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ABSTRACT:

This manuscript describes that the class of super lattice measurable sets is closed under finite unions, countable unions, and
countable intersections. It has been established that the product two lattice - algebras defined on a product lattice is lattice measurable
and the elementary integration of these lattice measurable sets are equal. Further some characteristics of lattice 6 - finite measures were
identified.
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§1. INTRODUCTION:

In section 2, by Tanaka[9] we define the definition of lattice sigma algebra, lattice measure on a lattice sigma algebra by Anil
kumar etrl[1,2]the definition of lattice measurable of the space, lattice measurable set, lattice measure space, lattice ¢ — finite measure
are defined. Here we prove some elementary properties of lattice measurable sets.

Section 2 is devoted to the basic concepts which were making use of in the later text. The rationalization of lattice ¢- algebra and
lattice measure on lattice o- algebra were organized. Further a classification of lattice measure space, lattice measurable set, lattice ¢ —
finite measure space, lattice - finite measure were prearranged.

Section 3 establishes the results that the class of super lattice measurable sets is closed under finite unions, countable union,
countable intersections. Further instituted a theorem that the product two lattice - algebras defined on a product lattice is lattice
measurable. It has been obtained that the elementary integration of these lattice measurable sets are equal. Finally some characteristics
of lattice o- finite measures were observed.

§2. PRELIMINARIES

This section briefly reviews the well-known facts of Birkhoff’s [3] lattice theory. The system (L, A, v), where L is a non
empty set, A and v are two binary operations on L, is called a lattice if A and v satisfies, for any elements x, y, z, in L:(L1)
commutative law: x Ay=y A xandx v y=yvVv x. (L2)associative law: x A (yAZ)=(XAy)AzandxV (yVv z)=(xVy)Vz(L3)
absorption law: x v (y A X) = x and X A (Y Vv X) = x. Hereafter, the lattice (L, A, v) will often be written as L for simplicity. A lattice
(L, A, v)is called distributive if, for any X, y, z, in L. (L4) distributive law holds: x v (yAZ) = (X Vy) A(XV Zz)and X A (Y V 2) = (X A
y) VvV (XA 2). A lattice L is called complete if, for any subset A of L, L contains the supremum v A and the infimum A A. If L is
complete, then L itself includes the maximum and minimum elements which are often denoted by 1 and 0 or [ and O respectively. A
distributive lattice is called a Boolean lattice if for any element x in L, there exists a unique complement x such that x v x° = 1 (LS5)

the law of excluded middle x A x° =0 (L6) the law of non-contradiction.
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Let L be a lattice and c: L — L be an operator. Then c is called a lattice complement in L if the following conditions are
satisfied. (L5) and (L6); V x e L,x v x°=1 and x A x° = 0,(L7) the law of contrapositive; Vv x,y € L, x <y implies x& >

y©,(L8) the law of double negation;V x e L, (x°)¢ = x.Throughout this paper, we consider lattices as complete lattices which obey
(L1) - (L8) except for (L6) the law of non-contradiction. Unless otherwise stated, X is the entire set and L is a lattice of any subsets of
X.

Definition2.1: If a lattice L satisfies the following conditions, then it is called a lattice o-Algebra;
(1) VheLh®elL

2) ifhneLforn=l,2,3 ..... ,then v hneL.

n=1

We denote o (L) = B, as the lattice o-Algebra generated by L.

Example 2.1: [[4] Halmos (1974)]. 1. {¢, X} is alattice o-Algebra.

2. P(X) power set of X is a lattice o-Algebra.

Example2.2: Let X= ‘R and L = {measurable subsets of R } with usual ordering (<). Here L is a lattice and ¢ (L)= B is a lattice & -
algebra generated by L.

Example2.3:Let X be any non-empty set, L = {All topologies on X}. Here L is a complete lattice but not ¢ - algebra.

Example2.4: [[4] Halmos (1974)].Let X= R and L = {E < R / E is finite or E” is finite}. Here L is lattice algebrabut not lattice & -
algebra.

Definitition2.2: The ordered pair (X, ) is said to be lattice measurable space.

Example2.5: Let X =Rand L = {All Lebesgue measurable sub sets of R }. Then it can be verified that (R, B) is a lattice
measurable space.

Definitition2.3: If the mapping u: B - R U {0} satisfies the following properties, then pis called a lattice measure on the lattice o-
Algebra o (L).

(1) p(h)=n(0)=0.

(2) Forallh,ge B,suchthat p(h), u(g) >0andh<g= u(h) < wg).

(3) Forallh,ge B,pu(hvg+p(hag=ph)+pn(g.

4) Ifhn < B,n € N such that h1 §h2 <.. ghng .oy then p ( n\il hn) = lim u(hn).

Note2.1: Let “1 and p, be lattice measures defined on the same lattice 6-Algebra . If one of them is finite, then the set function p
(B)= H (E) - Hy (E), E € B is well defined and is countably additive on B.

Example2.6: [[6]Royden (1981)]: Let X be any set and B = P(X) be the class of all sub sets of X. Define for any A € B, W(A) =+o0
if A is infinite = |A| if A is finite, where |A| is the number of elements in A. Then pis a countable additive set function defined on
and hence p is a lattice measure on 8.

Definition2.4: A set A is said to be lattice measurable set or lattice measurable if A belongs to 8.

Example2.7: [Anilkumar etrl[1,2] 2011] The interval (a, o) is a lattice measurable under usual ordering.

Example2.8: [Anilkumar etrl[1,2] 2011][0,1]< ‘R is lattice measurable under usual ordering. Let X="R , L= {lebesgue measurable

subsets of SR }with usual ordering (<) clearly o (L) is a lattice c-algebra generated by L. Here [0,1]is a member of o( L). Hence it is
a Lattice measurable set.

Example2.9: [Anilkumar etrl[1,2] 2011] Every Borel lattice is a lattice measurable.

Definition2.5: The lattice measurable space (X, ) together with a lattice measure [l is called alattice measure space and it is denoted

by (X, B, 1).
Example2.10: ‘R is a set of real numbers |l is the lattice Lebesgue measure on R and B is the family of all Lebesgue measurable
subsets of real numbers. Then (R, B, L) is a lattice measure space.

Example2.11: R be the set of real numbers and B is the class of all Borel lattices, [l be a lattice Lebesgue measure on R then (R ,
B, ) is alattice measure space.
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Definition2.6: Let (X, B, |L) be alattice measure space. If [l (X) is finite then [ is called lattice finite measure.

Example2.12: The lattice Lebesgue measure on the closed interval [0, 1] is a lattice finite measure.

Example2.13: Whenacoinis tossed, either head or tail comes when the coin falls. Let us assume that these are the only possibilities.
Let X = {H, T}, H for head and T for tail. Let B = {¢, {H}, {T}, X}. Define the mapping P: 8 —[0, 1] by P (¢)=0,P ({H}) =P
({T}) =", P (X) = 1. Then P is a lattice finite measure on the lattice measurable space (X, B).

Definition2.7: If pis a lattice finite measure, then (X, B, [l ) is called a lattice finite measure space.

Example2.14: Let B be the class of all Lebesgue measurable sets of [0, 1]and [l be a lattice Lebesgue measure on [0, 1]. Then ([0, 1],

B, W) is a lattice finite measure space.

Definition2.8: Let (X, B, |L) be a lattice measure space. If there exists a sequence of lattices measurable sets { X } such that

(1) X= n\:l X, and (ii) W(X, ) is finite then [ is called a lattice ¢ — finite measure.

Example2.15: The lattice Lebesgue measure on (R, L) is a lattice ¢ — finite measure since SR = v (-n, n) and [ ((-n,n)) = 2n is
n=1

finite for every n.
Definition2.9: If L be a lattice ¢ — finite measure, then (X, 3, |1 ) is called lattice ¢ — finite measure space.

Example2.16: Let B be the class of all Lebesgue measurable sets on SR = v (-n, n) and L be alattice Lebesgue measure on ‘R
n=1 5

then (R, B, W) is a lattice ¢ — finite measure space.
Definition 2.10: The lattice measure m defined on S X T above is called the product of the lattice measures |1 and A and is denoted

by L X A.

Definition 2.11: Let X and Y be two lattices. Then their Cartesian product denoted by X X Yis definedas X X Y= {(x,y)/x € X,y
€ Y}. Itis called product lattice.

Example 2.17: Let L and M be two lattices shown in the figures below

o)

a2 3
X1
1
€L} (V)
Then L X M is
1
,.J-’"H"'x.
.-»'"-— = -,
e
d e T~ f
e
. — -~ e -~ - -
- > b e
., o -
a - e —Jl c
o |
O

Where | = (XZ’ Y4), d= (Xz, Y2)9 €= (Xls y4)5 f= (X25 y3)5 a= (xb Y2)9 b= (X25 y1)5 c= (Xls Y3) and O = (Xl’ Y1)
Definition 2.12: [f A< X, B<Ythen A X B<X X Y. Any lattice of the form A X B is called super lattice in X X Y.
Example 2.18: If A € Band C C D then (A XC) C (B X D)

Let(x, y) be any element of A X C. Then by definition of product lattice we have
x € Ay € C.

Butitis giventhat A C Band C C D.

Therefore x € Bandy € D.

That is (x, y) is an element of B X D. Hence (A XC) C (B X D).
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Remark 2.1: Let (X, S), (Y, T) be lattice measurable spaces.

Then S is a lattice & - algebrain X and Tis a lattice ¢ - algebrain Y.

Definition 2.13: If A € Sand B € T, then the lattice of the form A X B is called super lattice measurable set.
Example 2.19: Every member of S X Tis a super lattice measurable set.

Definition 2.14: If Q= R, vV R, v....v R where each R is a super lattice measurable setand R; A R; = ¢ fori#j, thenQ

is called elementary lattice. The class of all elementary lattices is denoted by L.
Remark 2.2: S X Tis defined to be smallest lattice ¢ - algebrain X X Y which contains every super lattice measurable set.

Definition 2.15: If A, B, € o (L) suchthat A, < A, B;> B, fori=1,2,3,....and A= v A, B= A B;,thenA € o(L)andB
i=1 i=1

€ o (L). This lattice ¢ - algebra ¢ (L) is a monotone class.

Example 2.20: X X Y is a monotone class.

Definition 2.16: Let E< X X Y where x € X,y € Y. We define x — section lattice of E by E, = {y/ (X,y) € E} andy — section
lattice of E, = {x/(x,y) € E}.

Note 2.2: E,<Yand E, <X.

Definition 2.17: [S] Let o(L) be a lattice c-algebra of sub sets of a set X. A function p: o(L) — [0, o0 ]is called a positive lattice
measure defined on o(L) if

(Hu¢)=0

(2) W len) = ZH(An) where {A,} is a disjoint countable collection of members of o(L) and u(A) < o0 for at least one A
n= n=l

€ o(L).

Example 2.21: (i) Counting measure: Let X be a non — empty set. Let o(L) = P(X). Define . o(L) — [0, o© ] by |E| = number of

lattice measurable sets in E, if E is finite, o0 if E is infinite. Then p is a positive lattice measure on P(X) called the positive lattice

counting measure on X.

(i1) Unit mass at xy: Let X be a non — empty set. Let o(L) = P(X). Fixx, € X.

Define p: o(L) — [0, ©o]by W(E)=1ifx, € E=0ifxy € E

then p is a positive lattice measure on P(X) is called unit measure concentrated at x,.

Theorem 2.1: [S]IfE € S X T, thenE, € Tand E, € Sforeveryx € Xandy € Y.

Theorem 2.2: [5] S X Tis the smallest monotone class which contains all elementary lattices.

Theorem 2.3: [7] Suppose {f, } is a sequence of complex lattice measurable functions on X such that f(x) = lim f, (x) exists for
everyx € X. If there is a functiong € L' such that If, (x)|<g(x) wheren=1,2,3, ....... x€ X,
then(1) f € L' (2) lim J'| f -f[du =0.(3)lim Ifn dp = Ifd},t.

X X X

Theorem 2.4: [7] Let { f_ } be a sequence of lattice measurable functions on X such that 0 < f,(x) <f,(X)...... < oo foreveryx €

Xand f, (x) — f(x) asn — 0 for every x € X. Then fis lattice measurable and Ifn dpu— Jf dp asn— 0.
X X

Result 2.1: [1] First Valuation Theorem: Suppose that { E, } is monotonic increasing sequence of lattice measurable sets and E =
v E, thenm(E)= Lt m(E)).

k=1 n—w

Result 2.2: [1] Second Valuation Theorem: Suppose that { E, } is a monotonic decreasing sequence of lattice measurable sets and E =

QlEk,thenm(E): Lt mE)).

n—o

Theorem 2.5: [5] Let p be a positive lattice measure defined on a lattice o-algebra o(L). Then p satisfies first valuation theorem
(Result 2.1) and second valuation theorem(Result 2.2) that is

(1) Let A= \{lAn,An € o(L). Let Aj<A, ........ Then w(A,) — W(A) asn— 0.,
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(Q)IfA= AA_ A, € o(L) and A;>A,..... with p(A,) finite. Then p(A,) — H(A) asn — 0.
n=1

§3. CHARACTERIZATION OF LATTICE SIGMA ALGEBRAS ON PRODUCT LATTICES

Definition 3.1: Let f: X X Y — Z is topological space. For each x € X, define f,: Y —Z by f,(y) = f(x, y). Then f, is called Y-
lattice measurable function. For eachy € Y, define f, : X — Z by f,(x) = f(x, y). Then {, is called X — lattice measurable function.
Theorem 3.1: Let f be an (S X T) lattice measurable function on X X Y, Then

1) Foreachx € X f, is a T— lattice measurable function

2) Foreachy € Y, f is a S — lattice measurable function.

Proof. Let Vbe anopensetinZ. Let Q= {(x,y) € X X Y: f(x,y) € V}

Since fis S X Tlattice measurable, Q € S X T. Q, = {y: (x,y) € Q} = {y: f(x)y) € V} ={y: f,(y) € V} By theorem2.1 Q, € T.
Therefore f; is a T — lattice measurable function. A similar argument shows that f, is an S —lattice measurable function.

Result 3.1: If @ (x) = A (Q,), Y (y) = H(Q,) where Q,€SandQ, € Tforallx € X,y € YandK={Q € S x T: ® is S -lattice

measurable,  is T —lattice measurable and If dp = I\U [,V R— (1). Then every super lattice measurable set belong to K where
X Y

K is the class of super lattice measureable set satisfying (1).
Proof. Let Q=A X B,A€ S,BeT.
ThenQ € S X T. Also,Q,=Bifx € A

=pifxe A

Therefore A (Q,) = A (B) X, (%).
In a similar way, Q, = Aify € B
=¢ify¢B

H(Qy) = K(A) Xp(¥)
Therefore @ (x) = A(B) Y, (X), W(y) = L(A) %g(y). Since A € S, D is S —lattice measurable and since B € T, Y is T - lattice

measurable.

Also [@dp = [MB)1, (0 du = A (B) p(A)
X X
Jwdr = [uA)xa(y)dh = na) A @)
Y Y

Therefore J(D du = J\V di.
X Y

Thus, every super lattice measurable set belongs to K.
n

Result 3.2: If Q, <Q, <.......... Q, € KandifQ= 'V1 Q; then Q € K (or) finite union of members of K is again a member of K.
i=

Proof: Since Q; € S X T, and since S X Tis alattice G - algebra, we getQ € S X T.
Let @;(x) =MQ,,), v;(y)=w(Q;,), thenas Q; €K, we get D, is S — lattice measurable, ; is T-lattice measurable for every i

and I@i du = .[Wi d\. Since [ and A are positive lattice measures, A (Q,) — A(V Q) and M (Qy) = L(V Qy)asi —>
X Y

00 (by theorem 2.5(1)) Since Q, = V Qi,, Q, = V Qiy, we get A (Q,) = A (Q,) and [ (Qy) —> H(Q,), thatis @, — D and y,
—> Yasi —> ©.

Since { D, } are S -lattice measurable, { Y, } are T —lattice measurable (by theorem 2.4), we get that @ is S —lattice measurable,  is

33



International Journal of Mathematical Engineering Science
ISSN: 2277-6982 volume 1 issue 4 (May 2012)
https://www.1jmes.cony https://sites.google.comy/site/ijmesjournal/

T —lattice measurable and

I(Di dp — ICD du, J.\|li dv — J.\jld?». Since J.(Di du = J.\|li d\, for every i, we get that J.(de,t = I\Vd?».Therefore Q
X X Y Y X Y X Y

ek.

Result 3.3: If {Q;} is a disjoint countable collection of members of Kand if Q = v Q; then Q € K. (or) countable union of member of

K is again a member of K.
Proof: LetQ, Q,, ........ Q, be ndisjoint numbers of K. Let Q=Q; vV Q, V...... Q.- As Q; € S X Tis alattice ¢ - algebra, we get

Q € S X T. Let ®;(X) =MQ,,), W;(y)=p(Q;,). Then @, ’s are S —lattice measurable and \; ’s are T —lattice measurable for all

i1<i<nand [® du= [y, dh. Q.= V Qi Q= V Qy Let @ () = Q). Y () = K(Q): Then @ () = A (Vv Q) =
X Y

z A (Qy) (Therefore Qy,’s are disjoint) W (y) = L ( \Z Qy) = z W ( Qjy) (Therefore Q;,’s are disjoint) That is @ (x) = ZCDi (x),

i=1 i=1 i=1

Y(y)= Z\Vi (Y). Therefore @ (x)is S —lattice measurable and ¥ (y) is T —lattice measurable. Now Xo = Z Xqo, (Therefore Qis
i=1

i=1

the disjoint union of Q;'s). Now MQ, ) = [ %o (% Y)AA(Y)
Y

- [ (ZXQ x y)j an (y)

Y

Therefore ICD du = Id].i x) IXQ(X‘J y)dA (y)
X X Y

= du @ [rg )k = [du 00 (X [oq )k o)
X X

Y i=l i=l vy

n [ [o,(c y)dr(y) = ijcbi du-
i=l x Y

i=l x

> vy di (since @ €)= D" [y ) [0, (6 V)= [dh ) [D 10 (6 Y)du 9= [dh ) [xq(% y)du o)
i=l v X Y i=1 Y X

i=l y

X i=
= [yar

Y
Therefore Q€K.Let Q= i\z Q;, Q € K, Q;isdisjoint. Then Q; < Q; V Q,<...... <QiV ol Qu<Qu..venn... LetQ; =w;, Q
VQy =Wy, ... Q V... Q,=w, etc. Then w;, w,, ...... W,.... are in K. (Since they are finite union of disjoint members of K).
Alsow, <w, <....... <w,<...and Q= i\z w;. Hence by result 2, Q € K.
Result 3.4: If [L(A)< 00 and A (B) < @, andif A X B>Q; > Q,>Q;.......... Q= iZQi, Q; €K for every i, then Q €K (or)

countable intersection of members of K is again a member of K.

Proof: Since Q; €K, and since S X Tis a lattice G - algebra, we get Q = '/\1Qi € S x T.Let @;(x)= A (Qu), ¥; (y) = W(Q;,) .

Then as Q; €K, we get, @, is a S —lattice measurable and ; is a T —lattice measurable for every i and I@i du = IWi d\ . Now
X Y

W and A are positive lattice measures. Also A X B>Q;>Q,>.........

A(Q1) < A((A X B)) = A(B) %5 (x) < A(B) < 0. U(Qy) < H((A X B)) = H(A) Xp(y) < M (A) < . Therefore by the
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theorem, (by theorem 2.5(2)). We get,
A( Qi) = A(Qy), H( Qi) = n(Q) thatis @, —> D, y, > y,asi — 0 where D (x) = A (Qy), Y (y) = 1(Q,). Now
{ D, } are S —lattice measurable, { \, } are T —lattice measurable. Also, if g(x) = A (A x B),), h(y) = L (( A X B),) then O, <g, v,
<h for all i, clearly g is S — lattice measurable and h is T —lattice measurable (by result 3.1).
Therefore by theorem 2.3. @ is S—lattice measurable and  is T—lattice measurable and lim J.(Dn dp = ICD du, &13}10 I\Vn dir =
X X Y

n—o

I\V dA But J.(Dn du = I\Vn dA, for every n. Therefore J.(D du = J.\|I da.
Y X Y X Y

Therefore Q €K.
Theorem 3.2: Let (X, S, W), (Y, T, A)be lattice ¢ - finite measure spaces. Suppose Q € S X T.If @ (x)=A(Q,), W(y)= U Qy)

forallx € X,y € Y then @ is S —lattice measurable, Y is T lattice measurable and ICD dp = I\U da.
X Y

0

Proof. From the hypothesis, we have that L and A are positive lattice measures on S and Trespectively and X = Vv X, WL (X,) <
n=l

©,Y= V Y, A(Y,) < ©.Since Q, € T, Q, € S we can find A(Q,) and L (Q,). Let K= {Q € S x T: ® is S —lattice
m=l
measurable, \ is T —lattice measurable and If dp = J.\Vd?» }. Define Q= Q A (X, X Y) (m,n=1,2,3,....... ). Let B={Q
X Y

€ S X T: Qu, € Kfor all choices of m and n}.

[Since X= Vv X,, Y= V Y, X,’s are disjoint, Y,;,’s are disjoint, WL (X,) < o0, L (Y,,) < ®© for all m, n.] Then from result 3.2 and
n=l1 m=1

result 3.4 we get that B3 is a monotone class.
(Note that if Q € B,thenQ € S X Tand Q,,, € S X Tand Q,,, € K for all m, n).
But Q,,,’s are disjoint. Also Q = Vv Q;. Therefore Q €K (by result 3.3)ifQ € B such that Q;< Q;y, fori=1,23,...... then Q; € B and

hence VvV Q; €K (by result 3.2) let Q= Vv Q;. Then Q,,, = 'V1 (Q)mn- As (Q))mn € K for all m, n and since these are disjoint Q,,, € K
i=

(by result 3.4). Hence Q € B. A similar argument shows that if Q; € Band Q;> Q. 1=1,2,3,..... then A Q; € B. For this we use

result 3.4. We also observe that Q; < X X Y implies Q; < X, X Y. Also K (X,) < 0, U(Y,) < 9. Result 3.1 and result 3.3 shows

that B contains all elementary lattices. But B < S X T (by definition of 8). By theorem 2.2. 3 =S X T. Thus Q,,, € KforallQ € S X

T and for all choices of m, n.
As Q= V Qun, Qun being disjoint we get by result 3.3,Q € K.

Therefore for every Q € S X Twe get @ is S —lattice measurable and W is T —lattice measurable and J(D dp = J\V d\ . Hence
X Y

the theorem.

Remark 3.1: Since %.(Q)= [%(% Y)dA () (x € X)and 1(Q) = [7(% Y)du () (v € V)
Y X
J@du=[ydr gives [dueo [roe )@= dh ) [ro0x y)dn.
X Y X Y Y X
Result 3.5: Let (X, S, It) and (Y, T, A ) be lattice © - finite measure spaces. For any Q € S X T define m(Q) = JX(QX) dp (x) =
X

I},L(QY) d\ (y). Then m is a lattice measure on a lattice G - algebra S X T.
X

0

Proof: Clearly m(Q) is in [0, ©©]. Let {Ai }21 be a disjoint countable collection of lattice measurable sets of S X T. Let A= V A,

i=1
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Let ®(x) = A(A)) = 7\.(i\z A )= ZK(AiX) = ;:(Di(x) where @, (x) = X(AiX ). Therefore @ = zq)i . m(A) =

i=1 i=1

[MA ) A= [ du

:qu)i du:ij.q)i du= iIX(AiX)dp (x)

X i=l i=l X i=1 ¥
o0
= Zm(Ai).
i=1

Therefore m is a lattice measure on the lattice o — algebra S X T.
Result 3.6: L X A is lattice ¢ - finite measure.

0 0

Proof: X = Vv X,, Y= V Y,, X,’s are disjoint, Y,,’s are disjoint and [ (X,) < o0, U (Y,) < o0 for all m, n. Obviously X, € S and
i=1 i=1
Y,, € T. Therefore X, X Y,, is a super lattice measurable set and hence X, X Y,, € S X Tforallm,n. Also L X A (X, X Y,)=

i X A(Q) where Q=X, X Y,y = [ MQy) i (x
X

- A 2, (9 = A(Y, ) (X, ) < oo

Since M(Y,,)< o and W(X, ) < 00, therefore X X Y= Vv X, X Yyand L X A (X, X Y,)< o0 forall m,n. Hence L X A is
m, n

lattice G - finite measure.

Conclusion:

This manuscript express that the class of super lattice measurable sets is closed under finite unions, countable unions, and
countable intersections. It has been ascertained that the product two lattice - algebras defined on a product lattice is lattice
measurable and the elementary integration of these lattice measurable sets are made equal. Further some characteristics of lattice c-
finite measures were acknowledged.
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