learning of Markov network structure.
In Proceedings of the 27th International Conference on Machine Learning, pages 271–
280, 2010.

14. Vibhav Gogate, William Webb, and Pedro Domingos. Learning efficient Markov net-
works. In Advances in Neural Information Processing Systems, pages 748–756, 2010.

15. Jan Van Haaren and Jesse Davis. Markov network structure learning: A randomized
feature generation approach. In Proceedings of the Twenty-Sixth National Conference
on Artificial Intelligence. AAAI Press, 2012.

16. Daniel Lowd and Jesse Davis. Improving Markov network structure learning using
decision trees. Journal of Machine Learning Research, 15:501–532, 2014.

17. Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal
graphs. Social Science Computer Review, 9(1):62–72, 1991.

18. Facundo Bromberg, Dimitris Margaritis, Vasant Honavar, et al. Efficient Markov net-
work structure discovery using independence tests. Journal of Artificial Intelligence
Research, 35(2):449, 2009b.

19. Federico Schlüter, Facundo Bromberg, and Alejandro Edera. The IBMAP approach for
Markov network structure learning. Annals of Mathematics and Artificial Intelligence,
pages 1–27, 2014. ISSN 1012-2443. doi: 10.1007/s10472-014-9419-5.

20. Trevor Hastie, Robert Tibshirani, Jerome Friedman, T Hastie, J Friedman, and R Tib-
shirani. The elements of statistical learning, volume 2. Springer, 2009.

21. Yutian Chen and Max Welling. Bayesian structure learning for Markov random fields
with a spike and slab prior. 2012.

22. C. Boutilier, N. Friedman, M. Goldszmidt, and Daphne Koller. Context-specific inde-
pendence in Bayesian networks. In Proceedings of the Twelfth international conference
on Uncertainty in artificial intelligence, pages 115–123. Morgan Kaufmann Publishers
Inc., 1996.

23. Jozef L Teugels and Johan Van Horebeek. Generalized graphical models for discrete
data. Statistics & probability letters, 38(1):41–47, 1998.

24. P Svante Eriksen. Context specific interaction models. Citeseer, 1999.
25. Søren Højsgaard. Yggdrasil: a statistical package for learning split models. In Pro-

ceedings of the Sixteenth conference on Uncertainty in artificial intelligence, pages
274–281. Morgan Kaufmann Publishers Inc., 2000.

26. Søren Højsgaard. Statistical inference in context specific interaction models for con-
tingency tables. Scandinavian journal of statistics, 31(1):143–158, 2004.

27. Arthur Fridman. Mixed Markov models. Proceedings of the National Academy of Sci-
ences, 100(14):8092–8096, 2003.

28. D. Poole and N. L. Zhang. Exploiting contextual independence in probabilistic infer-
ence. J. Artif. Intell. Res. (JAIR), 18:263–313, 2003.

29. S. I. Lee, V. Ganapathi, and D. Koller. Efficient structure learning of Markov networks
using L1-regularization. In Neural Information Processing Systems. Citeseer, 2006.

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

40 Alejandro Edera, Federico Schlüter, and Facundo Bromberg

30. Daniel Lowd and Amirmohammad Rooshenas. Learning Markov networks with arith-
metic circuits. The Journal of Machine Learning Research, 31:406–414, 2013.

31. Robert Gens and Pedro Domingos. Learning the structure of sum-product networks.
In Proceedings of The 30th International Conference on Machine Learning, volume 28,
2013.

32. D. Fierens. Context-specific independence in directed relational probabilistic models
and its influence on the efficiency of Gibbs sampling. In European Conference on
Artificial Intelligence, pages 243–248, 2010.

33. Walter R Gilks, Sylvia Richardson, and David J Spiegelhalter. Introducing Markov
chain monte carlo. In Markov chain Monte Carlo in practice, pages 1–19. Springer,
1996.

34. Alex Kulesza and Fernando Pereira. Structured learning with approximate inference.
In Advances in neural information processing systems, pages 785–792, 2007.

35. Julian Besag. On the statistical analysis of dirty pictures. Journal of the Royal Sta-
tistical Society. Series B (Methodological), pages 259–302, 1986.

36. Daniel Lowd. Closed-form learning of Markov networks from dependency networks.
2012.

37. Pradeep Ravikumar, Martin J. Wainwright, and John D. Lafferty. High-dimensional
Ising model selection using L1-regularized logistic regression. Annals of Statistics, 38:
1287–1319, 2010. doi: 10.1214/09-AOS691.

38. Daniel Lowd and Jesse Davis. Learning Markov network structure with decision trees.
In Data Mining (ICDM), 2010 IEEE 10th International Conference on, pages 334–
343. IEEE, 2010.

39. Yoav Benjamini and Daniel Yekutieli. The control of the false discovery rate in multiple
testing under dependency. Annals of statistics, pages 1165–1188, 2001.

40. Eliot Brenner and David Sontag. Sparsityboost: A new scoring function for learning
Bayesian network structure. 2013.

41. MH DeGroot and MJ Schervish. Probability and statistics-international edition, 2001.
42. Constantin F Aliferis, Alexander Statnikov, Ioannis Tsamardinos, Subramani Mani,

and Xenofon D Koutsoukos. Local causal and Markov blanket induction for causal
discovery and feature selection for classification part i: Algorithms and empirical eval-
uation. The Journal of Machine Learning Research, 11:171–234, 2010.

43. Alejandro Edera, Facundo Bromberg, and Federico Schlüter. Markov random fields
factorization with context-specific independences. arXiv preprint arXiv:1306.2295,
2013.

44. Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected
graph. Communications of The ACM, 16:575–577, 1973. doi: 10.1145/362342.362367.

45. Andrew Moore and Mary Soon Lee. Cached Suficient Statistics for Efficient Machine
Learning with Large Datasets. Journal of Artificial Intelligence Research, 8:67–91,
1998.

46. Solomon Kullback and Richard A Leibler. On information and sufficiency. The Annals
of Mathematical Statistics, 22(1):79–86, 1951.

47. Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-
Interscience, New York, NY, USA, 1991. ISBN 0-471-06259-6.

48. Markus Kalisch and Peter Bühlmann. Estimating high-dimensional directed acyclic
graphs with the PC-algorithm. The Journal of Machine Learning Research, 8:613–636,
2007.

49. Dimitris Margaritis and Sebastian Thrun. Bayesian network induction via local neigh-
borhoods. Technical report, DTIC Document, 2000.

50. Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from

May 12, 2014 19:18 WSPC/INSTRUCTION FILE edera14a

Learning Markov network structures constrained by context-specific independences 41

incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series
B (Methodological), pages 1–38, 1977.

51. Pieter Abbeel, Daphne Koller, and Andrew Y Ng. Learning factor graphs in poly-
nomial time and sample complexity. The Journal of Machine Learning Research, 7:
1743–1788, 2006.

52. F. Bromberg, D. Margaritis, and Honavar V. Efficient Markov Network Structure
Discovery Using Independence Tests. JAIR, 35:449–485, July 2009a.

53. J. Pearl and A. Paz. GRAPHOIDS : A graph based logic for reasonning ab relevance
relations. Technical Report 850038 (R-53-L), Cognitive Systems Laboratory, Univer-
sity of California, Los Angeles, 1985.

54. Shunkai Fu and Michel C Desmarais. Fast Markov blanket discovery algorithm via
local learning within single pass. In Advances in Artificial Intelligence, pages 96–107.
Springer, 2008.

55. Jo-Anne Ting, Aaron D’Souza, Sethu Vijayakumar, and Stefan Schaal. Efficient learn-
ing and feature selection in high-dimensional regression. Neural computation, 22(4):
831–886, 2010.

56. Parichey Gandhi, Facundo Bromberg, and Dimitris Margaritis. Learning Markov Net-
work Structure using Few Independence Tests. In SIAM International Conference on
Data Mining, pages 680–691, 2008.

57. D. Margaritis and F. Bromberg. Efficient Markov Network Discovery Using Particle
Filter. Comp. Intel., 25(4):367–394, 2009.

