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ABSTRACT:  

              This manuscript describes that the class of super lattice measurable sets is closed under finite unions, countable unions, and 
countable intersections. It has been established that the product two lattice σ- algebras defined on a product lattice is lattice measurable 

and the elementary integration of these lattice measurable sets are equal. Further some characteristics of lattice σ- finite measures were 
identified. 
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§1. INTRODUCTION: 

 

          In section 2,  by Tanaka[9] we define the definition of lattice sigma algebra, lattice measure on a lattice sigma algebra by Anil 
kumar etrl[1,2] the definition of lattice measurable of the space, lattice measurable set, lattice measure space, lattice σ – finite measure 
are defined. Here we prove some elementary properties of lattice measurable sets. 

         Section 2 is devoted to the basic concepts which were making use of in the later text. The rationalization of lattice σ- algebra and 
lattice measure on lattice σ- algebra were organized. Further a classification of lattice measure space, lattice measurable set, lattice σ – 
finite measure space, lattice σ- finite measure were prearranged.   
 
 Section 3 establishes the results that the class of super lattice measurable sets is closed under finite unions, countable union, 
countable intersections. Further instituted a theorem that the product two lattice σ- algebras defined on a product lattice is lattice 

measurable. It has been obtained that the elementary integration of these lattice measurable sets are equal. Finally some characteristics 
of lattice σ- finite measures were observed. 

                                   
§2. PRELIMINARIES 

                    This section briefly reviews the well-known facts of Birkhoff’s [3] lattice theory. The system (L, ), where L is a non 

empty set,  and  are two binary operations on L, is called a lattice if   and  satisfies, for any elements x, y, z, in L:(L1) 

commutative law: x  y = y  x and x  y = y  x. (L2) associative law: x (y  z) = (x  y)  z and x (y  z) = (x  y)  z. (L3) 

absorption law: x (y  x) = x and x (y  x) = x. Hereafter, the lattice (L, ) will often be written as L for simplicity. A lattice 

(L, ) is called distributive if, for any x, y, z, in L. (L4) distributive law holds: x  (y  z) = (x  y) (x  z) and x (y  z) = (x  

y) (x  z). A lattice L is called complete if, for any subset A of L, L contains the supremum  A and the infimum  A. If L is 
complete, then L itself includes the maximum and minimum elements which are often denoted by 1 and 0 or I and O respectively. A 

distributive lattice is called a Boolean lattice if for any element x in L, there exists a unique complement x
c
 such that x  x

c
 = 1 (L5) 

the law of excluded middle x  x
c
 = 0 (L6) the law of non-contradiction. 
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 Let L be a lattice and c: L  L be an operator. Then c is called a lattice complement in L if the following conditions are 

satisfied. (L5) and (L6);  x  L, x  x
c
 = 1 and x  x

c
 = 0,(L7) the law of contrapositive;  x, y  L, x < y implies x

c
 > 

y
c
,(L8) the law of double negation; x  L, (x

c
)
c
 = x.Throughout this paper, we consider lattices as complete lattices which obey 

(L1) - (L8) except for (L6) the law of non-contradiction. Unless otherwise stated, X is the entire set and L is a lattice of any subsets of 
X. 

Definition2.1: If a lattice L satisfies the following conditions, then it is called a lattice -Algebra; 

 (1)  h  L, h
c
  L 

 (2) if h
n
  L for n = 1, 2, 3 ....., then  






1n
 h

n
  L.  

 We denote (L) = ß, as the lattice -Algebra generated by L. 

 

Example 2.1: [[4] Halmos (1974)]. 1. {X} is a lattice -Algebra.   

2. P(X) power set of X is a lattice -Algebra. 

Example2.2: Let X =   and L = {measurable subsets of  } with usual ordering (≤). Here L is a lattice and  (L) = ß is a lattice  - 

algebra generated by L. 

Example2.3:Let X be any non-empty set, L = {All topologies on X}. Here L is a complete lattice but not  - algebra.  

Example2.4: [[4] Halmos (1974)]. Let X =   and L = {E <   / E is finite or E
c
 is finite}. Here L is lattice algebra but not lattice  - 

algebra.  

Definitition2.2: The ordered pair (X,ß) is said to be lattice measurable space. 

Example2.5: Let X = and L = {All Lebesgue measurable sub sets of  }. Then it can be verified that ( , ß) is a lattice 

measurable space. 

Definitition2.3: If the mapping µ: ß R  {} satisfies the following properties, then µ is called a lattice measure on the lattice -

Algebra (L). 

(1) µ () = µ (0) = 0. 

(2) For all h, g  ß, such that µ(h), µ(g) > 0 and h < g µ(h) < µ(g). 

(3) For all h, g  ß, µ (h  g) + µ (h  g) = µ (h) + µ (g). 

(4) If h
n
  ß, n  N such that h

1
 < h

2
 < ... < h

n
 < ...., then µ (






1n
h

n
) = lim µ (h

n
). 

Note2.1: Let µ
1

 and µ2 be lattice measures defined on the same lattice -Algebra ß. If one of them is finite, then the set function µ 

(E) = µ
1 

(E) - µ
2 

(E), E  ß is well defined and is countably additive on ß.  

Example2.6: [[6]Royden (1981)]: Let X be any set and ß = P(X) be the class of all sub sets of X. Define for any A   ß, µ(A) = +  

if A is infinite = |A| if A is finite, where |A| is the number of elements in A. Then µ is a countable additive set function defined on ß 
and hence µ is a lattice measure on ß. 

Definition2.4: A set A is said to be lattice measurable set or lattice measurable if A belongs to ß. 
Example2.7: [Anilkumar etrl[1,2] 2011] The interval (a,  ) is a lattice measurable under usual ordering. 

Example2.8: [Anilkumar etrl[1,2]  2011] [0, 1] <   is lattice measurable under usual ordering. Let X= , L= {lebesgue measurable 

subsets of  }with usual ordering (≤)  clearly  (L) is a lattice -algebra  generated by L. Here [0,1] is a member of  LHence it is 

a Lattice measurable set. 
Example2.9: [Anilkumar etrl[1,2] 2011] Every Borel lattice is a lattice measurable. 
Definition2.5: The lattice measurable space (X, ß) together with a lattice measure μ  is called a lattice measure space and it is denoted 

by (X, ßμ ).  

Example2.10:   is a set of real numbers μ  is the lattice Lebesgue measure on   and ß is the family of all Lebesgue measurable 

subsets of real numbers. Then ( , ß,μ ) is a lattice measure space. 

Example2.11:   be the set of real numbers and ß is the class of all Borel lattices, μ  be a lattice Lebesgue measure on   then ( , 

ß,μ ) is a lattice measure space.   
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 Definition2.6: Let (X, ßμ ) be a lattice measure space. If μ (X) is finite then μ  is called lattice finite measure. 

Example2.12: The lattice Lebesgue measure on the closed interval [0, 1] is a lattice finite measure.  
Example2.13: When a coin is tossed, either head or tail comes when the coin falls. Let us assume that these are the only possibilities. 

Let X = {H, T}, H for head and T for tail. Let ß = {X}. Define the mapping P: ß  [0, 1] by P (P ({H}) = P 

({T}) = ½, P (X) = 1. Then P is a lattice finite measure on the lattice measurable space (X, ß). 

Definition2.7: If µ is a lattice finite measure, then (X, ßμ ) is called a lattice finite measure space.  

Example2.14: Let ß be the class of all Lebesgue measurable sets of [0, 1] and μ  be a lattice Lebesgue measure on [0, 1]. Then ([0, 1], 

ßμ ) is a lattice finite measure space. 

Definition2.8: Let (X, ßμ ) be a lattice measure space. If there exists a sequence of lattices measurable sets { nx } such that  

(i) X = 





1n
nx      and (ii) μ ( nx ) is finite then μ  is called a lattice σ – finite measure. 

Example2.15: The lattice Lebesgue measure on ( ,μ ) is a lattice σ – finite measure since   = 





1n
(-n, n) and μ ((-n,n)) = 2n is 

finite for every n.  

Definition2.9: If μ  be a lattice σ – finite measure, then (X, ßμ ) is called lattice σ – finite measure space.  

Example2.16: Let ß be the class of all Lebesgue measurable sets on   = 





1n
(-n, n) and μ  be a lattice Lebesgue measure on  , 

then ( , ßμ ) is a lattice σ – finite measure space. 

Definition 2.10: The lattice measure m defined on S   T above is called the product of the lattice measures μ  and λ  and is denoted 

by μ    λ . 

Definition 2.11: Let X and Y be two lattices. Then their Cartesian product denoted by X   Y is defined as X   Y = {(x, y)/x   X, y 
 Y}. It is called product lattice. 
Example 2.17: Let L and M be two lattices shown in the figures below 

 
Then L   M is 

 
Where l = (x2, y4), d = (x2, y2), e = (x1, y4), f = (x2, y3), a = (x1, y2), b = (x2, y1), c = (x1, y3) and O = (x1, y1).  

Definition 2.12: If A <  X, B < Y then A   B < X   Y. Any lattice of the form A   B is called super lattice in X   Y. 
Example 2.18: If A   B and C   D then (A C)   (B   D) 

Let(x, y) be any element of A C. Then by definition of product lattice we have  
x  A, y  C.  
But it is given that A   B and C   D.  
Therefore x  B and y   D.  
That is (x, y) is an element of B   D. Hence (A C)   (B   D).  
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Remark 2.1: Let (X, S), (Y, T) be lattice measurable spaces.  
Then S is a lattice σ  - algebra in X and T is a lattice σ  - algebra in Y.  

Definition 2.13: If A  S and B   T, then the lattice of the form A   B is called super lattice measurable set. 
Example 2.19: Every member of S   T is a super lattice measurable set. 

Definition 2.14: If Q = 1R  n2 R.....R   where each iR  is a super lattice measurable set and iR  
jR  =   for i ≠ j, then Q 

is called elementary lattice. The class of all elementary lattices is denoted by LE.  
Remark 2.2: S   T is defined to be smallest lattice σ  - algebra in X   Y which contains every super lattice measurable set.  

Definition 2.15: If Ai, Bi   σ (L) such that Ai < Ai+1, Bi > Bi+1 for i = 1, 2, 3, …. and A = 





1i
 Ai,   B = 






1i
 Bi , then A   σ (L) and B 

 σ (L). This lattice σ  - algebra σ (L) is a monotone class.  

Example 2.20: X   Y is a monotone class.  
Definition 2.16: Let E < X   Y where x   X, y   Y. We define x – section lattice of E by Ex = {y/ (x, y)   E} and y – section 
lattice of Ey = {x/(x, y)   E}. 
Note 2.2: Ex < Y and Ey < X.  
Definition 2.17: [5] Let σ(L) be a lattice σ-algebra of sub sets of a set X. A function µ:  σ(L) → [0,  ] is called a positive lattice 
measure defined on σ(L) if  

(1) µ( ) = 0 

(2) µ( n
1n
A




 )  =  



1n

n )μ(A   where {An} is a disjoint countable collection of members of σ(L)  and  µ(A) <    for  at least one  A 

 σ(L). 
Example 2.21: (i) Counting measure: Let X be a non – empty set. Let  σ(L) = P(X). Define µ:  σ(L) → [0,  ] by |E| = number of 
lattice measurable sets in E, if E is finite,   if E is infinite. Then µ is a positive lattice measure on P(X) called the positive lattice 
counting measure on X. 

(ii) Unit mass at x0: Let X be a non – empty set. Let  σ(L) = P(X). Fix x0   X. 
Define µ:  σ(L) → [0,  ] by µ(E) = 1 if x0   E = 0 if x0   E  

then µ is a positive lattice measure on P(X) is called unit measure concentrated at x0. 

Theorem 2.1: [5] If E  S   T, then Ex  T and Ey   S for every x   X and y   Y.  
Theorem 2.2: [5] S   T is the smallest monotone class which contains all elementary lattices. 

Theorem 2.3: [7] Suppose { nf } is a sequence of complex lattice measurable functions on X such that f(x) = lim nf (x) exists for 

every x  X. If there is a function g   
1L  such that | nf (x)| ≤ g(x) where n = 1, 2, 3, ……. x  X,  

then (1) f  
1L  (2) lim dμ |f -f|

X

n  = 0. (3) lim dμ f
X

n  = 
X

dμ f .  

Theorem 2.4: [7] Let { nf } be a sequence of lattice measurable functions on X such that  (x)......f(x)f0 21  for every x   

X and nf (x) → f(x) as n →   for every x   X. Then f is lattice measurable and dμ f
X

n → 
X

dμ f  as n →  . 

Result 2.1: [1] First Valuation Theorem: Suppose that { kE } is monotonic increasing sequence of lattice measurable sets and E = 






1k
kE  then m(E) = 

n
Lt m( nE ).  

Result 2.2: [1] Second Valuation Theorem: Suppose that { kE } is a monotonic decreasing sequence of lattice measurable sets and E = 

k
1k
E




 , then m(E) = 

n
Lt )m(E n . 

Theorem 2.5: [5] Let µ be a positive lattice measure defined on a lattice σ-algebra σ(L). Then µ satisfies first valuation theorem 
(Result 2.1) and second valuation theorem(Result 2.2) that is 

(1) Let A =  n
1n
A




 , An   σ(L).  Let A1<A2 ……..  Then µ(An) →  µ(A) as n →  . 
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(2) If A = n
1n
A




 , An  σ(L)  and A1>A2….. with µ(A1) finite. Then µ(An) →  µ(A) as n →  . 

 

 

 

§3. CHARACTERIZATION OF LATTICE SIGMA ALGEBRAS ON PRODUCT LATTICES 

 

Definition 3.1: Let f: X   Y   Z is topological space. For each x   X, define fx: Y Z by  fx(y) = f(x, y). Then fx is called Y- 

lattice measurable function. For each y   Y, define fy : X  Z by fy(x) = f(x, y). Then fy  is called X – lattice measurable function.  

Theorem 3.1: Let f be an (S   T) lattice measurable function on X   Y, Then  
1) For each x  X, fx is a T – lattice measurable function 
2) For each y  Y, fy is a S – lattice measurable function. 
Proof. Let V be an open set in Z. Let Q = {(x, y)   X   Y : f(x, y)   V} 
Since f is S   T lattice measurable, Q   S   T. Qx = {y: (x, y)   Q} = {y: f(x,y)   V} = {y: fx (y)   V } By theorem 2.1 Qx   T. 
Therefore fx is a T – lattice  measurable function. A similar argument shows that fy is an S –lattice measurable function. 

Result 3.1: If Φ (x) = λ (Qx), ψ (y) = μ (Qy) where QxS and Qy T for all x   X, y   Y and K= {Q   S   T: Φ is S -lattice 

measurable, ψ  is T –lattice measurable and 
X

dμ f  = 
Y

dλ ψ } ------(1). Then every super lattice measurable set belong to K where 

K is the class of super lattice measureable set satisfying (1). 
Proof. Let Q = A   B, A   S, B   T. 
Then Q  S   T. Also, Qx = B if x   A 

                                           =   if x   A 

Therefore λ (Qx) = λ (B) Aχ (x). 

In a similar way,  Qy  = A if y   B   

=   if y   B  

μ (Qy) = μ (A) Bχ (y) 

Therefore Φ (x) = λ (B) Aχ (x), ψ (y) = μ (A) Bχ (y). Since A   S, Φ is S –lattice measurable and since B   T, ψ  is T - lattice 

measurable.  

Also 
X

dμ Φ  = 
X

A dμ (x)χ λ(B)  = λ (B) μ (A) 

         
Y

dλ ψ  = 
Y

B dλ (y)χ μ(A)  = μ (A) λ (B) 

Therefore 
X

dμ Φ  = 
Y

dλ ψ .  

Thus, every super lattice measurable set belongs to K. 

Result 3.2: If Q1 < Q2 <………. Qn   K and if Q = 
n

1i
 Qi then Q K (or) finite union of members of K is again a member of K. 

 Proof: Since Qi  S   T, and since S   T is a lattice σ - algebra, we get Q   S   T. 

 Let )λ(Q  (x)Φ ixi  , )μ(Q  (y)ψ iyi  , then as Qi K, we get iΦ is S – lattice measurable, iψ  is T –lattice measurable for every i 

and 
X

i dμ Φ  = 
Y

i dλ ψ . Since μ  and λ  are positive lattice measures, λ (Qix)   λ (
i
  Qix) and μ (Qiy) = μ (

i
  Qiy) as i   

 .(by theorem 2.5(1)) Since Qx = Qix, Qy = Qiy, we get λ (Qix)   λ (Qx) and μ (Qiy)  μ (Qy), that is iΦ    Φ  and iψ  

  ψ  as i    . 

Since { iΦ } are S -lattice measurable, { iψ } are T –lattice measurable (by theorem 2.4), we get that Φ  is S –lattice measurable, ψ  is 
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T –lattice measurable and  


X

i dμ Φ    
X

dμ Φ , 
Y

i dλ ψ    
Y

dλ ψ . Since 
X

i dμ Φ  = 
Y

i dλ ψ , for every i, we get that 
X

dμ Φ  = 
Y

dλ ψ . Therefore Q 

K. 

Result 3.3: If {Qi} is a disjoint countable collection of members of K and if Q = 
i
  Qi then QK. (or) countable union of member of 

K is again a member of K. 
Proof: Let Q1, Q2, …….. Qn be n disjoint numbers of K. Let Q = Q1   Q2 ……Qn. As Qi   S   T is a lattice σ  - algebra, we get 

Q  S   T. Let )λ(Q  (x)Φ ixi  , )μ(Q  (y)ψ iyi  . Then iΦ ’s are S –lattice measurable and iψ ’s are T –lattice measurable for all 

i, 1 ≤ i ≤ n and 
X

i dμ Φ  = 
Y

i dλ ψ . Qx = 
n

1i
 Qix, Qy = 

n

1i
 Qiy. Let Φ (x) = λ (Qx), ψ (y) = μ (Qy). Then Φ (x) = λ (

n

1i
 Qix) = 




n

1i

λ (Qix) (Therefore Qix’s are disjoint) ψ (y) = μ (
n

1i
 Qiy) = 



n

1i

μ ( Qiy) (Therefore Qiy’s are disjoint) That is Φ (x) = 


n

1i

i (x)Φ , 

ψ (y) = 


n

1i

i (y)ψ . Therefore Φ (x) is S –lattice measurable and ψ (y) is T –lattice measurable. Now 
Qχ  = 



n

1i

Qi
χ  (Therefore Q is 

the disjoint union of Qi’s). Now )λ(Qx  = 
Y

Q (y)d y)(x,χ    

= (y) dλ y)(x,χ
Y

n

1i

Qi  










 

Therefore 
X

dμ Φ  = 
X

dμ  (x) 
Y

Q dλ y)(x,χ  (y) 

 = 
X

dμ  (x) 
Y

n

1i

Q dλ y)(x,χ
i

 (y) = 
X

dμ  (x) (


n

1i Y

Q dλ y)(x,χ
i

 (y))   = 


n

1i X

dμ (x) 
Y

Q dλ y)(x,χ
i

(y)  = 


n

1i X

i dμ Φ = 




n

1i Y

i dλ ψ  (Since Qi K) = 


n

1i Y

i dλ ψ (y) 
X

Q dμ y)(x,χ
i

(x) = 
Y

dλ  (y) 
X

n

1i

Q dμ y)(x,χ
i

 (x) = 
Y

dλ  (y) 
X

Q dμ y)(x,χ (x) 

= 
Y

dλ ψ  

Therefore  QK. Let Q = 





1i
Qi ,  Qi   K,  Qi is disjoint. Then Q1 < Q1   Q2 < …… < Qi   ………. Qn < Qn………Let Q1 = w1, Q1 

Q2 = w2, ……. Q1 ……….Qn = wn etc. Then w1, w2, …… wn…. are in K. (Since they are finite union of disjoint members of K). 

Also w1 < w2 < ……. < wn < …. and Q = 





1i
wi. Hence by result 2, Q K. 

Result 3.4: If μ (A) <   and λ (B) <  , and if A   B > Q1 > Q2 >Q3……….   Q = 





1i
Qi, Qi K for every i, then Q K (or) 

countable intersection of members of K is again a member of K.  

Proof: Since Qi K, and since S   T is a lattice σ  - algebra, we get Q = 





1i
Qi   S   T. Let iΦ (x) = λ (Qix), iψ (y) = )μ(Qiy . 

Then as Qi K, we get, iΦ  is a S –lattice measurable and iψ  is a T –lattice measurable for every i and 
X

dμ Φi  = 
Y

i dλ ψ . Now 

μ  and λ  are positive lattice measures. Also A   B > Q1 > Q2 >……… 

λ (Q1x) ≤ λ ((A   B)x) = λ (B) Aχ (x) ≤ λ (B) <  . μ (Q1y) ≤ μ (( A   B)y) = μ (A) Bχ (y) ≤ μ (A) <  . Therefore by the 
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theorem, (by theorem 2.5(2)). We get,  

λ ( Q1x)  λ (Qx), μ ( Q1y)   μ (Qy) that is iΦ    Φ , iψ  ψ , as i    where Φ (x) =  λ (Qx), ψ (y) = μ (Qy). Now 

{ iΦ } are S –lattice measurable, { iψ } are T –lattice measurable. Also, if g(x) = λ ((A   B)x), h(y) = μ (( A   B)y) then iΦ  ≤ g, iψ  

≤ h for all i, clearly g is S – lattice measurable and h is T –lattice measurable (by result 3.1). 

Therefore by theorem 2.3.Φ  is S –lattice measurable and ψ  is T –lattice measurable and 
n

lim 
X

n dμ Φ  = 
X

dμ Φ , 
n

lim 
Y

n dλ ψ  = 


Y

dλ ψ But 
X

n dμ Φ  = 
Y

n dλ ψ , for every n. Therefore 
X

dμ Φ  = 
Y

dλ ψ .  

Therefore Q K.  

Theorem 3.2: Let (X, S, μ ), (Y, T, λ ) be lattice σ  - finite measure spaces. Suppose Q   S   T.If Φ (x) = λ (Qx), ψ (y) = μ (Qy) 

for all x  X, y  Y then Φ  is S –lattice measurable, ψ  is T lattice measurable and 
X

dμ Φ  = 
Y

dλ ψ . 

Proof. From the hypothesis, we have that μ  and λ  are positive lattice measures on S and T respectively and X = 





1n
Xn, μ (Xn) < 

 , Y = 





1m
Ym, λ (Ym) <  .Since Qx   T, Qy   S we can find λ (Qx) and μ (Qy). Let K = {Q   S   T : Φ  is S –lattice  

measurable, ψ  is T –lattice measurable and 
X

dμ f  = 
Y

dλ ψ }. Define Qmn = Q   (Xn   Ym) (m, n = 1, 2, 3, …….). Let  ß = {Q 

 S   T: Qmn  K for all choices of m and n}.  

[Since X = 





1n
Xn, Y = 






1m
Ym, Xn’s are disjoint, Ym’s are disjoint, μ (Xn) <  , μ (Ym) <   for all m, n.] Then from result 3.2 and 

result 3.4 we get that ß is a monotone class.  
(Note that if Q  ß, then Q   S   T and Qmn   S   T and Qmn   K for all m, n).  

But Qmn’s are disjoint. Also Q = Qi. Therefore Q K (by result 3.3) if Q   ß such that Qi
 
< Qi+1 for i = 1,2,3,…… then Qi   ß and 

hence Qi K (by result 3.2) let Q = Qi. Then Qmn = 





1i
(Qi)mn. As (Qi)mn   K for all m, n and since these are disjoint Qmn   K 

(by result 3.4). Hence Q   ß. A similar argument shows that if Qi   ß and Qi > Qi+1    i = 1, 2, 3,….. thenQiß. For this we use 

result 3.4. We also observe that Qi < X   Y implies Qi < Xn   Ym. Also  μ (Xn) <  , μ (Ym) <  . Result 3.1 and result 3.3 shows 

that ß contains all elementary lattices. But ß < S   T (by definition of ß). By theorem 2.2. ß = S   T. Thus Qmn   K for all Q   S   
T and for all choices of m, n. 
As Q = Qmn, Qmn being disjoint we get by result 3.3, Q   K.  

Therefore for every Q   S   T we get Φ  is S –lattice measurable and ψ  is T –lattice measurable and 
X

dμ Φ  = 
Y

dλ ψ . Hence 

the theorem. 

Remark 3.1: Since λ (Qx) = 
Y

Q dλ y)(x,χ (y) (x   X) and μ (Qy) = 
X

Q dμ y)(x,χ (x) (y   Y)       


X

dμ Φ  = 
Y

dλ ψ  gives 
X

dμ (x) 
Y

Q dλ y)(x,χ (y)= 
Y

dλ (y) 
X

Q dμ y)(x,χ (x). 

Result 3.5: Let (X, S, μ ) and (Y, T, λ ) be lattice σ  - finite measure spaces. For any Q   S   T define m(Q) = 
X

X dμ )λ(Q (x) = 


X

Y dλ )μ(Q  (y). Then m is a lattice measure on a lattice σ  - algebra S   T.  

Proof: Clearly m(Q) is in [0,  ]. Let  
1iiA  be a disjoint countable collection of lattice measurable sets  of S   T.  Let A = 






1i
Ai. 
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Let Φ (x) = λ (Ax) = λ (





1i Xi
A ) = 



1i

λ (
Xi

A ) = 


1i

i (x)Φ where (x)Φi  = λ (
Xi

A ). Therefore Φ  = 


1i

iΦ . m(A) = 


X

X dμ )λ(A (x) = 
X

dμ Φ  

= 


X 1i

i dμ Φ =


1i X

i dμ Φ = 


1i X

i dμ )λ(A
X

(x)  

= 


1i

i )m(A .  

Therefore m is a lattice measure on the lattice σ – algebra S   T.  

Result 3.6: μ    λ  is lattice σ  - finite measure.  

Proof: X = 





1i
Xn, Y = 






1i
Ym, Xn’s are disjoint, Ym’s are disjoint and μ (Xn) <  , μ (Ym) <   for all m, n. Obviously Xn   S and 

Ym  T. Therefore Xn   Ym is a super lattice measurable set and hence Xn   Ym   S   T for all m, n. Also μ    λ  (Xn   Ym) = 

μ    λ (Q) where Q = Xn   Ym = 
X

X dμ )λ(Q (x) 

= 
X

Xm dμ (x)χ )λ(Y
n

(x) = )λ(Ym )μ(Xn  <  .  

Since )λ(Ym <   and )μ(Xn  <  , therefore X   Y = 
n m,
  Xn   Ym and μ    λ (Xn    Ym) <   for all m, n. Hence μ    λ  is 

lattice σ  - finite measure.  

 
 

Conclusion: 

             This manuscript express that the class of super lattice measurable sets is closed under finite unions, countable unions, and 
countable intersections. It has been ascertained that the product two lattice σ- algebras defined on a product lattice is lattice 

measurable and the elementary integration of these lattice measurable sets are made equal. Further some characteristics of lattice σ- 
finite measures were acknowledged. 
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